Greedy Algorithms Part One

Announcements

- Problem Set Three due right now if using a late period.
- Solutions will be released at end of lecture.

Outline for Today

- Greedy Algorithms
 - Can myopic, shortsighted decisions lead to an optimal solution?
- Lilypad Jumping
 - Helping our amphibious friends home!
- Activity Selection
 - Planning your weekend!

- The frog begins at position 0 in the river. Its goal is to get to position *n*.
- There are lilypads at various positions. There is always a lilypad at position 0 and position *n*.
- The frog can jump at most *r* units at a time.
- **Goal:** Find the path the frog should take to minimize jumps, assuming a solution exists.

As a Graph

A Leap of Faith

A Leap of Faith

Formalizing the Algorithm

- Let *J* be an empty series of jumps.
- Let our current position x = 0.
- While x < n:
 - Find the furthest lilypad *l* reachable from *x* that is not after position *n*.
 - Add a jump to *J* from *x* to *l*'s location.
 - Set *x* to *l*'s location.
- Return J.

Greedy Algorithms

- A greedy algorithm is an algorithm that constructs an object *X* one step at a time, at each step choosing the locally best option.
- In some cases, greedy algorithms construct the globally best object by repeatedly choosing the locally best option.

Greedy Advantages

- Greedy algorithms have several advantages over other algorithmic approaches:
 - **Simplicity**: Greedy algorithms are often easier to describe and code up than other algorithms.
 - **Efficiency**: Greedy algorithms can often be implemented more efficiently than other algorithms.

Greedy Challenges

- Greedy algorithms have several drawbacks:
 - Hard to design: Once you have found the right greedy approach, designing greedy algorithms can be easy. However, finding the right approach can be hard.
 - **Hard to verify**: Showing a greedy algorithm is correct often requires a nuanced argument.

Back to Frog Jumping

- We now have a simple greedy algorithm for routing the frog home: jump as far forward as possible at each step.
- We need to prove two properties:
 - The algorithm will find a legal series of jumps (i.e. it doesn't "get stuck").
 - The algorithm finds an *optimal* series of jumps (i.e. there isn't a better path available).

Back to Frog Jumping

We now have a simple greedy algorithm for routing the frog home: jump as far forward as possible at each step.

We need to prove two properties:

• The algorithm will find a legal series of jumps (i.e. it doesn't "get stuck").

The algorithm finds an *optimal* series of jumps (i.e. there isn't a better path available).

If there is *any* path at all, each lilypad must be at most *r* distance ahead of the lilypad before it.

Proof: By contradiction; suppose it did not.

Proof: By contradiction; suppose it did not. Let the positions of the lilypads be $x_1 < x_2 < ... < x_m$.

Proof: By contradiction; suppose it did not. Let the positions of the lilypads be $x_1 < x_2 < ... < x_m$. Since our algorithm didn't find a path, it must have stopped at some lilypad x_k and not been able to jump to a future lilypad.

Proof: By contradiction; suppose it did not. Let the positions of the lilypads be $x_1 < x_2 < ... < x_m$. Since our algorithm didn't find a path, it must have stopped at some lilypad x_k and not been able to jump to a future lilypad. In particular, this means it could not jump to lilypad k + 1, so $x_k + r < x_{k+1}$.

- **Proof:** By contradiction; suppose it did not. Let the positions of the lilypads be $x_1 < x_2 < ... < x_m$. Since our algorithm didn't find a path, it must have stopped at some lilypad x_k and not been able to jump to a future lilypad. In particular, this means it could not jump to lilypad k + 1, so $x_k + r < x_{k+1}$.
 - Since there is a path from lilypad 1 to the lilypad m, there must be some jump in that path that starts before lilypad k + 1 and ends at or after lilypad k + 1.

Proof: By contradiction; suppose it did not. Let the positions of the lilypads be $x_1 < x_2 < ... < x_m$. Since our algorithm didn't find a path, it must have stopped at some lilypad x_k and not been able to jump to a future lilypad. In particular, this means it could not jump to lilypad k + 1, so $x_k + r < x_{k+1}$.

Since there is a path from lilypad 1 to the lilypad m, there must be some jump in that path that starts before lilypad k + 1 and ends at or after lilypad k + 1. This jump can't be made from lilypad k, so it must have been made from lilypad s for some s < k.

Proof: By contradiction; suppose it did not. Let the positions of the lilypads be $x_1 < x_2 < ... < x_m$. Since our algorithm didn't find a path, it must have stopped at some lilypad x_k and not been able to jump to a future lilypad. In particular, this means it could not jump to lilypad k + 1, so $x_k + r < x_{k+1}$.

Since there is a path from lilypad 1 to the lilypad m, there must be some jump in that path that starts before lilypad k + 1 and ends at or after lilypad k + 1. This jump can't be made from lilypad k, so it must have been made from lilypad s for some s < k. But then we have $x_s + r < x_k + r < x_{k+1}$, so this jump is illegal.

Proof: By contradiction; suppose it did not. Let the positions of the lilypads be $x_1 < x_2 < ... < x_m$. Since our algorithm didn't find a path, it must have stopped at some lilypad x_k and not been able to jump to a future lilypad. In particular, this means it could not jump to lilypad k + 1, so $x_k + r < x_{k+1}$.

Since there is a path from lilypad 1 to the lilypad m, there must be some jump in that path that starts before lilypad k + 1 and ends at or after lilypad k + 1. This jump can't be made from lilypad k, so it must have been made from lilypad s for some s < k. But then we have $x_s + r < x_k + r < x_{k+1}$, so this jump is illegal.

We have reached a contradiction, so our assumption was wrong and our algorithm always finds a path.

Proving Optimality

- How can we prove this algorithm finds an optimal series of jumps?
- **Key Proof Idea**: Consider an arbitrary optimal series of jumps *J**, then show that our greedy algorithm produces a series of jumps no worse than *J**.
 - We don't know what J* is or that our algorithm is necessarily optimal. However, we can still use the existence of J* in our proof.

Some Notation

- Let J be the series of jumps produced by our algorithm and let J* be an optimal series of jumps.
 - Note that there might be multiple different optimal jump patterns.
- Let |J| and $|J^*|$ denote the number of jumps in J and J^* , respectively.
- Note that $|J| \ge |J^*|$. (Why?)

Max jump size: 3

Max jump size: 3

Max jump size: 3

The Key Lemma

- Let p(i, J) denote the frog's position after taking the first i jumps from jump series J.
- **Lemma:** For any *i* in $0 \le i \le |J^*|$, we have $p(i, J) \ge p(i, J^*)$.
 - After taking *i* jumps according to the greedy algorithm, the frog will be at least as far forward as if she took *i* jumps according to the optimal solution.
- We can formalize this using induction.

Lemma 2: For all $0 \le i \le |J^*|$, we have $p(i, J) \ge p(i, J^*)$. **Proof:** By induction.

Proof: By induction. As a base case, if i = 0, then $p(0, J) = 0 \ge 0 = p(0, J^*)$ since the frog hasn't moved.

Proof: By induction. As a base case, if i = 0, then $p(0, J) = 0 \ge 0 = p(0, J^*)$ since the frog hasn't moved.

For the inductive step, assume that the claim holds for some $0 \le i < |J^*|$.

Proof: By induction. As a base case, if i = 0, then $p(0, J) = 0 \ge 0 = p(0, J^*)$ since the frog hasn't moved.

For the inductive step, assume that the claim holds for some $0 \le i < |J^*|$. We will prove the claim holds for i + 1 by considering two cases:

Case 1: $p(i, J) \ge p(i + 1, J^*)$.

Case 2: $p(i, J) < p(i + 1, J^*)$.

Proof: By induction. As a base case, if i = 0, then $p(0, J) = 0 \ge 0 = p(0, J^*)$ since the frog hasn't moved.

For the inductive step, assume that the claim holds for some $0 \le i < |J^*|$. We will prove the claim holds for i + 1 by considering two cases:

Case 1: $p(i, J) \ge p(i + 1, J^*)$. Since each jump moves forward, we have $p(i + 1, J) \ge p(i, J)$, so we have $p(i + 1, J) \ge p(i + 1, J^*)$.

Case 2: $p(i, J) < p(i + 1, J^*)$.

Proof: By induction. As a base case, if i = 0, then $p(0, J) = 0 \ge 0 = p(0, J^*)$ since the frog hasn't moved.

- Case 1: $p(i, J) \ge p(i + 1, J^*)$. Since each jump moves forward, we have $p(i + 1, J) \ge p(i, J)$, so we have $p(i + 1, J) \ge p(i + 1, J^*)$.
- Case 2: $p(i, J) < p(i + 1, J^*)$. Each jump is of size at most r, so $p(i + 1, J^*) \le p(i, J^*) + r$.

Proof: By induction. As a base case, if i = 0, then $p(0, J) = 0 \ge 0 = p(0, J^*)$ since the frog hasn't moved.

- Case 1: $p(i, J) \ge p(i + 1, J^*)$. Since each jump moves forward, we have $p(i + 1, J) \ge p(i, J)$, so we have $p(i + 1, J) \ge p(i + 1, J^*)$.
- Case 2: $p(i, J) < p(i + 1, J^*)$. Each jump is of size at most r, so $p(i + 1, J^*) \le p(i, J^*) + r$. By our IH, we know $p(i, J) \ge p(i, J^*)$, so $p(i + 1, J^*) \le p(i, J) + r$.

Proof: By induction. As a base case, if i = 0, then $p(0, J) = 0 \ge 0 = p(0, J^*)$ since the frog hasn't moved.

- Case 1: $p(i, J) \ge p(i + 1, J^*)$. Since each jump moves forward, we have $p(i + 1, J) \ge p(i, J)$, so we have $p(i + 1, J) \ge p(i + 1, J^*)$.
- Case 2: $p(i, J) < p(i + 1, J^*)$. Each jump is of size at most r, so $p(i + 1, J^*) \le p(i, J^*) + r$. By our IH, we know $p(i, J) \ge p(i, J^*)$, so $p(i + 1, J^*) \le p(i, J) + r$. Therefore, the greedy algorithm can jump to position at least $p(i + 1, J^*)$.

Proof: By induction. As a base case, if i = 0, then $p(0, J) = 0 \ge 0 = p(0, J^*)$ since the frog hasn't moved.

- Case 1: $p(i, J) \ge p(i + 1, J^*)$. Since each jump moves forward, we have $p(i + 1, J) \ge p(i, J)$, so we have $p(i + 1, J) \ge p(i + 1, J^*)$.
- Case 2: $p(i, J) < p(i + 1, J^*)$. Each jump is of size at most r, so $p(i + 1, J^*) \le p(i, J^*) + r$. By our IH, we know $p(i, J) \ge p(i, J^*)$, so $p(i + 1, J^*) \le p(i, J) + r$. Therefore, the greedy algorithm can jump to position at least $p(i + 1, J^*)$. Therefore, $p(i + 1, J) \ge p(i + 1, J^*)$.

Proof: By induction. As a base case, if i = 0, then $p(0, J) = 0 \ge 0 = p(0, J^*)$ since the frog hasn't moved.

For the inductive step, assume that the claim holds for some $0 \le i < |J^*|$. We will prove the claim holds for i + 1 by considering two cases:

Case 1: $p(i, J) \ge p(i + 1, J^*)$. Since each jump moves forward, we have $p(i + 1, J) \ge p(i, J)$, so we have $p(i + 1, J) \ge p(i + 1, J^*)$.

Case 2: $p(i, J) < p(i + 1, J^*)$. Each jump is of size at most r, so $p(i + 1, J^*) \le p(i, J^*) + r$. By our IH, we know $p(i, J) \ge p(i, J^*)$, so $p(i + 1, J^*) \le p(i, J) + r$. Therefore, the greedy algorithm can jump to position at least $p(i + 1, J^*)$. Therefore, $p(i + 1, J) \ge p(i + 1, J^*)$.

So $p(i + 1, J) \ge p(i + 1, J^*)$, completing the induction.

Proof: Since J^* is an optimal solution, we know that $|J^*| \le |J|$. We will prove $|J^*| \ge |J|$.

Proof: Since J^* is an optimal solution, we know that $|J^*| \le |J|$. We will prove $|J^*| \ge |J|$.

Suppose for contradiction that $|J^*| < |J|$. Let $k = |J^*|$.

Proof: Since J^* is an optimal solution, we know that $|J^*| \le |J|$. We will prove $|J^*| \ge |J|$.

Suppose for contradiction that $|J^*| < |J|$. Let $k = |J^*|$. By Lemma 2, we have $p(k, J^*) \le p(k, J)$.

Proof: Since J^* is an optimal solution, we know that $|J^*| \le |J|$. We will prove $|J^*| \ge |J|$.

Suppose for contradiction that $|J^*| < |J|$. Let $k = |J^*|$. By Lemma 2, we have $p(k, J^*) \le p(k, J)$. Because the frog arrives at position *n* after *k* jumps along series J^* , we know $n \le p(k, J)$.

Proof: Since J^* is an optimal solution, we know that $|J^*| \le |J|$. We will prove $|J^*| \ge |J|$.

Suppose for contradiction that $|J^*| < |J|$. Let $k = |J^*|$. By Lemma 2, we have $p(k, J^*) \le p(k, J)$. Because the frog arrives at position n after k jumps along series J^* , we know $n \le p(k, J)$. Because the greedy algorithm never jumps past position n, we know $p(k, J) \le n$, so n = p(k, J).

Proof: Since J^* is an optimal solution, we know that $|J^*| \le |J|$. We will prove $|J^*| \ge |J|$.

Suppose for contradiction that $|J^*| < |J|$. Let $k = |J^*|$. By Lemma 2, we have $p(k, J^*) \le p(k, J)$. Because the frog arrives at position n after k jumps along series J^* , we know $n \le p(k, J)$. Because the greedy algorithm never jumps past position n, we know $p(k, J) \le n$, so n = p(k, J). Since $|J^*| < |J|$, the greedy algorithm must have taken another jump after its kth jump, contradicting that the algorithm stops after reaching position n.

Proof: Since J^* is an optimal solution, we know that $|J^*| \le |J|$. We will prove $|J^*| \ge |J|$.

Suppose for contradiction that $|J^*| < |J|$. Let $k = |J^*|$. By Lemma 2, we have $p(k, J^*) \le p(k, J)$. Because the frog arrives at position n after k jumps along series J^* , we know $n \le p(k, J)$. Because the greedy algorithm never jumps past position n, we know $p(k, J) \le n$, so n = p(k, J). Since $|J^*| < |J|$, the greedy algorithm must have taken another jump after its kth jump, contradicting that the algorithm stops after reaching position n.

We have reached a contradiction, so our assumption was wrong and $|J^*| = |J|$, so the greedy algorithm produces an optimal solution.

Greedy Stays Ahead

- The style of proof we just wrote is an example of a greedy stays ahead proof.
- The general proof structure is the following:
 - Find a series of measurements $M_1, M_2, ..., M_k$ you can apply to any solution.
 - Show that the greedy algorithm's measures are at least as good as any solution's measures. (This usually involves induction.)
 - Prove that because the greedy solution's measures are at least as good as any solution's measures, the greedy solution must be optimal. (This is usually a proof by contradiction.)

Another Problem: Activity Scheduling

Activity Scheduling

- You are given a list of activities (s1, e1),
 (s2, e2), ..., (sn, en) denoted by their start and end times.
- All activities are equally attractive to you, and you want to maximize the number of activities you do.
- Goal: Choose the largest number of non-overlapping activities possible.

Thinking Greedily

- If we want to try solving this using a greedy approach, we should think about different ways of picking activities greedily.
- A few options:
 - **Be Impulsive:** Choose activities in ascending order of start times.
 - Avoid Commitment: Choose activities in ascending order of length.
 - **Finish Fast:** Choose activities in ascending order of end times.

Impulse Control 3 4 5 6 7 8 9 10 11 12 1

- If we want to try solving this using a greedy approach, we should think about different ways of picking activities greedily.
- A few options:
 - **Be Impulsive:** Choose activities in ascending order of start times.
 - Avoid Commitment: Choose activities in ascending order of length.
 - **Finish Fast:** Choose activities in ascending order of end times.

- If we want to try solving this using a greedy approach, we should think about different ways of picking activities greedily.
- A few options:
 - **Be Impulsive:** Choose activities in ascending order of start times.
 - Avoid Commitment: Choose activities in ascending order of length.
 - **Finish Fast:** Choose activities in ascending order of end times.

Avoid Commitment 3 4 5 6 7 8 9 10 11 12 1

Gardening

Fancy Dinner

- If we want to try solving this using a greedy approach, we should think about different ways of picking activities greedily.
- A few options:
 - **Be Impulsive:** Choose activities in ascending order of start times.
 - Avoid Commitment: Choose activities in ascending order of length.
 - **Finish Fast:** Choose activities in ascending order of end times.

- If we want to try solving this using a greedy approach, we should think about different ways of picking activities greedily.
- A few options:
 - Be Impulsive: Choose activities in ascending order of start times.
 - Avoid Commitment: Choose activities in ascending order of length.
 - **Finish Fast:** Choose activities in ascending order of end times.

• Of the three options we saw, only the third one seems to work:

Choose activities in ascending order of finishing times.

- More formally:
 - Sort the activities into ascending order by finishing time and add them to a set U.
 - While *U* is not empty:
 - Choose any activity with the earliest finishing time.
 - Add that activity to *S*.
 - Remove from U all activities that overlap S.

Proving Legality

- **Lemma:** The schedule produced this way is a legal schedule.
- **Proof Idea:** Use induction to show that at each step, the set *U* only contains activities that don't conflict with activities picked from *S*.

Proving Optimality

- To prove that the schedule *S* produced by the algorithm is optimal, we will use another "greedy stays ahead" argument:
 - Find some measures by which the algorithm is at least as good as any other solution.
 - Show that those measures mean that the algorithm must produce an optimal solution.

Greedy Stays Ahead

- **Observation:** The *k*th activity chosen by the greedy algorithm finishes no later than the *k*th activity chosen in any legal schedule.
- We need to
 - Prove that this is actually true, and
 - Show that, if it's true, the algorithm is optimal.
- We'll do this out of order.

Some Notation

- Let S be the schedule our algorithm produces and S* be any optimal schedule.
- Note that $|S| \leq |S^*|$.
- Let *f*(*i*, *S*) denote the time that the *i*th activity finishes in schedule *S*.
- **Lemma:** For any $1 \le i \le |S|$, we have $f(i, S) \le f(i, S^*)$.

Proof: Let S be the schedule the algorithm produced and S^* be any optimal schedule.

Proof: Let S be the schedule the algorithm produced and S^* be any optimal schedule. Since S^* is optimal, we have $|S| \leq |S^*|$.

Proof: Let S be the schedule the algorithm produced and S^* be any optimal schedule. Since S^* is optimal, we have $|S| \leq |S^*|$. We will prove $|S| \geq |S^*|$.

Proof: Let S be the schedule the algorithm produced and S^* be any optimal schedule. Since S^* is optimal, we have $|S| \leq |S^*|$. We will prove $|S| \geq |S^*|$.

Assume for contradiction that $|S| < |S^*|$. Let k = |S|.

Proof: Let S be the schedule the algorithm produced and S^* be any optimal schedule. Since S^* is optimal, we have $|S| \leq |S^*|$. We will prove $|S| \geq |S^*|$.

Assume for contradiction that $|S| < |S^*|$. Let k = |S|. By our lemma, we know $f(k, S) \le f(k, S^*)$, so the *k*th activity in *S* finishes no later than the *k*th activity in *S**.

Proof: Let S be the schedule the algorithm produced and S^* be any optimal schedule. Since S^* is optimal, we have $|S| \leq |S^*|$. We will prove $|S| \geq |S^*|$.

Assume for contradiction that $|S| < |S^*|$. Let k = |S|. By our lemma, we know $f(k, S) \le f(k, S^*)$, so the *k*th activity in *S* finishes no later than the *k*th activity in *S**. Since $|S| < |S^*|$, there is a (k + 1)st activity in *S**, and its start time must be after $f(k, S^*)$ and therefore after f(k, S).

Proof: Let S be the schedule the algorithm produced and S^* be any optimal schedule. Since S^* is optimal, we have $|S| \leq |S^*|$. We will prove $|S| \geq |S^*|$.

Assume for contradiction that $|S| < |S^*|$. Let k = |S|. By our lemma, we know $f(k, S) \le f(k, S^*)$, so the *k*th activity in *S* finishes no later than the *k*th activity in *S**. Since $|S| < |S^*|$, there is a (k + 1)st activity in *S**, and its start time must be after $f(k, S^*)$ and therefore after f(k, S). Thus after the greedy algorithm added its *k*th activity to *S*, the (k + 1)st activity from *S** would still belong to *U*.

Proof: Let S be the schedule the algorithm produced and S^* be any optimal schedule. Since S^* is optimal, we have $|S| \leq |S^*|$. We will prove $|S| \geq |S^*|$.

Assume for contradiction that $|S| < |S^*|$. Let k = |S|. By our lemma, we know $f(k, S) \le f(k, S^*)$, so the *k*th activity in *S* finishes no later than the *k*th activity in *S**. Since $|S| < |S^*|$, there is a (k + 1)st activity in *S**, and its start time must be after $f(k, S^*)$ and therefore after f(k, S). Thus after the greedy algorithm added its *k*th activity to *S*, the (k + 1)st activity from *S** would still belong to *U*. But the greedy algorithm empty.

Proof: Let S be the schedule the algorithm produced and S^* be any optimal schedule. Since S^* is optimal, we have $|S| \leq |S^*|$. We will prove $|S| \geq |S^*|$.

Assume for contradiction that $|S| < |S^*|$. Let k = |S|. By our lemma, we know $f(k, S) \le f(k, S^*)$, so the *k*th activity in *S* finishes no later than the *k*th activity in *S*^{*}. Since $|S| < |S^*|$, there is a (k + 1)st activity in *S*^{*}, and its start time must be after $f(k, S^*)$ and therefore after f(k, S). Thus after the greedy algorithm added its *k*th activity to *S*, the (k + 1)st activity from *S*^{*} would still belong to *U*. But the greedy algorithm empty.

We have reached a contradiction, so our assumption must have been wrong. Thus the greedy algorithm must be optimal.

Proof: By induction.

Proof: By induction. For our base case, we prove $f(1, S) \leq f(1, S^*)$.

Proof: By induction. For our base case, we prove $f(1, S) \leq f(1, S^*)$. The first activity the greedy algorithm selects must be an activity that ends no later than any other activity, so $f(1, S) \leq f(1, S^*)$.

Proof: By induction. For our base case, we prove $f(1, S) \leq f(1, S^*)$. The first activity the greedy algorithm selects must be an activity that ends no later than any other activity, so $f(1, S) \leq f(1, S^*)$.

For the inductive step, assume the claim holds for some *i* in $1 \le i < |S|$.

Proof: By induction. For our base case, we prove $f(1, S) \leq f(1, S^*)$. The first activity the greedy algorithm selects must be an activity that ends no later than any other activity, so $f(1, S) \leq f(1, S^*)$.

For the inductive step, assume the claim holds for some *i* in $1 \le i < |S|$. Since $f(i, S) \le f(i, S^*)$, the *i*th activity in *S* finishes before the *i*th activity in *S**.

Proof: By induction. For our base case, we prove $f(1, S) \leq f(1, S^*)$. The first activity the greedy algorithm selects must be an activity that ends no later than any other activity, so $f(1, S) \leq f(1, S^*)$.

For the inductive step, assume the claim holds for some *i* in $1 \le i < |S|$. Since $f(i, S) \le f(i, S^*)$, the *i*th activity in *S* finishes before the *i*th activity in *S**. Since the (i+1)st activity in *S** must start after the *i*th activity in *S** ends, the (i + 1)st activity in *S** must start after the *i*th activity in *S* ends.

Proof: By induction. For our base case, we prove $f(1, S) \leq f(1, S^*)$. The first activity the greedy algorithm selects must be an activity that ends no later than any other activity, so $f(1, S) \leq f(1, S^*)$.

For the inductive step, assume the claim holds for some *i* in $1 \le i < |S|$. Since $f(i, S) \le f(i, S^*)$, the *i*th activity in *S* finishes before the *i*th activity in *S**. Since the (i+1)st activity in *S** must start after the *i*th activity in *S** ends, the (i + 1)st activity in *S** must start after the *i*th activity in *S* ends. Therefore, the (i+1)st activity in *S** must be in *U* when the greedy algorithm selects its (i+1)st activity.

Proof: By induction. For our base case, we prove $f(1, S) \leq f(1, S^*)$. The first activity the greedy algorithm selects must be an activity that ends no later than any other activity, so $f(1, S) \leq f(1, S^*)$.

For the inductive step, assume the claim holds for some *i* in $1 \le i < |S|$. Since $f(i, S) \le f(i, S^*)$, the *i*th activity in S finishes before the *i*th activity in S^* . Since the (i+1)st activity in S^* must start after the *i*th activity in S^* ends, the (i + 1)st activity in S^* must start after the *i*th activity in *S* ends. Therefore, the (i+1)st activity in S^* must be in U when the greedy algorithm selects its (i+1)st activity. Since the greedy algorithm selects the activity in U with the lowest end time, we have $f(i + 1, S) \leq f(i + 1, S^*)$, completing the induction.

Summary

- Greedy algorithms aim for global optimality by iteratively making a locally optimal decision.
- To show correctness, typically need to show
 - The algorithm produces a *legal* answer, and
 - The algorithm produces an *optimal* answer.
- Often use "greedy stays ahead" to show optimality.

Next Time

- Minimum Spanning Trees
- Prim's Algorithm
- Exchange Arguments