Greedy Algorithms Part Two

Announcements

- Problem Set Three graded, will be returned at end of lecture.
- Problem Set Four due on Monday, or on Wednesday if you're using a late period.

Outline for Today

- Minimum Spanning Trees
- What's the cheapest way to connect a graph?
- Prim's Algorithm
- A simple and efficient algorithm for finding minimum spanning trees.
- Exchange Arguments
- Another approach to proving greedy algorithms work correctly.

Trees

A tree is an undirected, acyclic, connected graph.

Sobs

Sobs
SBOB
SOBO

$$
\text { o. } 0.80
$$

An undirected graph is called minimally connected iff it is connected and removing any edge disconnects it.

Theorem: An undirected graph is a tree iff it is minimally connected.

OSOB
\&⿵人一⿰⺝刂

An undirected graph is called maximally acyclic iff adding any missing edge introduces a cycle.

Theorem: An undirected graph is a tree iff it is maximally acyclic.

Sobs

Theorem: An undirected graph is a tree iff it is connected and $|E|=|V|-1$.

Trees

- A tree is an undirected graph $G=(V, E)$ that is connected and acyclic.
- All the following are equivalent:
- G is a tree.
- G is connected and acyclic.
- G is minimally connected (removing any edge from G disconnects it.)
- G is maximally acyclic (adding any edge creates a cycle)
- G is connected and $|\mathrm{E}|=|\mathrm{V}|-1$.
OSOB
\&⿵人一⿰⺝刂

$$
2506
$$

$$
2508
$$

$$
20.80
$$

Theorem: Let T be a tree and $(u, v) \notin T$. The graph $T \cup\{(u, v)\}$ contains a cycle. For any edge (x, y) on the cycle, the graph $T^{\prime}=T \cup\{(u, v)\}-\{(x, y)\}$ is a tree.

Proof: Since $(u, v) \notin T$ and $(x, y) \in T \cup\{(u, v)\}$, we know $\left|T^{\prime}\right|=|T|+1-1=|T|=|V|-1$. Therefore, we will show that $T^{\prime \prime}$ is connected to conclude $T^{\prime \prime}$ is a tree.
Consider any $s, t \in V$. Since T is connected, there is some path from s to t in T. If that path does not cross (x, y), or if $(x, y)=(u, v)$, then this path is also a path from s to t in $T^{\prime \prime}$, so s and t are connected in T^{1}. Otherwise, suppose the path from s to t crosses (x, y). Assume without loss of generality that the path starts at s, goes to x, crosses (x, y), then goes from y to t. Since (u, v) and (x, y) are part of the same cycle, we can modify the original path from s to t so that instead of crossing (x, y), it goes around the cycle from x to y. This new path is then a path from s to t in $T^{\prime \prime}$, so s and t are connected in T^{\prime}. Thus any arbitrary pair of nodes are connected in T^{\prime}, so T^{\prime} is connected.

Minimum Spanning Trees

Spanning Trees

- Let $G=(V, E)$. A spanning tree (or ST) of G is a graph (V, T) such that (V, T) is a tree.
- For notational simplicity: we'll identify a spanning tree with just the set of edges T.
- Suppose that each edge $(u, v) \in E$ is assigned a cost $c(u, v)$.
- The cost of a tree T, denoted $c(T)$, is the sum of the costs of the edges in T :

$$
c(T)=\sum_{(u, v) \in T} c(u, v)
$$

- A minimum spanning tree (or MST) of G is a spanning tree T^{*} of G with minimum cost.

Minimum Spanning Trees

- There are many greedy algorithms for finding MSTs:
- Borůvka's algorithm (1926)
- Kruskal's algorithm (1956)
- Prim's algorithm (1930, rediscovered 1957)
- We will explore Kruskal's algorithm and Prim's algorithm in this course.
- Lots of research into this problem: parallel implementions, optimal serial implementations, implementations harnessing bitwise operations, etc...

Theorem: Let G be a connected, weighted graph. If all edge weights in G are distinct, G has exactly one MST.

Theorem: Let G be a connected, weighted graph. If all edge weights in G are distinct, G has exactly one MST.

Proof: Since G is connected, it has at least one MST.

Theorem: Let G be a connected, weighted graph. If all edge weights in G are distinct, G has exactly one MST.

Proof: Since G is connected, it has at least one MST. We will show G has at most one MST by contradiction. Assume T_{1} and T_{2} are distinct MSTs of G.

Theorem: Let G be a connected, weighted graph. If all edge weights in G are distinct, G has exactly one MST.

Proof: Since G is connected, it has at least one MST. We will show G has at most one MST by contradiction. Assume T_{1} and T_{2} are distinct MSTs of G. Since $\left|T_{1}\right|=\left|T_{2}\right|$, the set $T_{1} \Delta T_{2}$ is nonempty, so it contains a least-cost edge (u, v).

Theorem: Let G be a connected, weighted graph. If all edge weights in G are distinct, G has exactly one MST.

Proof: Since G is connected, it has at least one MST. We will show G has at most one MST by contradiction. Assume T_{1} and T_{2} are distinct MSTs of G. Since $\left|T_{1}\right|=\left|T_{2}\right|$, the set $T_{1} \Delta T_{2}$ is nonempty, so it contains a least-cost edge (u, v). Assume without loss of generality that $(u, v) \in T_{1}$.

Theorem: Let G be a connected, weighted graph. If all edge weights in G are distinct, G has exactly one MST.
Proof: Since G is connected, it has at least one MST. We will show G has at most one MST by contradiction. Assume T_{1} and T_{2} are distinct MSTs of G. Since $\left|T_{1}\right|=\left|T_{2}\right|$, the set $T_{1} \Delta T_{2}$ is nonempty, so it contains a least-cost edge (u, v). Assume without loss of generality that $(u, v) \in T_{1}$.
Consider $T_{2} \cup\{(u, v)\}$. Since T_{2} is a tree, this graph has a cycle C involving (u, v).

Theorem: Let G be a connected, weighted graph. If all edge weights in G are distinct, G has exactly one MST.

Proof: Since G is connected, it has at least one MST. We will show G has at most one MST by contradiction. Assume T_{1} and T_{2} are distinct MSTs of G. Since $\left|T_{1}\right|=\left|T_{2}\right|$, the set $T_{1} \Delta T_{2}$ is nonempty, so it contains a least-cost edge (u, v). Assume without loss of generality that $(u, v) \in T_{1}$.

Consider $T_{2} \cup\{(u, v)\}$. Since T_{2} is a tree, this graph has a cycle C involving (u, v). Let (x, y) be the edge in C with the highest total cost. We claim $c(x, y)>c(u, v)$.

Theorem: Let G be a connected, weighted graph. If all edge weights in G are distinct, G has exactly one MST.
Proof: Since G is connected, it has at least one MST. We will show G has at most one MST by contradiction. Assume T_{1} and T_{2} are distinct MSTs of G. Since $\left|T_{1}\right|=\left|T_{2}\right|$, the set $T_{1} \Delta T_{2}$ is nonempty, so it contains a least-cost edge (u, v). Assume without loss of generality that $(u, v) \in T_{1}$.
Consider $T_{2} \cup\{(u, v)\}$. Since T_{2} is a tree, this graph has a cycle C involving (u, v). Let (x, y) be the edge in C with the highest total cost. We claim $c(x, y)>c(u, v)$. To see this, note that every edge in C other than (u, v) belongs either to $T_{2} \cap T_{1}$ or to $T_{2}-T_{1}$.

Theorem: Let G be a connected, weighted graph. If all edge weights in G are distinct, G has exactly one MST.
Proof: Since G is connected, it has at least one MST. We will show G has at most one MST by contradiction. Assume T_{1} and T_{2} are distinct MSTs of G. Since $\left|T_{1}\right|=\left|T_{2}\right|$, the set $T_{1} \Delta T_{2}$ is nonempty, so it contains a least-cost edge (u, v). Assume without loss of generality that $(u, v) \in T_{1}$.
Consider $T_{2} \cup\{(u, v)\}$. Since T_{2} is a tree, this graph has a cycle C involving (u, v). Let (x, y) be the edge in C with the highest total cost. We claim $c(x, y)>c(u, v)$. To see this, note that every edge in C other than (u, v) belongs either to $T_{2} \cap T_{1}$ or to $T_{2}-T_{1}$. Some edge in the cycle must belong to $T_{2}-T_{1}$, or otherwise (u, v) closes a cycle in T_{1}.

Theorem: Let G be a connected, weighted graph. If all edge weights in G are distinct, G has exactly one MST.

Proof: Since G is connected, it has at least one MST. We will show G has at most one MST by contradiction. Assume T_{1} and T_{2} are distinct MSTs of G. Since $\left|T_{1}\right|=\left|T_{2}\right|$, the set $T_{1} \Delta T_{2}$ is nonempty, so it contains a least-cost edge (u, v). Assume without loss of generality that $(u, v) \in T_{1}$.
Consider $T_{2} \cup\{(u, v)\}$. Since T_{2} is a tree, this graph has a cycle C involving (u, v). Let (x, y) be the edge in C with the highest total cost. We claim $c(x, y)>c(u, v)$. To see this, note that every edge in C other than (u, v) belongs either to $T_{2} \cap T_{1}$ or to $T_{2}-T_{1}$. Some edge in the cycle must belong to $T_{2}-T_{1}$, or otherwise (u, v) closes a cycle in T_{1}. The most expensive edge in $T_{2}-T_{1}$ costs more than $c(u, v)$; otherwise (u, v) would not be the cheapest edge in $T_{1} \Delta T_{2}$.

Theorem: Let G be a connected, weighted graph. If all edge weights in G are distinct, G has exactly one MST.

Proof: Since G is connected, it has at least one MST. We will show G has at most one MST by contradiction. Assume T_{1} and T_{2} are distinct MSTs of G. Since $\left|T_{1}\right|=\left|T_{2}\right|$, the set $T_{1} \Delta T_{2}$ is nonempty, so it contains a least-cost edge (u, v). Assume without loss of generality that $(u, v) \in T_{1}$.
Consider $T_{2} \cup\{(u, v)\}$. Since T_{2} is a tree, this graph has a cycle C involving (u, v). Let (x, y) be the edge in C with the highest total cost. We claim $c(x, y)>c(u, v)$. To see this, note that every edge in C other than (u, v) belongs either to $T_{2} \cap T_{1}$ or to $T_{2}-T_{1}$. Some edge in the cycle must belong to $T_{2}-T_{1}$, or otherwise (u, v) closes a cycle in T_{1}. The most expensive edge in $T_{2}-T_{1}$ costs more than $c(u, v)$; otherwise (u, v) would not be the cheapest edge in $T_{1} \Delta T_{2}$. Thus the highest-cost edge in the cycle has cost at least $c(u, v)$.

Theorem: Let G be a connected, weighted graph. If all edge weights in G are distinct, G has exactly one MST.
Proof: Since G is connected, it has at least one MST. We will show G has at most one MST by contradiction. Assume T_{1} and T_{2} are distinct MSTs of G. Since $\left|T_{1}\right|=\left|T_{2}\right|$, the set $T_{1} \Delta T_{2}$ is nonempty, so it contains a least-cost edge (u, v). Assume without loss of generality that $(u, v) \in T_{1}$.
Consider $T_{2} \cup\{(u, v)\}$. Since T_{2} is a tree, this graph has a cycle C involving (u, v). Let (x, y) be the edge in C with the highest total cost. We claim $c(x, y)>c(u, v)$. To see this, note that every edge in C other than (u, v) belongs either to $T_{2} \cap T_{1}$ or to $T_{2}-T_{1}$. Some edge in the cycle must belong to $T_{2}-T_{1}$, or otherwise (u, v) closes a cycle in T_{1}. The most expensive edge in $T_{2}-T_{1}$ costs more than $c(u, v)$; otherwise (u, v) would not be the cheapest edge in $T_{1} \Delta T_{2}$. Thus the highest-cost edge in the cycle has cost at least $c(u, v)$.
As proven earlier, $T^{\prime}=T_{2} \cup\{(u, v)\}-\{(x, y)\}$ is a spanning tree of G.

Theorem: Let G be a connected, weighted graph. If all edge weights in G are distinct, G has exactly one MST.
Proof: Since G is connected, it has at least one MST. We will show G has at most one MST by contradiction. Assume T_{1} and T_{2} are distinct MSTs of G. Since $\left|T_{1}\right|=\left|T_{2}\right|$, the set $T_{1} \Delta T_{2}$ is nonempty, so it contains a least-cost edge (u, v). Assume without loss of generality that $(u, v) \in T_{1}$.
Consider $T_{2} \cup\{(u, v)\}$. Since T_{2} is a tree, this graph has a cycle C involving (u, v). Let (x, y) be the edge in C with the highest total cost. We claim $c(x, y)>c(u, v)$. To see this, note that every edge in C other than (u, v) belongs either to $T_{2} \cap T_{1}$ or to $T_{2}-T_{1}$. Some edge in the cycle must belong to $T_{2}-T_{1}$, or otherwise (u, v) closes a cycle in T_{1}. The most expensive edge in $T_{2}-T_{1}$ costs more than $c(u, v)$; otherwise (u, v) would not be the cheapest edge in $T_{1} \Delta T_{2}$. Thus the highest-cost edge in the cycle has cost at least $c(u, v)$.
As proven earlier, $T^{\prime}=T_{2} \cup\{(u, v)\}-\{(x, y)\}$ is a spanning tree of G. But $c\left(T^{\prime}\right)=c\left(T_{2}\right)+c(u, v)-c(x, y)<c\left(T_{2}\right)$, which contradicts that T_{2} is an MST.

Theorem: Let G be a connected, weighted graph. If all edge weights in G are distinct, G has exactly one MST.
Proof: Since G is connected, it has at least one MST. We will show G has at most one MST by contradiction. Assume T_{1} and T_{2} are distinct MSTs of G. Since $\left|T_{1}\right|=\left|T_{2}\right|$, the set $T_{1} \Delta T_{2}$ is nonempty, so it contains a least-cost edge (u, v). Assume without loss of generality that $(u, v) \in T_{1}$.
Consider $T_{2} \cup\{(u, v)\}$. Since T_{2} is a tree, this graph has a cycle C involving (u, v). Let (x, y) be the edge in C with the highest total cost. We claim $c(x, y)>c(u, v)$. To see this, note that every edge in C other than (u, v) belongs either to $T_{2} \cap T_{1}$ or to $T_{2}-T_{1}$. Some edge in the cycle must belong to $T_{2}-T_{1}$, or otherwise (u, v) closes a cycle in T_{1}. The most expensive edge in $T_{2}-T_{1}$ costs more than $c(u, v)$; otherwise (u, v) would not be the cheapest edge in $T_{1} \Delta T_{2}$. Thus the highest-cost edge in the cycle has cost at least $c(u, v)$.
As proven earlier, $T^{\prime}=T_{2} \cup\{(u, v)\}-\{(x, y)\}$ is a spanning tree of G. But $c\left(T^{\prime}\right)=c\left(T_{2}\right)+c(u, v)-c(x, y)<c\left(T_{2}\right)$, which contradicts that T_{2} is an MST. Thus our assumption was wrong and there is at most one MST in G.

The Cycle Property

- This previous proof relies on a property of MSTs called the cycle property.

Theorem (Cycle Property): If (x, y) is an edge in G and is the heaviest edge on some cycle C, then (x, y) does not belong to any MST of G.

- Proof along the lines of what we just saw: if it did belong to some MST, adding the cheapest edge on that cycle and removing (x, y) leaves a lower-cost spanning tree.

Finding MSTs: Prim's Algorithm

Prim's Algorithm

- Prim's Algorithm is the following:
- Choose some $v \in V$ and let $S=\{v\}$.
- Let $T=\varnothing$.
- While $S \neq V$:
- Choose a least-cost edge e with one endpoint in S and one endpoint in $V-S$.
- Add e to T.
- Add both endpoints of e to S.
- (Quick history: This was originally invented by Czech mathematician Vojtěch Jarník in 1930.)

Proving Legality

- Claim: Prim's algorithm produces a spanning tree of G.
- Proof idea: Show by induction that T forms a spanning tree of the nodes in S. Conclude that since eventually $S=V$, that T is a spanning tree for G.

Proving Optimality

- To show that Prim's algorithm produces an MST, we will work in two steps:
- First, as a warmup, show that Prim's algorithm produces an MST as long as all edge costs are distinct.
- Then, for the full proof, show that Prim's algorithm produces an MST even if there are multiple edges with the same cost.
- In doing so, we will see the exchange argument as another method for proving a greedy algorithm is optimal.

The Intuition

- By construction, every edge added in Prim's algorithm is the cheapest edge crossing some cut ($S, V-S$).
- Any tree other than the one produced by Prim's algorithm has to exclude some edge that was included by Prim's algorithm.
- Adding that edge closes a cycle that crosses the cut.
- Deleting an edge in the cycle that crosses the cut strictly lowers the cost of the tree.

Theorem: If G is a connected, weighted graph with distinct edge weights, Prim's algorithm correctly finds an MST.

Theorem: If G is a connected, weighted graph with distinct edge weights, Prim's algorithm correctly finds an MST.

Proof: Let T be the spanning tree found by Prim's algorithm and T^{*} be the MST of G.

Theorem: If G is a connected, weighted graph with distinct edge weights, Prim's algorithm correctly finds an MST.

Proof: Let T be the spanning tree found by Prim's algorithm and T^{*} be the MST of G. We will prove $T=T^{*}$ by contradiction. Assume $T \neq T^{*}$.

Theorem: If G is a connected, weighted graph with distinct edge weights, Prim's algorithm correctly finds an MST.

Proof: Let T be the spanning tree found by Prim's algorithm and T^{*} be the MST of G. We will prove $T=T^{*}$ by contradiction. Assume $T \neq T^{*}$. Therefore, $T-T^{*} \neq \emptyset$.

Theorem: If G is a connected, weighted graph with distinct edge weights, Prim's algorithm correctly finds an MST.

Proof: Let T be the spanning tree found by Prim's algorithm and T^{*} be the MST of G. We will prove $T=T^{*}$ by contradiction. Assume $T \neq T^{*}$. Therefore, $T-T^{*} \neq \emptyset$. Let (u, v) be any edge in $T-T^{*}$.

Theorem: If G is a connected, weighted graph with distinct edge weights, Prim's algorithm correctly finds an MST.

Proof: Let T be the spanning tree found by Prim's algorithm and T^{*} be the MST of G. We will prove $T=T^{*}$ by contradiction. Assume $T \neq T^{*}$. Therefore, $T-T^{*} \neq \emptyset$. Let (u, v) be any edge in $T-T^{*}$.
When (u, v) was added to T, it was the least-cost edge crossing some cut ($S, V-S$).

Theorem: If G is a connected, weighted graph with distinct edge weights, Prim's algorithm correctly finds an MST.

Proof: Let T be the spanning tree found by Prim's algorithm and T^{*} be the MST of G. We will prove $T=T^{*}$ by contradiction. Assume $T \neq T^{*}$. Therefore, $T-T^{*} \neq \emptyset$. Let (u, v) be any edge in $T-T^{*}$.
When (u, v) was added to T, it was the least-cost edge crossing some cut ($S, V-S$). Since T^{*} is an MST, there must be a path from u to v in T^{*}.

Theorem: If G is a connected, weighted graph with distinct edge weights, Prim's algorithm correctly finds an MST.

Proof: Let T be the spanning tree found by Prim's algorithm and T^{*} be the MST of G. We will prove $T=T^{*}$ by contradiction. Assume $T \neq T^{*}$. Therefore, $T-T^{*} \neq \emptyset$. Let (u, v) be any edge in $T-T^{*}$.
When (u, v) was added to T, it was the least-cost edge crossing some cut ($S, V-S$). Since T^{*} is an MST, there must be a path from u to v in T^{*}. This path begins in S and ends in $V-S$, so there must be some edge (x, y) along that path where $x \in S$ and $y \in V-S$.

Theorem: If G is a connected, weighted graph with distinct edge weights, Prim's algorithm correctly finds an MST.

Proof: Let T be the spanning tree found by Prim's algorithm and T^{*} be the MST of G. We will prove $T=T^{*}$ by contradiction. Assume $T \neq T^{*}$. Therefore, $T-T^{*} \neq \emptyset$. Let (u, v) be any edge in $T-T^{*}$.
When (u, v) was added to T, it was the least-cost edge crossing some cut ($S, V-S$). Since T^{*} is an MST, there must be a path from u to v in T^{*}. This path begins in S and ends in $V-S$, so there must be some edge (x, y) along that path where $x \in S$ and $y \in V-S$. Since (u, v) is the leastcost edge crossing $(S, V-S)$, we have $c(u, v)<c(x, y)$.

Theorem: If G is a connected, weighted graph with distinct edge weights, Prim's algorithm correctly finds an MST.

Proof: Let T be the spanning tree found by Prim's algorithm and T^{*} be the MST of G. We will prove $T=T^{*}$ by contradiction. Assume $T \neq T^{*}$. Therefore, $T-T^{*} \neq \emptyset$. Let (u, v) be any edge in $T-T^{*}$.
When (u, v) was added to T, it was the least-cost edge crossing some cut ($S, V-S$). Since T^{*} is an MST, there must be a path from u to v in T^{*}. This path begins in S and ends in $V-S$, so there must be some edge (x, y) along that path where $x \in S$ and $y \in V-S$. Since (u, v) is the leastcost edge crossing $(S, V-S)$, we have $c(u, v)<c(x, y)$. Let $T^{* \prime}=T^{*} \cup\{(u, v)\}-\{(x, y)\}$.

Theorem: If G is a connected, weighted graph with distinct edge weights, Prim's algorithm correctly finds an MST.

Proof: Let T be the spanning tree found by Prim's algorithm and T^{*} be the MST of G. We will prove $T=T^{*}$ by contradiction. Assume $T \neq T^{*}$. Therefore, $T-T^{*} \neq \emptyset$. Let (u, v) be any edge in $T-T^{*}$.
When (u, v) was added to T, it was the least-cost edge crossing some cut ($S, V-S$). Since T^{*} is an MST, there must be a path from u to v in T^{*}. This path begins in S and ends in $V-S$, so there must be some edge (x, y) along that path where $x \in S$ and $y \in V-S$. Since (u, v) is the leastcost edge crossing ($S, V-S$), we have $c(u, v)<c(x, y)$. Let $T^{* \prime}=T^{*} \cup\{(u, v)\}-\{(x, y)\}$. Since (x, y) is on the cycle formed by adding (u, v), this means $T^{* \prime}$ is a spanning tree.

Theorem: If G is a connected, weighted graph with distinct edge weights, Prim's algorithm correctly finds an MST.

Proof: Let T be the spanning tree found by Prim's algorithm and T^{*} be the MST of G. We will prove $T=T^{*}$ by contradiction. Assume $T \neq T^{*}$. Therefore, $T-T^{*} \neq \emptyset$. Let (u, v) be any edge in $T-T^{*}$.
When (u, v) was added to T, it was the least-cost edge crossing some cut ($S, V-S$). Since T^{*} is an MST, there must be a path from u to v in T^{*}. This path begins in S and ends in $V-S$, so there must be some edge (x, y) along that path where $x \in S$ and $y \in V-S$. Since (u, v) is the leastcost edge crossing ($S, V-S$), we have $c(u, v)<c(x, y)$. Let $T^{* \prime}=T^{*} \cup\{(u, v)\}-\{(x, y)\}$. Since (x, y) is on the cycle formed by adding (u, v), this means $T^{* 1}$ is a spanning tree. However, $c\left(T^{*}\right)=c\left(T^{*}\right)+c(u, v)-c(x, y)<c\left(T^{*}\right)$, contradicting that T^{*} is an MST.

Theorem: If G is a connected, weighted graph with distinct edge weights, Prim's algorithm correctly finds an MST.

Proof: Let T be the spanning tree found by Prim's algorithm and T^{*} be the MST of G. We will prove $T=T^{*}$ by contradiction. Assume $T \neq T^{*}$. Therefore, $T-T^{*} \neq \emptyset$. Let (u, v) be any edge in $T-T^{*}$.
When (u, v) was added to T, it was the least-cost edge crossing some cut ($S, V-S$). Since T^{*} is an MST, there must be a path from u to v in T^{*}. This path begins in S and ends in $V-S$, so there must be some edge (x, y) along that path where $x \in S$ and $y \in V-S$. Since (u, v) is the leastcost edge crossing ($S, V-S$), we have $c(u, v)<c(x, y)$. Let $T^{* \prime}=T^{*} \cup\{(u, v)\}-\{(x, y)\}$. Since (x, y) is on the cycle formed by adding (u, v), this means $T^{* 1}$ is a spanning tree. However, $c\left(T^{*}\right)=c\left(T^{*}\right)+c(u, v)-c(\chi, y)<c\left(T^{*}\right)$, contradicting that T^{*} is an MST.
We have reached a contradiction, so our assumption must have been wrong. Thus $T=T^{*}$, so T is an MST. \square

Exchange Arguments

- This proof of optimality for Prim's algorithm uses an argument called an exchange argument.
- General structure is as follows *
- Assume the greedy algorithm does not produce the optimal solution, so the greedy and optimal solutions are different.
- Show how to exchange some part of the optimal solution with some part of the greedy solution in a way that improves the optimal solution.
- Reach a contradiction and conclude the greedy and optimal solutions must be the same.
- (This assumes there is a unique optimal solution; we'll generalize this shortly.)

The Cut Property

- The previous correctness proof relies on a property of MSTs called the cut property:

Theorem (Cut Property): Let ($S, V-S$) be a nontrivial cut in G (i.e. $S \neq \varnothing$ and $S \neq V$). If (u, v) is the lowest-cost edge crossing ($S, V-S$), then (u, v) is in every MST of G.

- Proof uses an exchange argument: swap out the lowest-cost edge crossing the cut for some other edge crossing the cut.

One Problem

- This proof of correctness relies on edge weights being distinct in two ways:
- Assumes there is a unique MST in the graph.
- Assumes swapping one edge crossing the cut for another strictly improves the cost of an alleged MST.
- Neither of these are true if weights can be duplicated.
- How do we account for this?

Exchange Arguments

- A more general version of an exchange argument is as follows.
- Let X be the object produced by a greedy algorithm and X^{*} be any optimal solution.
- If $X=X^{*}$, the algorithm is optimal.
- Otherwise, show that you can exchange some piece of X^{*} for some piece of X without deteriorating the quality of X^{*}.
- Argue that this process can be iterated repeatedly to turn X^{*} into X without changing its cost.
- Conclude that X is optimal.

Theorem: If G is a connected, weighted graph, Prim's algorithm correctly finds an MST in G.

Theorem: If G is a connected, weighted graph, Prim's algorithm correctly finds an MST in G.

Proof: Let T be the spanning tree found by Prim's algorithm and T^{*} be any MST of G. We will prove $c(T)=c\left(T^{*}\right)$.

Theorem: If G is a connected, weighted graph, Prim's algorithm correctly finds an MST in G.

Proof: Let T be the spanning tree found by Prim's algorithm and T^{*} be any MST of G. We will prove $c(T)=c\left(T^{*}\right)$. If $T=T^{*}$, then $c(T)=c\left(T^{*}\right)$ and we are done.

Theorem: If G is a connected, weighted graph, Prim's algorithm correctly finds an MST in G.

Proof: Let T be the spanning tree found by Prim's algorithm and T^{*} be any MST of G. We will prove $c(T)=c\left(T^{*}\right)$. If $T=T^{*}$, then $c(T)=c\left(T^{*}\right)$ and we are done.

Otherwise, $T \neq T^{*}$, so we have $T-T^{*} \neq \varnothing$. Let (u, v) be any edge in $T-T^{*}$.

Theorem: If G is a connected, weighted graph, Prim's algorithm correctly finds an MST in G.

Proof: Let T be the spanning tree found by Prim's algorithm and T^{*} be any MST of G. We will prove $c(T)=c\left(T^{*}\right)$. If $T=T^{*}$, then $c(T)=c\left(T^{*}\right)$ and we are done.

Otherwise, $T \neq T^{*}$, so we have $T-T^{*} \neq \varnothing$. Let (u, v) be any edge in $T-T^{*}$. When (u, v) was added to T, it was a leastcost edge crossing some cut ($S, V-S$).

Theorem: If G is a connected, weighted graph, Prim's algorithm correctly finds an MST in G.

Proof: Let T be the spanning tree found by Prim's algorithm and T^{*} be any MST of G. We will prove $c(T)=c\left(T^{*}\right)$. If $T=T^{*}$, then $c(T)=c\left(T^{*}\right)$ and we are done.
Otherwise, $T \neq T^{*}$, so we have $T-T^{*} \neq \emptyset$. Let (u, v) be any edge in $T-T^{*}$. When (u, v) was added to T, it was a leastcost edge crossing some cut ($S, V-S$). Since T^{*} is an MST, there must be a path from u to v in T^{*}.

Theorem: If G is a connected, weighted graph, Prim's algorithm correctly finds an MST in G.

Proof: Let T be the spanning tree found by Prim's algorithm and T^{*} be any MST of G. We will prove $c(T)=c\left(T^{*}\right)$. If $T=T^{*}$, then $c(T)=c\left(T^{*}\right)$ and we are done.
Otherwise, $T \neq T^{*}$, so we have $T-T^{*} \neq \emptyset$. Let (u, v) be any edge in $T-T^{*}$. When (u, v) was added to T, it was a leastcost edge crossing some cut ($S, V-S$). Since T^{*} is an MST, there must be a path from u to v in T^{*}. This path begins in S and ends in $V-S$, so there must be some edge (x, y) along that path where $x \in S$ and $y \in V-S$.

Theorem: If G is a connected, weighted graph, Prim's algorithm correctly finds an MST in G.

Proof: Let T be the spanning tree found by Prim's algorithm and T^{*} be any MST of G. We will prove $c(T)=c\left(T^{*}\right)$. If $T=T^{*}$, then $c(T)=c\left(T^{*}\right)$ and we are done.
Otherwise, $T \neq T^{*}$, so we have $T-T^{*} \neq \emptyset$. Let (u, v) be any edge in $T-T^{*}$. When (u, v) was added to T, it was a leastcost edge crossing some cut ($S, V-S$). Since T^{*} is an MST, there must be a path from u to v in T^{*}. This path begins in S and ends in $V-S$, so there must be some edge (x, y) along that path where $x \in S$ and $y \in V-S$. Since (u, v) is a least-cost edge crossing ($S, V-S$), we have $c(u, v) \leq c(x, y)$.

Theorem: If G is a connected, weighted graph, Prim's algorithm correctly finds an MST in G.

Proof: Let T be the spanning tree found by Prim's algorithm and T^{*} be any MST of G. We will prove $c(T)=c\left(T^{*}\right)$. If $T=T^{*}$, then $c(T)=c\left(T^{*}\right)$ and we are done.
Otherwise, $T \neq T^{*}$, so we have $T-T^{*} \neq \emptyset$. Let (u, v) be any edge in $T-T^{*}$. When (u, v) was added to T, it was a leastcost edge crossing some cut ($S, V-S$). Since T^{*} is an MST, there must be a path from u to v in T^{*}. This path begins in S and ends in $V-S$, so there must be some edge (x, y) along that path where $x \in S$ and $y \in V-S$. Since (u, v) is a least-cost edge crossing $(S, V-S)$, we have $c(u, v) \leq c(x, y)$.
Let $T^{* \prime}=T^{*} \cup\{(u, v)\}-\{(x, y)\}$.

Theorem: If G is a connected, weighted graph, Prim's algorithm correctly finds an MST in G.

Proof: Let T be the spanning tree found by Prim's algorithm and T^{*} be any MST of G. We will prove $c(T)=c\left(T^{*}\right)$. If $T=T^{*}$, then $c(T)=c\left(T^{*}\right)$ and we are done.
Otherwise, $T \neq T^{*}$, so we have $T-T^{*} \neq \emptyset$. Let (u, v) be any edge in $T-T^{*}$. When (u, v) was added to T, it was a leastcost edge crossing some cut ($S, V-S$). Since T^{*} is an MST, there must be a path from u to v in T^{*}. This path begins in S and ends in $V-S$, so there must be some edge (x, y) along that path where $x \in S$ and $y \in V-S$. Since (u, v) is a least-cost edge crossing $(S, V-S)$, we have $c(u, v) \leq c(x, y)$. Let $T^{* \prime}=T^{*} \cup\{(u, v)\}-\{(x, y)\}$. Since (x, y) is on the cycle formed by adding (u, v), this means $T^{* '}$ is a spanning tree.

Theorem: If G is a connected, weighted graph, Prim's algorithm correctly finds an MST in G.

Proof: Let T be the spanning tree found by Prim's algorithm and T^{*} be any MST of G. We will prove $c(T)=c\left(T^{*}\right)$. If $T=T^{*}$, then $c(T)=c\left(T^{*}\right)$ and we are done.
Otherwise, $T \neq T^{*}$, so we have $T-T^{*} \neq \emptyset$. Let (u, v) be any edge in $T-T^{*}$. When (u, v) was added to T, it was a leastcost edge crossing some cut ($S, V-S$). Since T^{*} is an MST, there must be a path from u to v in T^{*}. This path begins in S and ends in $V-S$, so there must be some edge (x, y) along that path where $x \in S$ and $y \in V-S$. Since (u, v) is a least-cost edge crossing $(S, V-S)$, we have $c(u, v) \leq c(x, y)$. Let $T^{* \prime}=T^{*} \cup\{(u, v)\}-\{(x, y)\}$. Since (x, y) is on the cycle formed by adding (u, v), this means T^{*} is a spanning tree. Notice $c\left(T^{* '}\right)=c\left(T^{*}\right)+c(u, v)-c(\chi, y) \leq c\left(T^{*}\right)$.

Theorem: If G is a connected, weighted graph, Prim's algorithm correctly finds an MST in G.

Proof: Let T be the spanning tree found by Prim's algorithm and T^{*} be any MST of G. We will prove $c(T)=c\left(T^{*}\right)$. If $T=T^{*}$, then $c(T)=c\left(T^{*}\right)$ and we are done.
Otherwise, $T \neq T^{*}$, so we have $T-T^{*} \neq \emptyset$. Let (u, v) be any edge in $T-T^{*}$. When (u, v) was added to T, it was a leastcost edge crossing some cut ($S, V-S$). Since T^{*} is an MST, there must be a path from u to v in T^{*}. This path begins in S and ends in $V-S$, so there must be some edge (x, y) along that path where $x \in S$ and $y \in V-S$. Since (u, v) is a least-cost edge crossing $(S, V-S)$, we have $c(u, v) \leq c(x, y)$. Let $T^{* \prime}=T^{*} \cup\{(u, v)\}-\{(x, y)\}$. Since (x, y) is on the cycle formed by adding (u, v), this means T^{*} is a spanning tree. Notice $c\left(T^{*}\right)=c\left(T^{*}\right)+c(u, v)-c(\chi, y) \leq c\left(T^{*}\right)$. Since T^{*} is an MST, this means $c\left(T^{*}\right) \geq c\left(T^{*}\right)$, so $c\left(T^{*}\right)=c\left(T^{*}\right)$.

Theorem: If G is a connected, weighted graph, Prim's algorithm correctly finds an MST in G.

Proof: Let T be the spanning tree found by Prim's algorithm and T^{*} be any MST of G. We will prove $c(T)=c\left(T^{*}\right)$. If $T=T^{*}$, then $c(T)=c\left(T^{*}\right)$ and we are done.
Otherwise, $T \neq T^{*}$, so we have $T-T^{*} \neq \emptyset$. Let (u, v) be any edge in $T-T^{*}$. When (u, v) was added to T, it was a leastcost edge crossing some cut ($S, V-S$). Since T^{*} is an MST, there must be a path from u to v in T^{*}. This path begins in S and ends in $V-S$, so there must be some edge (x, y) along that path where $x \in S$ and $y \in V-S$. Since (u, v) is a least-cost edge crossing $(S, V-S)$, we have $c(u, v) \leq c(x, y)$. Let $T^{* \prime}=T^{*} \cup\{(u, v)\}-\{(x, y)\}$. Since (x, y) is on the cycle formed by adding (u, v), this means T^{*} is a spanning tree. Notice $c\left(T^{*}\right)=c\left(T^{*}\right)+c(u, v)-c(\chi, y) \leq c\left(T^{*}\right)$. Since T^{*} is an MST, this means $c\left(T^{* \prime}\right) \geq c\left(T^{*}\right)$, so $c\left(T^{*}\right)=c\left(T^{* \prime}\right)$.
Note that $\left|T-T^{*}\right|=\left|T-T^{*}\right|-1$.

Theorem: If G is a connected, weighted graph, Prim's algorithm correctly finds an MST in G.

Proof: Let T be the spanning tree found by Prim's algorithm and T^{*} be any MST of G. We will prove $c(T)=c\left(T^{*}\right)$. If $T=T^{*}$, then $c(T)=c\left(T^{*}\right)$ and we are done.
Otherwise, $T \neq T^{*}$, so we have $T-T^{*} \neq \emptyset$. Let (u, v) be any edge in $T-T^{*}$. When (u, v) was added to T, it was a leastcost edge crossing some cut ($S, V-S$). Since T^{*} is an MST, there must be a path from u to v in T^{*}. This path begins in S and ends in $V-S$, so there must be some edge (x, y) along that path where $x \in S$ and $y \in V-S$. Since (u, v) is a least-cost edge crossing ($S, V-S$), we have $c(u, v) \leq c(x, y)$. Let $T^{* \prime}=T^{*} \cup\{(u, v)\}-\{(x, y)\}$. Since (x, y) is on the cycle formed by adding (u, v), this means T^{*} is a spanning tree. Notice $c\left(T^{*}\right)=c\left(T^{*}\right)+c(u, v)-c(\chi, y) \leq c\left(T^{*}\right)$. Since T^{*} is an MST, this means $c\left(T^{*}\right) \geq c\left(T^{*}\right)$, so $c\left(T^{*}\right)=c\left(T^{*}\right)$.
Note that $\left|T-T^{*}\right|=\left|T-T^{*}\right|-1$. Therefore, if we repeat this process once for each edge in $T-T^{*}$, we will have converted T^{*} into T while preserving $c\left(T^{*}\right)$.

Theorem: If G is a connected, weighted graph, Prim's algorithm correctly finds an MST in G.

Proof: Let T be the spanning tree found by Prim's algorithm and T^{*} be any MST of G. We will prove $c(T)=c\left(T^{*}\right)$. If $T=T^{*}$, then $c(T)=c\left(T^{*}\right)$ and we are done.
Otherwise, $T \neq T^{*}$, so we have $T-T^{*} \neq \emptyset$. Let (u, v) be any edge in $T-T^{*}$. When (u, v) was added to T, it was a leastcost edge crossing some cut ($S, V-S$). Since T^{*} is an MST, there must be a path from u to v in T^{*}. This path begins in S and ends in $V-S$, so there must be some edge (x, y) along that path where $x \in S$ and $y \in V-S$. Since (u, v) is a least-cost edge crossing ($S, V-S$), we have $c(u, v) \leq c(x, y)$. Let $T^{* \prime}=T^{*} \cup\{(u, v)\}-\{(x, y)\}$. Since (x, y) is on the cycle formed by adding (u, v), this means T^{*} is a spanning tree. Notice $c\left(T^{*}\right)=c\left(T^{*}\right)+c(u, v)-c(\chi, y) \leq c\left(T^{*}\right)$. Since T^{*} is an MST, this means $c\left(T^{*}\right) \geq c\left(T^{*}\right)$, so $c\left(T^{*}\right)=c\left(T^{*}\right)$.
Note that $\left|T-T^{*}\right|=\left|T-T^{*}\right|-1$. Therefore, if we repeat this process once for each edge in $T-T^{*}$, we will have converted T^{*} into T while preserving $c\left(T^{*}\right)$. Thus $c(T)=c\left(T^{*}\right)$. \square

A Note on the Proof

- Our proof worked as follows:
- Find a way to replace one piece of T^{*} with one piece of T without increasing $c\left(T^{*}\right)$.
- Note that this makes T^{*} "less different" than T as before.
- Conclude that we could iterate this process until eventually T^{*} became T, at which point we have $c(T)=c\left(T^{*}\right)$.
- This is inherently an inductive argument, but typically it is not presented as such.
- It's fine to say "repeat this process" rather than writing out a base case and inductive step.

Next Time

- Kruskal's Algorithm
- Disjoint-Set Forests

