
  

Greedy Algorithms
Part One



  

Announcements

● Problem Set Three due right now if using 
a late period.

● Solutions will be released at end of 
lecture.



  

Outline for Today

● Greedy Algorithms
● Can myopic, shortsighted decisions lead to 

an optimal solution?

● Lilypad Jumping
● Helping our amphibious friends home!

● Activity Selection
● Planning your weekend!
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Frog Jumping

● The frog begins at position 0 in the river.  
Its goal is to get to position n.

● There are lilypads at various positions.  
There is always a lilypad at position 0 
and position n.

● The frog can jump at most r units at a 
time.

● Goal: Find the path the frog should take 
to minimize jumps, assuming a solution 
exists.
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As a Graph
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A Leap of Faith

0 1 32 4 5 6 7 8 9 10

Max jump size: 2 Algorithm: Always 
jump as far forward 
as possible.

Algorithm: Always 
jump as far forward 
as possible.



  

A Leap of Faith
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Max jump size: 4 Algorithm: Always 
jump as far forward 
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Formalizing the Algorithm

● Let J be an empty series of jumps.
● Let our current position x = 0.
● While x < n:

● Find the furthest lilypad l reachable from x 
that is not after position n.

● Add a jump to J from x to l's location.
● Set x to l's location.

● Return J.



  

Greedy Algorithms

● A greedy algorithm is an algorithm that 
constructs an object X one step at a time, 
at each step choosing the locally best 
option.

● In some cases, greedy algorithms 
construct the globally best object by 
repeatedly choosing the locally best 
option.



  

Greedy Advantages

● Greedy algorithms have several 
advantages over other algorithmic 
approaches:
● Simplicity: Greedy algorithms are often 

easier to describe and code up than other 
algorithms.

● Efficiency: Greedy algorithms can often be 
implemented more efficiently than other 
algorithms.



  

Greedy Challenges

● Greedy algorithms have several 
drawbacks:
● Hard to design: Once you have found the 

right greedy approach, designing greedy 
algorithms can be easy.  However, finding 
the right approach can be hard.

● Hard to verify: Showing a greedy algorithm 
is correct often requires a nuanced 
argument.



  

Back to Frog Jumping

● We now have a simple greedy algorithm for 
routing the frog home: jump as far forward as 
possible at each step.

● We need to prove two properties:

● The algorithm will find a legal series of 
jumps (i.e. it doesn't “get stuck”).

● The algorithm finds an optimal series of 
jumps (i.e. there isn't a better path 
available).
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If there is any path at all, each 
lilypad must be at most r 

distance ahead of the lilypad 
before it.

If there is any path at all, each 
lilypad must be at most r 

distance ahead of the lilypad 
before it.



  

Lemma 1: The greedy algorithm always finds a path
from the start lilypad to the destination lilypad.

Proof: By contradiction; suppose it did not.  Let the
positions of the lilypads be x₁ < x₂ < … < xₘ.  Since
our algorithm didn't find a path, it must have stopped
at some lilypad xₖ and not been able to jump to a
future lilypad.  In particular, this means it could not
jump to lilypad k + 1, so xₖ + r < xₖ₊₁.

Since there is a path from lilypad 1 to the lilypad m, 
there must be some jump in that path that starts 
before lilypad k + 1 and ends at or after lilypad k + 1.  
This jump can't be made from lilypad k, so it must 
have been made from lilypad s for some s < k.  But 
then we have xₛ + r < xₖ + r < xₖ₊₁, so this jump is 
illegal.

We have reached a contradiction, so our assumption 
was wrong and our algorithm always finds a path. ■
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Proving Optimality

● How can we prove this algorithm finds 
an optimal series of jumps?

● Key Proof Idea: Consider an arbitrary 
optimal series of jumps J*, then show 
that our greedy algorithm produces a 
series of jumps no worse than J*.
● We don't know what J* is or that our 

algorithm is necessarily optimal.  However, 
we can still use the existence of J* in our 
proof.



  

Some Notation

● Let J be the series of jumps produced by 
our algorithm and let J* be an optimal 
series of jumps.
● Note that there might be multiple different 

optimal jump patterns.

● Let | J| and | J*| denote the number of 
jumps in J and J*, respectively.

● Note that | J| ≥ | J*|. (Why?)
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The Key Lemma

● Let p(i, J) denote the frog's position after 
taking the first i jumps from jump 
series J.

● Lemma: For any i in 0 ≤ i ≤ | J*|, we 
have p(i, J) ≥ p(i, J*).
● After taking i jumps according to the greedy 

algorithm, the frog will be at least as far 
forward as if she took i jumps according to 
the optimal solution.

● We can formalize this using induction.



  

Lemma 2: For all 0 ≤ i ≤ | J*|, we have p(i, J) ≥ p(i, J*).

Proof: By induction. As a base case, if i = 0, then
p(0, J) = 0 ≥ 0 = p(0, J*) since the frog hasn't moved.

For the inductive step, assume that the claim holds 
for some 0 ≤ i < | J*|.  We will prove the claim holds 
for i + 1 by considering two cases:

Case 1: p(i, J) ≥ p(i + 1, J*).  Since each jump moves
forward, we have p(i + 1, J) ≥ p(i, J), so we have
p(i + 1, J) ≥ p(i + 1, J*).

Case 2: p(i, J) < p(i + 1, J*).  Each jump is of size at
most r, so p(i + 1, J*) ≤ p(i, J*) + r.  By our IH, we
know p(i, J) ≥ p(i, J*), so p(i + 1, J*) ≤ p(i, J) + r. 
Therefore, the greedy algorithm can jump to
position at least p(i + 1, J*).  Therefore,
p(i + 1, J) ≥ p(i + 1, J*).

So p(i + 1, J) ≥ p(i + 1, J*), completing the induction. ■
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Theorem: Let J be the series of jumps produced by
the greedy algorithm and J* be any optimal series
of jumps.  Then | J| = | J*|.

Proof: Since J* is an optimal solution, we know that
| J*| ≤ | J|.  We will prove | J*| ≥ | J|.

Suppose for contradiction that | J*| < | J|.  Let
k = | J*|. By Lemma 2, we have p(k, J*) ≤ p(k, J).  
Because the frog arrives at position n after k jumps 
along series J*, we know n ≤ p(k, J).  Because the 
greedy algorithm never jumps past position n, we 
know p(k, J) ≤ n, so n = p(k, J).  Since | J*| < | J|, 
the greedy algorithm must have taken another 
jump after its kth jump, contradicting that the 
algorithm stops after reaching position n.

We have reached a contradiction, so our 
assumption was wrong and | J*| = | J|, so the 
greedy algorithm produces an optimal solution. ■
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Greedy Stays Ahead

● The style of proof we just wrote is an example 
of a greedy stays ahead proof.

● The general proof structure is the following:
● Find a series of measurements M₁, M₂, …, Mₖ 

you can apply to any solution.
● Show that the greedy algorithm's measures are 

at least as good as any solution's measures.  
(This usually involves induction.)

● Prove that because the greedy solution's 
measures are at least as good as any solution's 
measures, the greedy solution must be optimal.  
(This is usually a proof by contradiction.)



  

Another Problem:
Activity Scheduling
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Activity Scheduling

● You are given a list of activities (s₁, e₁), 
(s₂ , e₂), …, (sₙ, eₙ) denoted by their start 
and end times.

● All activities are equally attractive to 
you, and you want to maximize the 
number of activities you do.

● Goal: Choose the largest number of 
non-overlapping activities possible.



  

Thinking Greedily

● If we want to try solving this using a 
greedy approach, we should think about 
different ways of picking activities 
greedily.

● A few options:
● Be Impulsive: Choose activities in ascending 

order of start times.
● Avoid Commitment: Choose activities in 

ascending order of length.
● Finish Fast: Choose activities in ascending 

order of end times.
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Thinking Greedily

● If we want to try solving this using a 
greedy approach, we should think about 
different ways of picking activities 
greedily.

● A few options:
● Be Impulsive: Choose activities in ascending 

order of start times.
● Avoid Commitment: Choose activities in 

ascending order of length.
● Finish Fast: Choose activities in ascending 

order of end times.
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● A few options:
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Thinking Greedily

● Of the three options we saw, only the third 
one seems to work:

Choose activities in ascending  
order of finishing times.   

● More formally:
● Sort the activities into ascending order by 

finishing time and add them to a set U.
● While U is not empty:

– Choose any activity with the earliest finishing time.
– Add that activity to S.
– Remove from U all activities that overlap S.



  

Proving Legality

● Lemma: The schedule produced this way 
is a legal schedule.

● Proof Idea: Use induction to show that 
at each step, the set U only contains 
activities that don't conflict with 
activities picked from S.



  

Proving Optimality

● To prove that the schedule S produced by 
the algorithm is optimal, we will use 
another “greedy stays ahead” argument:
● Find some measures by which the algorithm 

is at least as good as any other solution.
● Show that those measures mean that the 

algorithm must produce an optimal solution.
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Greedy Stays Ahead

● Observation: The kth activity chosen by 
the greedy algorithm finishes no later 
than the kth activity chosen in any legal 
schedule.

● We need to
● Prove that this is actually true, and
● Show that, if it's true, the algorithm is 

optimal.

● We'll do this out of order.



  

Some Notation

● Let S be the schedule our algorithm 
produces and S* be any optimal 
schedule.

● Note that |S| ≤ |S*|.
● Let f(i, S) denote the time that the ith 

activity finishes in schedule S.
● Lemma: For any 1 ≤ i ≤ |S|, we have 

f(i, S) ≤ f(i, S*).



  

Theorem: The greedy algorithm for activity selection
produces an optimal schedule.

Proof: Let S be the schedule the algorithm produced
and S* be any optimal schedule. Since S* is
optimal, we have |S| ≤ |S*|. We will prove |S| ≥ |S*|.

Assume for contradiction that |S| < |S*|.  Let k = |S|. 
By our lemma, we know f(k, S) ≤ f(k, S*), so the kth 
activity in S finishes no later than the kth activity in 
S*.  Since |S| < |S*|, there is a (k + 1)st activity in S*, 
and its start time must be after f(k, S*) and therefore 
after f(k, S).  Thus after the greedy algorithm added 
its kth activity to S, the (k + 1)st activity from S* 
would still belong to U.  But the greedy algorithm 
ended after k activities, so U must have been empty.

We have reached a contradiction, so our assumption 
must have been wrong.  Thus the greedy algorithm 
must be optimal. ■
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and its start time must be after f(k, S*) and therefore 
after f(k, S).  Thus after the greedy algorithm added 
its kth activity to S, the (k + 1)st activity from S* 
would still belong to U.  But the greedy algorithm 
ended after k activities, so U must have been empty.

We have reached a contradiction, so our assumption 
must have been wrong.  Thus the greedy algorithm 
must be optimal. ■
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Lemma: If S is a schedule produced by the greedy
algorithm and S* is an optimal schedule, then for
any 1 ≤ i ≤ |S|, we have f(i, S) ≤ f(i, S*).

Proof: By induction.  For our base case, we prove
f(1, S) ≤ f(1, S*).  The first activity the greedy
algorithm selects must be an activity that ends no
later than any other activity, so f(1, S) ≤ f(1, S*).

For the inductive step, assume the claim holds for 
some i in 1 ≤ i < |S|.  Since f(i, S) ≤ f(i, S*), the ith 
activity in S finishes before the ith activity in S*.  
Since the (i+1)st activity in S* must start after the 
ith activity in S* ends, the (i + 1)st activity in S* 
must start after the ith activity in S ends.  Therefore, 
the (i+1)st activity in S* must be in U when the 
greedy algorithm selects its (i+1)st activity. Since 
the greedy algorithm selects the activity in U with 
the lowest end time, we have f(i + 1, S) ≤ f(i, S*), 
completing the induction. ■
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Summary

● Greedy algorithms aim for global 
optimality by iteratively making a locally 
optimal decision.

● To show correctness, typically need to 
show
● The algorithm produces a legal answer, and
● The algorithm produces an optimal answer.

● Often use “greedy stays ahead” to show 
optimality.



  

Next Time

● Minimum Spanning Trees
● Prim's Algorithm
● Exchange Arguments
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