
  

Greedy Algorithms
Part Two



  

Announcements

● Problem Set Three graded, will be 
returned at end of lecture.

● Problem Set Four due on Monday, or on 
Wednesday if you're using a late period.



  

Outline for Today

● Minimum Spanning Trees
● What's the cheapest way to connect a graph?

● Prim's Algorithm
● A simple and efficient algorithm for finding 

minimum spanning trees.

● Exchange Arguments
● Another approach to proving greedy 

algorithms work correctly.



  

Trees



  

A tree is an undirected,
acyclic, connected graph.



  



  



  



  



  



  



  



  



  



  



  



  



  



  



  



  

An undirected graph is called minimally 
connected iff it is connected and removing 

any edge disconnects it.

Theorem: An undirected graph is a tree iff 
it is minimally connected.



  



  



  



  



  



  



  



  



  



  



  



  



  

An undirected graph is called maximally 
acyclic iff adding any missing edge 

introduces a cycle.

Theorem: An undirected graph is a tree iff 
it is maximally acyclic.



  



  



  



  

Theorem: An undirected graph is a tree iff 
it is connected and |E| = |V| – 1.



  

Trees

● A tree is an undirected graph G = (V, E) 
that is connected and acyclic.

● All the following are equivalent:
● G is a tree.
● G is connected and acyclic.
● G is minimally connected (removing any 

edge from G disconnects it.)
● G is maximally acyclic (adding any edge 

creates a cycle)
● G is connected and |E| = |V| - 1.



  



  



  



  



  



  



  



  



  

Theorem: Let T be a tree and (u, v) ∉ T.  The graph 
T ∪ {(u, v)} contains a cycle.  For any edge (x, y) on
the cycle, the graph T' = T ∪ {(u, v)} – {(x, y)} is a tree.

Proof: Since (u, v) ∉ T and (x, y) ∈ T ∪ {(u, v)}, we know
|T'| = |T| + 1 – 1 = |T| = |V| – 1.  Therefore, we will
show that T' is connected to conclude T' is a tree.

Consider any s, t ∈ V.  Since T is connected, there is some 
path from s to t in T.  If that path does not cross (x, y), or if 
(x, y) = (u, v), then this path is also a path from s to t in T', 
so s and t are connected in T'.  Otherwise, suppose the 
path from s to t crosses (x, y).  Assume without loss of 
generality that the path starts at s, goes to x, crosses 
(x, y), then goes from y to t.  Since (u, v) and (x, y) are part 
of the same cycle, we can modify the original path from s 
to t so that instead of crossing (x, y), it goes around the 
cycle from x to y.  This new path is then a path from s to t 
in T', so s and t are connected in T'.  Thus any arbitrary 
pair of nodes are connected in T', so T' is connected. ■



  

Minimum Spanning Trees
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Spanning Trees

● Let G = (V, E).  A spanning tree (or ST) of G 
is a graph (V, T) such that (V, T) is a tree.
● For notational simplicity: we'll identify a spanning 

tree with just the set of edges T.

● Suppose that each edge (u, v) ∈ E is assigned a 
cost c(u, v).

● The cost of a tree T, denoted c(T), is the sum 
of the costs of the edges in T:

● A minimum spanning tree (or MST) of G is 
a spanning tree T* of G with minimum cost.

c (T ) = ∑
(u,v)∈T

c (u,v)



  

Minimum Spanning Trees

● There are many greedy algorithms for finding 
MSTs:
● Borůvka's algorithm (1926)
● Kruskal's algorithm (1956)
● Prim's algorithm (1930, rediscovered 1957)

● We will explore Kruskal's algorithm and 
Prim's algorithm in this course.

● Lots of research into this problem: parallel 
implementions, optimal serial 
implementations, implementations 
harnessing bitwise operations, etc...
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Theorem: Let G be a connected, weighted graph.  If all edge
weights in G are distinct, G has exactly one MST.

Proof: Since G is connected, it has at least one MST.  We will
show G has at most one MST by contradiction.  Assume T₁
and T₂ are distinct MSTs of G. Since |T₁| = |T₂|, the set
T₁ Δ T₂ is nonempty, so it contains a least-cost edge (u, v).
Assume without loss of generality that (u, v) ∈ T₁.

Consider T₂ ∪ {(u, v)}.  Since T₂ is a tree, this graph has a 
cycle C involving (u, v).  Let (x, y) be the edge in C with the 
highest total cost.  We claim c(x, y) > c(u, v).  To see this, 
note that every edge in C other than (u, v) belongs either to 
T₂ ∩ T₁ or to T₂ – T₁.  Some edge in the cycle must belong to 
T₂ – T₁, or otherwise (u, v) closes a cycle in T₁.  The most 
expensive edge in T₂ – T₁ costs more than c(u, v); otherwise 
(u, v) would not be the cheapest edge in T₁ Δ T₂.  Thus the 
highest-cost edge in the cycle has cost at least c(u, v).

As proven earlier, T' = T₂ ∪ {(u, v)} – {(x, y)} is a spanning 
tree of G.  But c(T') = c(T₂) + c(u, v) – c(x, y) < c(T₂), which 
contradicts that T₂ is an MST.  Thus our assumption was 
wrong and there is at most one MST in G. ■
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The Cycle Property

● This previous proof relies on a property of 
MSTs called the cycle property.
 

Theorem (Cycle Property): If (x, y) is an
edge in G and is the heaviest edge on
some cycle C, then (x, y) does not belong
to any MST of G.

 

● Proof along the lines of what we just saw: if it 
did belong to some MST, adding the cheapest 
edge on that cycle and removing (x, y) leaves a 
lower-cost spanning tree.



  

Finding MSTs: Prim's Algorithm
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Prim's Algorithm

● Prim's Algorithm is the following:
● Choose some v ∈ V and let S = {v}.
● Let T = Ø.
● While S ≠ V:

– Choose a least-cost edge e with one 
endpoint in S and one endpoint in V – S.

– Add e to T.
– Add both endpoints of e to S.

● (Quick history: This was originally invented by 
Czech mathematician Vojtěch Jarník in 1930.)



  

Proving Legality

● Claim: Prim's algorithm produces a 
spanning tree of G.

● Proof idea: Show by induction that T 
forms a spanning tree of the nodes in S.  
Conclude that since eventually S = V, 
that T is a spanning tree for G.



  

Proving Optimality

● To show that Prim's algorithm produces 
an MST, we will work in two steps:
● First, as a warmup, show that Prim's 

algorithm produces an MST as long as all 
edge costs are distinct.

● Then, for the full proof, show that Prim's 
algorithm produces an MST even if there are 
multiple edges with the same cost.

● In doing so, we will see the exchange 
argument as another method for 
proving a greedy algorithm is optimal.
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The Intuition

● By construction, every edge added in Prim's 
algorithm is the cheapest edge crossing some 
cut (S, V – S).

● Any tree other than the one produced by 
Prim's algorithm has to exclude some edge 
that was included by Prim's algorithm.

● Adding that edge closes a cycle that crosses 
the cut.

● Deleting an edge in the cycle that crosses the 
cut strictly lowers the cost of the tree.



  

Theorem: If G is a connected, weighted graph with distinct
edge weights, Prim's algorithm correctly finds an MST.

Proof: Let T be the spanning tree found by Prim's algorithm
and T* be the MST of G.  We will prove T = T* by
contradiction.  Assume T ≠ T*.  Therefore, T – T* ≠ Ø.  Let
(u, v) be any edge in T – T*.

When (u, v) was added to T, it was the least-cost edge 
crossing some cut (S, V – S).  Since T* is an MST, there 
must be a path from u to v in T*.  This path begins in S and 
ends in V – S, so there must be some edge (x, y) along that 
path where x ∈ S and y ∈ V – S.  Since (u, v) is the least-
cost edge crossing (S, V – S), we have c(u, v) < c(x, y).

Let T*' = T* ∪ {(u, v)} – {(x, y)}.  Since (x, y) is on the 
cycle formed by adding (u, v), this means T*' is a spanning 
tree.  However, c(T*') = c(T*) + c(u, v) – c(x, y) < c(T*), 
contradicting that T* is an MST.

We have reached a contradiction, so our assumption must 
have been wrong.  Thus T = T*, so T is an MST. ■
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Exchange Arguments

● This proof of optimality for Prim's algorithm uses 
an argument called an exchange argument.

● General structure is as follows *

● Assume the greedy algorithm does not produce the 
optimal solution, so the greedy and optimal 
solutions are different.

● Show how to exchange some part of the optimal 
solution with some part of the greedy solution in a 
way that improves the optimal solution.

● Reach a contradiction and conclude the greedy and 
optimal solutions must be the same.

● (* This assumes there is a unique optimal solution; 
we'll generalize this shortly.)



  

The Cut Property

● The previous correctness proof relies on a 
property of MSTs called the cut property:
 

Theorem (Cut Property): Let (S, V – S)
be a nontrivial cut in G (i.e. S ≠ Ø and S ≠ V). 
If (u, v) is the lowest-cost edge crossing
(S, V – S), then (u, v) is in every MST of G.

 

● Proof uses an exchange argument: swap out the 
lowest-cost edge crossing the cut for some other 
edge crossing the cut.



  

One Problem

● This proof of correctness relies on edge 
weights being distinct in two ways:
● Assumes there is a unique MST in the 

graph.
● Assumes swapping one edge crossing the cut 

for another strictly improves the cost of an 
alleged MST.

● Neither of these are true if weights can 
be duplicated.

● How do we account for this?
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Exchange Arguments

● A more general version of an exchange 
argument is as follows.
● Let X be the object produced by a greedy 

algorithm and X* be any optimal solution.
● If X = X*, the algorithm is optimal.
● Otherwise, show that you can exchange some 

piece of X* for some piece of X without 
deteriorating the quality of X*.

● Argue that this process can be iterated 
repeatedly to turn X* into X without changing 
its cost.

● Conclude that X is optimal.



  

Theorem: If G is a connected, weighted graph, Prim's algorithm
correctly finds an MST in G.

Proof: Let T be the spanning tree found by Prim's algorithm and
T* be any MST of G.  We will prove c(T) = c(T*).  If T = T*,
then c(T) = c(T*) and we are done.

Otherwise, T ≠ T*, so we have T – T* ≠ Ø.  Let (u, v) be any 
edge in T – T*.  When (u, v) was added to T, it was a least-
cost edge crossing some cut (S, V – S).  Since T* is an MST, 
there must be a path from u to v in T*.  This path begins in S 
and ends in V – S, so there must be some edge (x, y) along 
that path where x ∈ S and y ∈ V – S.  Since (u, v) is a 
least-cost edge crossing (S, V – S), we have c(u, v) ≤ c(x, y).

Let T*' = T* ∪ {(u, v)} – {(x, y)}.  Since (x, y) is on the cycle 
formed by adding (u, v), this means T*' is a spanning tree.  
Notice c(T*') = c(T*) + c(u, v) – c(x, y) ≤ c(T*).  Since T* is an 
MST, this means c(T*') ≥ c(T*), so c(T*) = c(T*').

Note that |T – T*'| = |T – T*| – 1.  Therefore, if we repeat this 
process once for each edge in |T – T*|, we will have converted 
T* into T while preserving c(T*).  Thus c(T) = c(T*). ■
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A Note on the Proof

● Our proof worked as follows:
● Find a way to replace one piece of T* with one 

piece of T without increasing c(T*).
● Note that this makes T* “less different” than T as 

before.
● Conclude that we could iterate this process until 

eventually T* became T, at which point we have 
c(T) = c(T*).

● This is inherently an inductive argument, but 
typically it is not presented as such.
● It's fine to say “repeat this process” rather than 

writing out a base case and inductive step.



  

Next Time

● Kruskal's Algorithm
● Disjoint-Set Forests
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