Greedy Algorithms Part Two

Announcements

- Problem Set Three graded, will be returned at end of lecture.
- Problem Set Four due on Monday, or on Wednesday if you're using a late period.

Outline for Today

- Minimum Spanning Trees
 - What's the cheapest way to connect a graph?
- Prim's Algorithm
 - A simple and efficient algorithm for finding minimum spanning trees.
- Exchange Arguments
 - Another approach to proving greedy algorithms work correctly.

Trees

A **tree** is an undirected, acyclic, connected graph.

An undirected graph is called **minimally connected** iff it is connected and removing any edge disconnects it.

Theorem: An undirected graph is a tree iff it is minimally connected.

An undirected graph is called **maximally acyclic** iff adding any missing edge introduces a cycle.

Theorem: An undirected graph is a tree iff it is maximally acyclic.

Theorem: An undirected graph is a tree iff it is connected and |E| = |V| - 1.

Trees

- A **tree** is an undirected graph G = (V, E) that is connected and acyclic.
- All the following are equivalent:
 - *G* is a tree.
 - *G* is connected and acyclic.
 - *G* is **minimally connected** (removing any edge from *G* disconnects it.)
 - *G* is **maximally acyclic** (adding any edge creates a cycle)
 - *G* is connected and $|\mathbf{E}| = |\mathbf{V}| 1$.

- **Theorem:** Let *T* be a tree and $(u, v) \notin T$. The graph $T \cup \{(u, v)\}$ contains a cycle. For any edge (x, y) on the cycle, the graph $T' = T \cup \{(u, v)\} \{(x, y)\}$ is a tree.
- **Proof:** Since $(u, v) \notin T$ and $(x, y) \in T \cup \{(u, v)\}$, we know |T'| = |T| + 1 1 = |T| = |V| 1. Therefore, we will show that *T*' is connected to conclude *T*' is a tree.

Consider any s, $t \in V$. Since T is connected, there is some path from s to t in T. If that path does not cross (x, y), or if (x, y) = (u, v), then this path is also a path from s to t in T', so *s* and *t* are connected in T'. Otherwise, suppose the path from *s* to *t* crosses (x, y). Assume without loss of generality that the path starts at *s*, goes to *x*, crosses (x, y), then goes from y to t. Since (u, v) and (x, y) are part of the same cycle, we can modify the original path from s to t so that instead of crossing (x, y), it goes around the cycle from *x* to *y*. This new path is then a path from *s* to *t* in *T*', so *s* and *t* are connected in *T*'. Thus any arbitrary pair of nodes are connected in T', so T' is connected.

Minimum Spanning Trees

Spanning Trees

- Let G = (V, E). A **spanning tree** (or **ST**) of G is a graph (V, T) such that (V, T) is a tree.
 - For notational simplicity: we'll identify a spanning tree with just the set of edges T.
- Suppose that each edge $(u, v) \in E$ is assigned a cost c(u, v).
- The **cost of a tree** T, denoted c(T), is the sum of the costs of the edges in T:

$$c(T) = \sum_{(u,v)\in T} c(u,v)$$

• A **minimum spanning tree** (or **MST**) of *G* is a spanning tree *T** of *G* with minimum cost.

Minimum Spanning Trees

- There are *many* greedy algorithms for finding MSTs:
 - Borůvka's algorithm (1926)
 - Kruskal's algorithm (1956)
 - Prim's algorithm (1930, rediscovered 1957)
- We will explore Kruskal's algorithm and Prim's algorithm in this course.
- *Lots* of research into this problem: parallel implementions, optimal serial implementations, implementations harnessing bitwise operations, etc...

Theorem: Let G be a connected, weighted graph. If all edge weights in G are distinct, G has exactly one MST.

Theorem: Let G be a connected, weighted graph. If all edge weights in G are distinct, G has exactly one MST.

Proof: Since G is connected, it has at least one MST.
Proof: Since G is connected, it has at least one MST. We will show G has at most one MST by contradiction. Assume T_1 and T_2 are distinct MSTs of G.

Proof: Since *G* is connected, it has at least one MST. We will show *G* has at most one MST by contradiction. Assume T_1 and T_2 are distinct MSTs of *G*. Since $|T_1| = |T_2|$, the set $T_1 \Delta T_2$ is nonempty, so it contains a least-cost edge (u, v).

Proof: Since *G* is connected, it has at least one MST. We will show *G* has at most one MST by contradiction. Assume T_1 and T_2 are distinct MSTs of *G*. Since $|T_1| = |T_2|$, the set $T_1 \Delta T_2$ is nonempty, so it contains a least-cost edge (u, v). Assume without loss of generality that $(u, v) \in T_1$.

Proof: Since *G* is connected, it has at least one MST. We will show *G* has at most one MST by contradiction. Assume T_1 and T_2 are distinct MSTs of *G*. Since $|T_1| = |T_2|$, the set $T_1 \Delta T_2$ is nonempty, so it contains a least-cost edge (u, v). Assume without loss of generality that $(u, v) \in T_1$.

Consider $T_2 \cup \{(u, v)\}$. Since T_2 is a tree, this graph has a cycle *C* involving (u, v).

Proof: Since *G* is connected, it has at least one MST. We will show *G* has at most one MST by contradiction. Assume T_1 and T_2 are distinct MSTs of *G*. Since $|T_1| = |T_2|$, the set $T_1 \Delta T_2$ is nonempty, so it contains a least-cost edge (u, v). Assume without loss of generality that $(u, v) \in T_1$.

Consider $T_2 \cup \{(u, v)\}$. Since T_2 is a tree, this graph has a cycle *C* involving (u, v). Let (x, y) be the edge in *C* with the highest total cost. We claim c(x, y) > c(u, v).

Proof: Since *G* is connected, it has at least one MST. We will show *G* has at most one MST by contradiction. Assume T_1 and T_2 are distinct MSTs of *G*. Since $|T_1| = |T_2|$, the set $T_1 \Delta T_2$ is nonempty, so it contains a least-cost edge (u, v). Assume without loss of generality that $(u, v) \in T_1$.

Consider $T_2 \cup \{(u, v)\}$. Since T_2 is a tree, this graph has a cycle *C* involving (u, v). Let (x, y) be the edge in *C* with the highest total cost. We claim c(x, y) > c(u, v). To see this, note that every edge in *C* other than (u, v) belongs either to $T_2 \cap T_1$ or to $T_2 - T_1$.

Proof: Since *G* is connected, it has at least one MST. We will show *G* has at most one MST by contradiction. Assume T_1 and T_2 are distinct MSTs of *G*. Since $|T_1| = |T_2|$, the set $T_1 \Delta T_2$ is nonempty, so it contains a least-cost edge (u, v). Assume without loss of generality that $(u, v) \in T_1$.

Consider $T_2 \cup \{(u, v)\}$. Since T_2 is a tree, this graph has a cycle *C* involving (u, v). Let (x, y) be the edge in *C* with the highest total cost. We claim c(x, y) > c(u, v). To see this, note that every edge in *C* other than (u, v) belongs either to $T_2 \cap T_1$ or to $T_2 - T_1$. Some edge in the cycle must belong to $T_2 - T_1$, or otherwise (u, v) closes a cycle in T_1 .

Proof: Since *G* is connected, it has at least one MST. We will show *G* has at most one MST by contradiction. Assume T_1 and T_2 are distinct MSTs of *G*. Since $|T_1| = |T_2|$, the set $T_1 \Delta T_2$ is nonempty, so it contains a least-cost edge (u, v). Assume without loss of generality that $(u, v) \in T_1$.

Consider $T_2 \cup \{(u, v)\}$. Since T_2 is a tree, this graph has a cycle *C* involving (u, v). Let (x, y) be the edge in *C* with the highest total cost. We claim c(x, y) > c(u, v). To see this, note that every edge in *C* other than (u, v) belongs either to $T_2 \cap T_1$ or to $T_2 - T_1$. Some edge in the cycle must belong to $T_2 - T_1$, or otherwise (u, v) closes a cycle in T_1 . The most expensive edge in $T_2 - T_1$ costs more than c(u, v); otherwise (u, v) would not be the cheapest edge in $T_1 \Delta T_2$.

Proof: Since *G* is connected, it has at least one MST. We will show *G* has at most one MST by contradiction. Assume T_1 and T_2 are distinct MSTs of *G*. Since $|T_1| = |T_2|$, the set $T_1 \Delta T_2$ is nonempty, so it contains a least-cost edge (u, v). Assume without loss of generality that $(u, v) \in T_1$.

Consider $T_2 \cup \{(u, v)\}$. Since T_2 is a tree, this graph has a cycle *C* involving (u, v). Let (x, y) be the edge in *C* with the highest total cost. We claim c(x, y) > c(u, v). To see this, note that every edge in *C* other than (u, v) belongs either to $T_2 \cap T_1$ or to $T_2 - T_1$. Some edge in the cycle must belong to $T_2 - T_1$, or otherwise (u, v) closes a cycle in T_1 . The most expensive edge in $T_2 - T_1$ costs more than c(u, v); otherwise (u, v) would not be the cheapest edge in $T_1 \Delta T_2$. Thus the highest-cost edge in the cycle has cost at least c(u, v).

Proof: Since *G* is connected, it has at least one MST. We will show *G* has at most one MST by contradiction. Assume T_1 and T_2 are distinct MSTs of *G*. Since $|T_1| = |T_2|$, the set $T_1 \Delta T_2$ is nonempty, so it contains a least-cost edge (u, v). Assume without loss of generality that $(u, v) \in T_1$.

Consider $T_2 \cup \{(u, v)\}$. Since T_2 is a tree, this graph has a cycle *C* involving (u, v). Let (x, y) be the edge in *C* with the highest total cost. We claim c(x, y) > c(u, v). To see this, note that every edge in *C* other than (u, v) belongs either to $T_2 \cap T_1$ or to $T_2 - T_1$. Some edge in the cycle must belong to $T_2 - T_1$, or otherwise (u, v) closes a cycle in T_1 . The most expensive edge in $T_2 - T_1$ costs more than c(u, v); otherwise (u, v) would not be the cheapest edge in $T_1 \Delta T_2$. Thus the highest-cost edge in the cycle has cost at least c(u, v).

As proven earlier, $T' = T_2 \cup \{(u, v)\} - \{(x, y)\}$ is a spanning tree of *G*.

Proof: Since *G* is connected, it has at least one MST. We will show *G* has at most one MST by contradiction. Assume T_1 and T_2 are distinct MSTs of *G*. Since $|T_1| = |T_2|$, the set $T_1 \Delta T_2$ is nonempty, so it contains a least-cost edge (u, v). Assume without loss of generality that $(u, v) \in T_1$.

Consider $T_2 \cup \{(u, v)\}$. Since T_2 is a tree, this graph has a cycle *C* involving (u, v). Let (x, y) be the edge in *C* with the highest total cost. We claim c(x, y) > c(u, v). To see this, note that every edge in *C* other than (u, v) belongs either to $T_2 \cap T_1$ or to $T_2 - T_1$. Some edge in the cycle must belong to $T_2 - T_1$, or otherwise (u, v) closes a cycle in T_1 . The most expensive edge in $T_2 - T_1$ costs more than c(u, v); otherwise (u, v) would not be the cheapest edge in $T_1 \Delta T_2$. Thus the highest-cost edge in the cycle has cost at least c(u, v).

As proven earlier, $T' = T_2 \cup \{(u, v)\} - \{(x, y)\}$ is a spanning tree of *G*. But $c(T') = c(T_2) + c(u, v) - c(x, y) < c(T_2)$, which contradicts that T_2 is an MST.

Proof: Since *G* is connected, it has at least one MST. We will show *G* has at most one MST by contradiction. Assume T_1 and T_2 are distinct MSTs of *G*. Since $|T_1| = |T_2|$, the set $T_1 \Delta T_2$ is nonempty, so it contains a least-cost edge (u, v). Assume without loss of generality that $(u, v) \in T_1$.

Consider $T_2 \cup \{(u, v)\}$. Since T_2 is a tree, this graph has a cycle *C* involving (u, v). Let (x, y) be the edge in *C* with the highest total cost. We claim c(x, y) > c(u, v). To see this, note that every edge in *C* other than (u, v) belongs either to $T_2 \cap T_1$ or to $T_2 - T_1$. Some edge in the cycle must belong to $T_2 - T_1$, or otherwise (u, v) closes a cycle in T_1 . The most expensive edge in $T_2 - T_1$ costs more than c(u, v); otherwise (u, v) would not be the cheapest edge in $T_1 \Delta T_2$. Thus the highest-cost edge in the cycle has cost at least c(u, v).

As proven earlier, $T' = T_2 \cup \{(u, v)\} - \{(x, y)\}$ is a spanning tree of *G*. But $c(T') = c(T_2) + c(u, v) - c(x, y) < c(T_2)$, which contradicts that T_2 is an MST. Thus our assumption was wrong and there is at most one MST in *G*.

The Cycle Property

• This previous proof relies on a property of MSTs called the *cycle property*.

Theorem (Cycle Property): If (*x*, *y*) is an edge in *G* and is the heaviest edge on some cycle *C*, then (*x*, *y*) does not belong to any MST of *G*.

• Proof along the lines of what we just saw: if it did belong to some MST, adding the cheapest edge on that cycle and removing (*x*, *y*) leaves a lower-cost spanning tree.

Finding MSTs: **Prim's Algorithm**

Prim's Algorithm

- **Prim's Algorithm** is the following:
 - Choose some $v \in V$ and let $S = \{v\}$.
 - Let $T = \emptyset$.
 - While $S \neq V$:
 - Choose a least-cost edge e with one endpoint in S and one endpoint in V - S.
 - Add e to T.
 - Add both endpoints of *e* to *S*.
- (Quick history: This was originally invented by Czech mathematician Vojtěch Jarník in 1930.)

Proving Legality

- *Claim:* Prim's algorithm produces a spanning tree of *G*.
- **Proof idea:** Show by induction that T forms a spanning tree of the nodes in S. Conclude that since eventually S = V, that T is a spanning tree for G.

Proving Optimality

- To show that Prim's algorithm produces an MST, we will work in two steps:
 - First, as a warmup, show that Prim's algorithm produces an MST as long as all edge costs are distinct.
 - Then, for the full proof, show that Prim's algorithm produces an MST even if there are multiple edges with the same cost.
- In doing so, we will see the *exchange argument* as another method for proving a greedy algorithm is optimal.

The Intuition

- By construction, every edge added in Prim's algorithm is the cheapest edge crossing some cut (S, V S).
- Any tree other than the one produced by Prim's algorithm has to exclude some edge that was included by Prim's algorithm.
- Adding that edge closes a cycle that crosses the cut.
- Deleting an edge in the cycle that crosses the cut strictly lowers the cost of the tree.

Proof: Let T be the spanning tree found by Prim's algorithm and T^* be the MST of G.

Proof: Let *T* be the spanning tree found by Prim's algorithm and T^* be the MST of *G*. We will prove $T = T^*$ by contradiction. Assume $T \neq T^*$.

Proof: Let *T* be the spanning tree found by Prim's algorithm and *T** be the MST of *G*. We will prove $T = T^*$ by contradiction. Assume $T \neq T^*$. Therefore, $T - T^* \neq \emptyset$.

Proof: Let *T* be the spanning tree found by Prim's algorithm and *T** be the MST of *G*. We will prove $T = T^*$ by contradiction. Assume $T \neq T^*$. Therefore, $T - T^* \neq \emptyset$. Let (u, v) be any edge in $T - T^*$.

Proof: Let *T* be the spanning tree found by Prim's algorithm and *T** be the MST of *G*. We will prove $T = T^*$ by contradiction. Assume $T \neq T^*$. Therefore, $T - T^* \neq \emptyset$. Let (u, v) be any edge in $T - T^*$.

When (u, v) was added to *T*, it was the least-cost edge crossing some cut (S, V - S).

Proof: Let *T* be the spanning tree found by Prim's algorithm and *T** be the MST of *G*. We will prove $T = T^*$ by contradiction. Assume $T \neq T^*$. Therefore, $T - T^* \neq \emptyset$. Let (u, v) be any edge in $T - T^*$.

When (u, v) was added to *T*, it was the least-cost edge crossing some cut (S, V - S). Since *T** is an MST, there must be a path from *u* to *v* in *T**.

Proof: Let *T* be the spanning tree found by Prim's algorithm and *T** be the MST of *G*. We will prove $T = T^*$ by contradiction. Assume $T \neq T^*$. Therefore, $T - T^* \neq \emptyset$. Let (u, v) be any edge in $T - T^*$.

When (u, v) was added to T, it was the least-cost edge crossing some cut (S, V - S). Since T^* is an MST, there must be a path from u to v in T^* . This path begins in S and ends in V - S, so there must be some edge (x, y) along that path where $x \in S$ and $y \in V - S$.

Proof: Let *T* be the spanning tree found by Prim's algorithm and *T** be the MST of *G*. We will prove $T = T^*$ by contradiction. Assume $T \neq T^*$. Therefore, $T - T^* \neq \emptyset$. Let (u, v) be any edge in $T - T^*$.

When (u, v) was added to *T*, it was the least-cost edge crossing some cut (S, V - S). Since T^* is an MST, there must be a path from *u* to *v* in T^* . This path begins in *S* and ends in V - S, so there must be some edge (x, y) along that path where $x \in S$ and $y \in V - S$. Since (u, v) is the least-cost edge crossing (S, V - S), we have c(u, v) < c(x, y).

Proof: Let *T* be the spanning tree found by Prim's algorithm and *T** be the MST of *G*. We will prove $T = T^*$ by contradiction. Assume $T \neq T^*$. Therefore, $T - T^* \neq \emptyset$. Let (u, v) be any edge in $T - T^*$.

When (u, v) was added to *T*, it was the least-cost edge crossing some cut (S, V - S). Since *T** is an MST, there must be a path from *u* to *v* in *T**. This path begins in *S* and ends in V - S, so there must be some edge (x, y) along that path where $x \in S$ and $y \in V - S$. Since (u, v) is the least-cost edge crossing (S, V - S), we have c(u, v) < c(x, y).

Let $T^{*'} = T^* \cup \{(u, v)\} - \{(x, y)\}.$

Proof: Let *T* be the spanning tree found by Prim's algorithm and *T** be the MST of *G*. We will prove $T = T^*$ by contradiction. Assume $T \neq T^*$. Therefore, $T - T^* \neq \emptyset$. Let (u, v) be any edge in $T - T^*$.

When (u, v) was added to *T*, it was the least-cost edge crossing some cut (S, V - S). Since T^* is an MST, there must be a path from *u* to *v* in T^* . This path begins in *S* and ends in V - S, so there must be some edge (x, y) along that path where $x \in S$ and $y \in V - S$. Since (u, v) is the least-cost edge crossing (S, V - S), we have c(u, v) < c(x, y).

Let $T^{*'} = T^* \cup \{(u, v)\} - \{(x, y)\}$. Since (x, y) is on the cycle formed by adding (u, v), this means $T^{*'}$ is a spanning tree.

Proof: Let *T* be the spanning tree found by Prim's algorithm and *T** be the MST of *G*. We will prove $T = T^*$ by contradiction. Assume $T \neq T^*$. Therefore, $T - T^* \neq \emptyset$. Let (u, v) be any edge in $T - T^*$.

When (u, v) was added to *T*, it was the least-cost edge crossing some cut (S, V - S). Since T^* is an MST, there must be a path from *u* to *v* in T^* . This path begins in *S* and ends in V - S, so there must be some edge (x, y) along that path where $x \in S$ and $y \in V - S$. Since (u, v) is the least-cost edge crossing (S, V - S), we have c(u, v) < c(x, y).

Let $T^{*'} = T^* \cup \{(u, v)\} - \{(x, y)\}$. Since (x, y) is on the cycle formed by adding (u, v), this means $T^{*'}$ is a spanning tree. However, $c(T^{*'}) = c(T^*) + c(u, v) - c(x, y) < c(T^*)$, contradicting that T^* is an MST.
Theorem: If G is a connected, weighted graph with distinct edge weights, Prim's algorithm correctly finds an MST.

Proof: Let *T* be the spanning tree found by Prim's algorithm and *T** be the MST of *G*. We will prove $T = T^*$ by contradiction. Assume $T \neq T^*$. Therefore, $T - T^* \neq \emptyset$. Let (u, v) be any edge in $T - T^*$.

When (u, v) was added to *T*, it was the least-cost edge crossing some cut (S, V - S). Since *T** is an MST, there must be a path from *u* to *v* in *T**. This path begins in *S* and ends in V - S, so there must be some edge (x, y) along that path where $x \in S$ and $y \in V - S$. Since (u, v) is the least-cost edge crossing (S, V - S), we have c(u, v) < c(x, y).

Let $T^{*'} = T^* \cup \{(u, v)\} - \{(x, y)\}$. Since (x, y) is on the cycle formed by adding (u, v), this means $T^{*'}$ is a spanning tree. However, $c(T^{*'}) = c(T^*) + c(u, v) - c(x, y) < c(T^*)$, contradicting that T^* is an MST.

We have reached a contradiction, so our assumption must have been wrong. Thus $T = T^*$, so T is an MST.

Exchange Arguments

- This proof of optimality for Prim's algorithm uses an argument called an *exchange argument*.
- General structure is as follows *
 - Assume the greedy algorithm does not produce the optimal solution, so the greedy and optimal solutions are different.
 - Show how to *exchange* some part of the optimal solution with some part of the greedy solution in a way that improves the optimal solution.
 - Reach a contradiction and conclude the greedy and optimal solutions must be the same.
- (* This assumes there is a **unique** optimal solution; we'll generalize this shortly.)

The Cut Property

• The previous correctness proof relies on a property of MSTs called the *cut property*:

Theorem (Cut Property): Let (S, V - S)be a nontrivial cut in G (i.e. $S \neq \emptyset$ and $S \neq V$). If (u, v) is the lowest-cost edge crossing (S, V - S), then (u, v) is in every MST of G.

• Proof uses an exchange argument: swap out the lowest-cost edge crossing the cut for some other edge crossing the cut.

One Problem

- This proof of correctness relies on edge weights being distinct in two ways:
 - Assumes there is a **unique** MST in the graph.
 - Assumes swapping one edge crossing the cut for another **strictly** improves the cost of an alleged MST.
- Neither of these are true if weights can be duplicated.
- How do we account for this?

Exchange Arguments

- A more general version of an exchange argument is as follows.
 - Let X be the object produced by a greedy algorithm and X* be *any* optimal solution.
 - If $X = X^*$, the algorithm is optimal.
 - Otherwise, show that you can *exchange* some piece of X* for some piece of X without deteriorating the quality of X*.
 - Argue that this process can be iterated repeatedly to turn X* into X without changing its cost.
 - Conclude that *X* is optimal.

Proof: Let *T* be the spanning tree found by Prim's algorithm and T^* be any MST of *G*. We will prove $c(T) = c(T^*)$.

Proof: Let *T* be the spanning tree found by Prim's algorithm and T^* be any MST of *G*. We will prove $c(T) = c(T^*)$. If $T = T^*$, then $c(T) = c(T^*)$ and we are done.

Proof: Let *T* be the spanning tree found by Prim's algorithm and T^* be any MST of *G*. We will prove $c(T) = c(T^*)$. If $T = T^*$, then $c(T) = c(T^*)$ and we are done.

Otherwise, $T \neq T^*$, so we have $T - T^* \neq \emptyset$. Let (u, v) be any edge in $T - T^*$.

Proof: Let *T* be the spanning tree found by Prim's algorithm and T^* be any MST of *G*. We will prove $c(T) = c(T^*)$. If $T = T^*$, then $c(T) = c(T^*)$ and we are done.

Otherwise, $T \neq T^*$, so we have $T - T^* \neq \emptyset$. Let (u, v) be any edge in $T - T^*$. When (u, v) was added to T, it was a least-cost edge crossing some cut (S, V - S).

Proof: Let *T* be the spanning tree found by Prim's algorithm and T^* be any MST of *G*. We will prove $c(T) = c(T^*)$. If $T = T^*$, then $c(T) = c(T^*)$ and we are done.

Otherwise, $T \neq T^*$, so we have $T - T^* \neq \emptyset$. Let (u, v) be any edge in $T - T^*$. When (u, v) was added to T, it was a least-cost edge crossing some cut (S, V - S). Since T^* is an MST, there must be a path from u to v in T^* .

Proof: Let *T* be the spanning tree found by Prim's algorithm and T^* be any MST of *G*. We will prove $c(T) = c(T^*)$. If $T = T^*$, then $c(T) = c(T^*)$ and we are done.

Otherwise, $T \neq T^*$, so we have $T - T^* \neq \emptyset$. Let (u, v) be any edge in $T - T^*$. When (u, v) was added to T, it was a least-cost edge crossing some cut (S, V - S). Since T^* is an MST, there must be a path from u to v in T^* . This path begins in S and ends in V - S, so there must be some edge (x, y) along that path where $x \in S$ and $y \in V - S$.

Proof: Let *T* be the spanning tree found by Prim's algorithm and T^* be any MST of *G*. We will prove $c(T) = c(T^*)$. If $T = T^*$, then $c(T) = c(T^*)$ and we are done.

Otherwise, $T \neq T^*$, so we have $T - T^* \neq \emptyset$. Let (u, v) be any edge in $T - T^*$. When (u, v) was added to T, it was a least-cost edge crossing some cut (S, V - S). Since T^* is an MST, there must be a path from u to v in T^* . This path begins in S and ends in V - S, so there must be some edge (x, y) along that path where $x \in S$ and $y \in V - S$. Since (u, v) is a least-cost edge crossing (S, V - S), we have $c(u, v) \leq c(x, y)$.

Proof: Let *T* be the spanning tree found by Prim's algorithm and T^* be any MST of *G*. We will prove $c(T) = c(T^*)$. If $T = T^*$, then $c(T) = c(T^*)$ and we are done.

Otherwise, $T \neq T^*$, so we have $T - T^* \neq \emptyset$. Let (u, v) be any edge in $T - T^*$. When (u, v) was added to T, it was a least-cost edge crossing some cut (S, V - S). Since T^* is an MST, there must be a path from u to v in T^* . This path begins in S and ends in V - S, so there must be some edge (x, y) along that path where $x \in S$ and $y \in V - S$. Since (u, v) is a least-cost edge crossing (S, V - S), we have $c(u, v) \leq c(x, y)$.

Let $T^{*'} = T^* \cup \{(u, v)\} - \{(x, y)\}.$

Proof: Let *T* be the spanning tree found by Prim's algorithm and T^* be any MST of *G*. We will prove $c(T) = c(T^*)$. If $T = T^*$, then $c(T) = c(T^*)$ and we are done.

Otherwise, $T \neq T^*$, so we have $T - T^* \neq \emptyset$. Let (u, v) be any edge in $T - T^*$. When (u, v) was added to T, it was a least-cost edge crossing some cut (S, V - S). Since T^* is an MST, there must be a path from u to v in T^* . This path begins in S and ends in V - S, so there must be some edge (x, y) along that path where $x \in S$ and $y \in V - S$. Since (u, v) is a least-cost edge crossing (S, V - S), we have $c(u, v) \leq c(x, y)$.

Let $T^{*'} = T^* \cup \{(u, v)\} - \{(x, y)\}$. Since (x, y) is on the cycle formed by adding (u, v), this means $T^{*'}$ is a spanning tree.

Proof: Let *T* be the spanning tree found by Prim's algorithm and T^* be any MST of *G*. We will prove $c(T) = c(T^*)$. If $T = T^*$, then $c(T) = c(T^*)$ and we are done.

Otherwise, $T \neq T^*$, so we have $T - T^* \neq \emptyset$. Let (u, v) be any edge in $T - T^*$. When (u, v) was added to T, it was a least-cost edge crossing some cut (S, V - S). Since T^* is an MST, there must be a path from u to v in T^* . This path begins in S and ends in V - S, so there must be some edge (x, y) along that path where $x \in S$ and $y \in V - S$. Since (u, v) is a least-cost edge crossing (S, V - S), we have $c(u, v) \leq c(x, y)$.

Let $T^{*'} = T^* \cup \{(u, v)\} - \{(x, y)\}$. Since (x, y) is on the cycle formed by adding (u, v), this means $T^{*'}$ is a spanning tree. Notice $c(T^{*'}) = c(T^*) + c(u, v) - c(x, y) \le c(T^*)$.

Proof: Let *T* be the spanning tree found by Prim's algorithm and T^* be any MST of *G*. We will prove $c(T) = c(T^*)$. If $T = T^*$, then $c(T) = c(T^*)$ and we are done.

Otherwise, $T \neq T^*$, so we have $T - T^* \neq \emptyset$. Let (u, v) be any edge in $T - T^*$. When (u, v) was added to T, it was a leastcost edge crossing some cut (S, V - S). Since T^* is an MST, there must be a path from u to v in T^* . This path begins in Sand ends in V - S, so there must be some edge (x, y) along that path where $x \in S$ and $y \in V - S$. Since (u, v) is a least-cost edge crossing (S, V - S), we have $c(u, v) \leq c(x, y)$.

Let $T^{*'} = T^* \cup \{(u, v)\} - \{(x, y)\}$. Since (x, y) is on the cycle formed by adding (u, v), this means $T^{*'}$ is a spanning tree. Notice $c(T^{*'}) = c(T^*) + c(u, v) - c(x, y) \le c(T^*)$. Since T^* is an MST, this means $c(T^{*'}) \ge c(T^*)$, so $c(T^*) = c(T^{*'})$.

Proof: Let *T* be the spanning tree found by Prim's algorithm and T^* be any MST of *G*. We will prove $c(T) = c(T^*)$. If $T = T^*$, then $c(T) = c(T^*)$ and we are done.

Otherwise, $T \neq T^*$, so we have $T - T^* \neq \emptyset$. Let (u, v) be any edge in $T - T^*$. When (u, v) was added to T, it was a leastcost edge crossing some cut (S, V - S). Since T^* is an MST, there must be a path from u to v in T^* . This path begins in Sand ends in V - S, so there must be some edge (x, y) along that path where $x \in S$ and $y \in V - S$. Since (u, v) is a least-cost edge crossing (S, V - S), we have $c(u, v) \leq c(x, y)$.

Let $T^{*'} = T^* \cup \{(u, v)\} - \{(x, y)\}$. Since (x, y) is on the cycle formed by adding (u, v), this means $T^{*'}$ is a spanning tree. Notice $c(T^{*'}) = c(T^*) + c(u, v) - c(x, y) \le c(T^*)$. Since T^* is an MST, this means $c(T^{*'}) \ge c(T^*)$, so $c(T^*) = c(T^{*'})$.

Note that $|T - T^*| = |T - T^*| - 1$.

Proof: Let *T* be the spanning tree found by Prim's algorithm and T^* be any MST of *G*. We will prove $c(T) = c(T^*)$. If $T = T^*$, then $c(T) = c(T^*)$ and we are done.

Otherwise, $T \neq T^*$, so we have $T - T^* \neq \emptyset$. Let (u, v) be any edge in $T - T^*$. When (u, v) was added to T, it was a leastcost edge crossing some cut (S, V - S). Since T^* is an MST, there must be a path from u to v in T^* . This path begins in Sand ends in V - S, so there must be some edge (x, y) along that path where $x \in S$ and $y \in V - S$. Since (u, v) is a least-cost edge crossing (S, V - S), we have $c(u, v) \leq c(x, y)$.

Let $T^{*'} = T^* \cup \{(u, v)\} - \{(x, y)\}$. Since (x, y) is on the cycle formed by adding (u, v), this means $T^{*'}$ is a spanning tree. Notice $c(T^{*'}) = c(T^*) + c(u, v) - c(x, y) \le c(T^*)$. Since T^* is an MST, this means $c(T^{*'}) \ge c(T^*)$, so $c(T^*) = c(T^{*'})$.

Note that $|T - T^*| = |T - T^*| - 1$. Therefore, if we repeat this process once for each edge in $T - T^*$, we will have converted T^* into T while preserving $c(T^*)$.

Proof: Let *T* be the spanning tree found by Prim's algorithm and T^* be any MST of *G*. We will prove $c(T) = c(T^*)$. If $T = T^*$, then $c(T) = c(T^*)$ and we are done.

Otherwise, $T \neq T^*$, so we have $T - T^* \neq \emptyset$. Let (u, v) be any edge in $T - T^*$. When (u, v) was added to T, it was a least-cost edge crossing some cut (S, V - S). Since T^* is an MST, there must be a path from u to v in T^* . This path begins in S and ends in V - S, so there must be some edge (x, y) along that path where $x \in S$ and $y \in V - S$. Since (u, v) is a least-cost edge crossing (S, V - S), we have $c(u, v) \leq c(x, y)$.

Let $T^{*'} = T^* \cup \{(u, v)\} - \{(x, y)\}$. Since (x, y) is on the cycle formed by adding (u, v), this means $T^{*'}$ is a spanning tree. Notice $c(T^{*'}) = c(T^*) + c(u, v) - c(x, y) \le c(T^*)$. Since T^* is an MST, this means $c(T^{*'}) \ge c(T^*)$, so $c(T^*) = c(T^{*'})$.

Note that $|T - T^*| = |T - T^*| - 1$. Therefore, if we repeat this process once for each edge in $T - T^*$, we will have converted T^* into T while preserving $c(T^*)$. Thus $c(T) = c(T^*)$.

A Note on the Proof

- Our proof worked as follows:
 - Find a way to replace one piece of T^* with one piece of T without increasing $c(T^*)$.
 - Note that this makes T^* "less different" than T as before.
 - Conclude that we could iterate this process until eventually T^* became T, at which point we have $c(T) = c(T^*)$.
- This is inherently an inductive argument, but typically it is not presented as such.
 - It's fine to say "repeat this process" rather than writing out a base case and inductive step.

Next Time

- Kruskal's Algorithm
- Disjoint-Set Forests