

Greedy Algorithms
Part One

Announcements

● Problem Set Three due right now if using
a late period.

● Solutions will be released at end of
lecture.

Outline for Today

● Greedy Algorithms
● Can myopic, shortsighted decisions lead to

an optimal solution?

● Lilypad Jumping
● Helping our amphibious friends home!

● Activity Selection
● Planning your weekend!

Frog Jumping

0 1 32 4 5 6 7 8 9 10

Frog Jumping

0 1 32 4 5 6 7 8 9 10

Frog Jumping

0 1 32 4 5 6 7 8 9 10

Max jump size: 3

Frog Jumping

0 1 32 4 5 6 7 8 9 10

Max jump size: 3

Frog Jumping

● The frog begins at position 0 in the river.
Its goal is to get to position n.

● There are lilypads at various positions.
There is always a lilypad at position 0
and position n.

● The frog can jump at most r units at a
time.

● Goal: Find the path the frog should take
to minimize jumps, assuming a solution
exists.

Frog Jumping

0 1 32 4 5 6 7 8 9 10

Max jump size: 3

Frog Jumping

0 1 32 4 5 6 7 8 9 10

Max jump size: 3

As a Graph

0 1 32 4 5 6 7 8 9 10

Max jump size: 3

A Leap of Faith

0 1 32 4 5 6 7 8 9 10

Max jump size: 2 Algorithm: Always
jump as far forward
as possible.

Algorithm: Always
jump as far forward
as possible.

A Leap of Faith

0 1 32 4 5 6 7 8 9 10

Max jump size: 4 Algorithm: Always
jump as far forward
as possible.

Algorithm: Always
jump as far forward
as possible.

Formalizing the Algorithm

● Let J be an empty series of jumps.
● Let our current position x = 0.
● While x < n:

● Find the furthest lilypad l reachable from x
that is not after position n.

● Add a jump to J from x to l's location.
● Set x to l's location.

● Return J.

Greedy Algorithms

● A greedy algorithm is an algorithm that
constructs an object X one step at a time,
at each step choosing the locally best
option.

● In some cases, greedy algorithms
construct the globally best object by
repeatedly choosing the locally best
option.

Greedy Advantages

● Greedy algorithms have several
advantages over other algorithmic
approaches:
● Simplicity: Greedy algorithms are often

easier to describe and code up than other
algorithms.

● Efficiency: Greedy algorithms can often be
implemented more efficiently than other
algorithms.

Greedy Challenges

● Greedy algorithms have several
drawbacks:
● Hard to design: Once you have found the

right greedy approach, designing greedy
algorithms can be easy. However, finding
the right approach can be hard.

● Hard to verify: Showing a greedy algorithm
is correct often requires a nuanced
argument.

Back to Frog Jumping

● We now have a simple greedy algorithm for
routing the frog home: jump as far forward as
possible at each step.

● We need to prove two properties:

● The algorithm will find a legal series of
jumps (i.e. it doesn't “get stuck”).

● The algorithm finds an optimal series of
jumps (i.e. there isn't a better path
available).

Back to Frog Jumping

We now have a simple greedy algorithm for
routing the frog home: jump as far forward as
possible at each step.

We need to prove two properties:

● The algorithm will find a legal series of
jumps (i.e. it doesn't “get stuck”).

The algorithm finds an optimal series of
jumps (i.e. there isn't a better path
available).

0 1 32 4 5 6 7 8 9 10

0 1 32 4 5 6 7 8 9 10

0 1 32 4 5 6 7 8 9 10

0 1 32 4 5 6 7 8 9 10

0 1 32 4 5 6 7 8 9 10

0 1 32 4 5 6 7 8 9 10

If there is any path at all, each
lilypad must be at most r

distance ahead of the lilypad
before it.

If there is any path at all, each
lilypad must be at most r

distance ahead of the lilypad
before it.

Lemma 1: The greedy algorithm always finds a path
from the start lilypad to the destination lilypad.

Proof: By contradiction; suppose it did not. Let the
positions of the lilypads be x₁ < x₂ < … < xₘ. Since
our algorithm didn't find a path, it must have stopped
at some lilypad xₖ and not been able to jump to a
future lilypad. In particular, this means it could not
jump to lilypad k + 1, so xₖ + r < xₖ₊₁.

Since there is a path from lilypad 1 to the lilypad m,
there must be some jump in that path that starts
before lilypad k + 1 and ends at or after lilypad k + 1.
This jump can't be made from lilypad k, so it must
have been made from lilypad s for some s < k. But
then we have xₛ + r < xₖ + r < xₖ₊₁, so this jump is
illegal.

We have reached a contradiction, so our assumption
was wrong and our algorithm always finds a path. ■

Lemma 1: The greedy algorithm always finds a path
from the start lilypad to the destination lilypad.

Proof: By contradiction; suppose it did not. Let the
positions of the lilypads be x₁ < x₂ < … < xₘ. Since
our algorithm didn't find a path, it must have stopped
at some lilypad xₖ and not been able to jump to a
future lilypad. In particular, this means it could not
jump to lilypad k + 1, so xₖ + r < xₖ₊₁.

Since there is a path from lilypad 1 to the lilypad m,
there must be some jump in that path that starts
before lilypad k + 1 and ends at or after lilypad k + 1.
This jump can't be made from lilypad k, so it must
have been made from lilypad s for some s < k. But
then we have xₛ + r < xₖ + r < xₖ₊₁, so this jump is
illegal.

We have reached a contradiction, so our assumption
was wrong and our algorithm always finds a path. ■

Lemma 1: The greedy algorithm always finds a path
from the start lilypad to the destination lilypad.

Proof: By contradiction; suppose it did not. Let the
positions of the lilypads be x₁ < x₂ < … < xₘ. Since
our algorithm didn't find a path, it must have stopped
at some lilypad xₖ and not been able to jump to a
future lilypad. In particular, this means it could not
jump to lilypad k + 1, so xₖ + r < xₖ₊₁.

Since there is a path from lilypad 1 to the lilypad m,
there must be some jump in that path that starts
before lilypad k + 1 and ends at or after lilypad k + 1.
This jump can't be made from lilypad k, so it must
have been made from lilypad s for some s < k. But
then we have xₛ + r < xₖ + r < xₖ₊₁, so this jump is
illegal.

We have reached a contradiction, so our assumption
was wrong and our algorithm always finds a path. ■

Lemma 1: The greedy algorithm always finds a path
from the start lilypad to the destination lilypad.

Proof: By contradiction; suppose it did not. Let the
positions of the lilypads be x₁ < x₂ < … < xₘ. Since
our algorithm didn't find a path, it must have stopped
at some lilypad xₖ and not been able to jump to a
future lilypad. In particular, this means it could not
jump to lilypad k + 1, so xₖ + r < xₖ₊₁.

Since there is a path from lilypad 1 to the lilypad m,
there must be some jump in that path that starts
before lilypad k + 1 and ends at or after lilypad k + 1.
This jump can't be made from lilypad k, so it must
have been made from lilypad s for some s < k. But
then we have xₛ + r < xₖ + r < xₖ₊₁, so this jump is
illegal.

We have reached a contradiction, so our assumption
was wrong and our algorithm always finds a path. ■

Lemma 1: The greedy algorithm always finds a path
from the start lilypad to the destination lilypad.

Proof: By contradiction; suppose it did not. Let the
positions of the lilypads be x₁ < x₂ < … < xₘ. Since
our algorithm didn't find a path, it must have stopped
at some lilypad xₖ and not been able to jump to a
future lilypad. In particular, this means it could not
jump to lilypad k + 1, so xₖ + r < xₖ₊₁.

Since there is a path from lilypad 1 to the lilypad m,
there must be some jump in that path that starts
before lilypad k + 1 and ends at or after lilypad k + 1.
This jump can't be made from lilypad k, so it must
have been made from lilypad s for some s < k. But
then we have xₛ + r < xₖ + r < xₖ₊₁, so this jump is
illegal.

We have reached a contradiction, so our assumption
was wrong and our algorithm always finds a path. ■

Lemma 1: The greedy algorithm always finds a path
from the start lilypad to the destination lilypad.

Proof: By contradiction; suppose it did not. Let the
positions of the lilypads be x₁ < x₂ < … < xₘ. Since
our algorithm didn't find a path, it must have stopped
at some lilypad xₖ and not been able to jump to a
future lilypad. In particular, this means it could not
jump to lilypad k + 1, so xₖ + r < xₖ₊₁.

Since there is a path from lilypad 1 to the lilypad m,
there must be some jump in that path that starts
before lilypad k + 1 and ends at or after lilypad k + 1.
This jump can't be made from lilypad k, so it must
have been made from lilypad s for some s < k. But
then we have xₛ + r < xₖ + r < xₖ₊₁, so this jump is
illegal.

We have reached a contradiction, so our assumption
was wrong and our algorithm always finds a path. ■

Lemma 1: The greedy algorithm always finds a path
from the start lilypad to the destination lilypad.

Proof: By contradiction; suppose it did not. Let the
positions of the lilypads be x₁ < x₂ < … < xₘ. Since
our algorithm didn't find a path, it must have stopped
at some lilypad xₖ and not been able to jump to a
future lilypad. In particular, this means it could not
jump to lilypad k + 1, so xₖ + r < xₖ₊₁.

Since there is a path from lilypad 1 to the lilypad m,
there must be some jump in that path that starts
before lilypad k + 1 and ends at or after lilypad k + 1.
This jump can't be made from lilypad k, so it must
have been made from lilypad s for some s < k. But
then we have xₛ + r < xₖ + r < xₖ₊₁, so this jump is
illegal.

We have reached a contradiction, so our assumption
was wrong and our algorithm always finds a path. ■

Lemma 1: The greedy algorithm always finds a path
from the start lilypad to the destination lilypad.

Proof: By contradiction; suppose it did not. Let the
positions of the lilypads be x₁ < x₂ < … < xₘ. Since
our algorithm didn't find a path, it must have stopped
at some lilypad xₖ and not been able to jump to a
future lilypad. In particular, this means it could not
jump to lilypad k + 1, so xₖ + r < xₖ₊₁.

Since there is a path from lilypad 1 to the lilypad m,
there must be some jump in that path that starts
before lilypad k + 1 and ends at or after lilypad k + 1.
This jump can't be made from lilypad k, so it must
have been made from lilypad s for some s < k. But
then we have xₛ + r < xₖ + r < xₖ₊₁, so this jump is
illegal.

We have reached a contradiction, so our assumption
was wrong and our algorithm always finds a path. ■

Lemma 1: The greedy algorithm always finds a path
from the start lilypad to the destination lilypad.

Proof: By contradiction; suppose it did not. Let the
positions of the lilypads be x₁ < x₂ < … < xₘ. Since
our algorithm didn't find a path, it must have stopped
at some lilypad xₖ and not been able to jump to a
future lilypad. In particular, this means it could not
jump to lilypad k + 1, so xₖ + r < xₖ₊₁.

Since there is a path from lilypad 1 to the lilypad m,
there must be some jump in that path that starts
before lilypad k + 1 and ends at or after lilypad k + 1.
This jump can't be made from lilypad k, so it must
have been made from lilypad s for some s < k. But
then we have xₛ + r < xₖ + r < xₖ₊₁, so this jump is
illegal.

We have reached a contradiction, so our assumption
was wrong and our algorithm always finds a path. ■

Proving Optimality

● How can we prove this algorithm finds
an optimal series of jumps?

● Key Proof Idea: Consider an arbitrary
optimal series of jumps J*, then show
that our greedy algorithm produces a
series of jumps no worse than J*.
● We don't know what J* is or that our

algorithm is necessarily optimal. However,
we can still use the existence of J* in our
proof.

Some Notation

● Let J be the series of jumps produced by
our algorithm and let J* be an optimal
series of jumps.
● Note that there might be multiple different

optimal jump patterns.

● Let | J| and | J*| denote the number of
jumps in J and J*, respectively.

● Note that | J| ≥ | J*|. (Why?)

0 1 32 4 5 6 7 8 9 10

Max jump size: 3

0 1 32 4 5 6 7 8 9 10

Max jump size: 3

0 1 32 4 5 6 7 8 9 10

0 1 32 4 5 6 7 8 9 10

Max jump size: 3

0 1 32 4 5 6 7 8 9 10

The Key Lemma

● Let p(i, J) denote the frog's position after
taking the first i jumps from jump
series J.

● Lemma: For any i in 0 ≤ i ≤ | J*|, we
have p(i, J) ≥ p(i, J*).
● After taking i jumps according to the greedy

algorithm, the frog will be at least as far
forward as if she took i jumps according to
the optimal solution.

● We can formalize this using induction.

Lemma 2: For all 0 ≤ i ≤ | J*|, we have p(i, J) ≥ p(i, J*).

Proof: By induction. As a base case, if i = 0, then
p(0, J) = 0 ≥ 0 = p(0, J*) since the frog hasn't moved.

For the inductive step, assume that the claim holds
for some 0 ≤ i < | J*|. We will prove the claim holds
for i + 1 by considering two cases:

Case 1: p(i, J) ≥ p(i + 1, J*). Since each jump moves
forward, we have p(i + 1, J) ≥ p(i, J), so we have
p(i + 1, J) ≥ p(i + 1, J*).

Case 2: p(i, J) < p(i + 1, J*). Each jump is of size at
most r, so p(i + 1, J*) ≤ p(i, J*) + r. By our IH, we
know p(i, J) ≥ p(i, J*), so p(i + 1, J*) ≤ p(i, J) + r.
Therefore, the greedy algorithm can jump to
position at least p(i + 1, J*). Therefore,
p(i + 1, J) ≥ p(i + 1, J*).

So p(i + 1, J) ≥ p(i + 1, J*), completing the induction. ■

Lemma 2: For all 0 ≤ i ≤ | J*|, we have p(i, J) ≥ p(i, J*).

Proof: By induction. As a base case, if i = 0, then
p(0, J) = 0 ≥ 0 = p(0, J*) since the frog hasn't moved.

For the inductive step, assume that the claim holds
for some 0 ≤ i < | J*|. We will prove the claim holds
for i + 1 by considering two cases:

Case 1: p(i, J) ≥ p(i + 1, J*). Since each jump moves
forward, we have p(i + 1, J) ≥ p(i, J), so we have
p(i + 1, J) ≥ p(i + 1, J*).

Case 2: p(i, J) < p(i + 1, J*). Each jump is of size at
most r, so p(i + 1, J*) ≤ p(i, J*) + r. By our IH, we
know p(i, J) ≥ p(i, J*), so p(i + 1, J*) ≤ p(i, J) + r.
Therefore, the greedy algorithm can jump to
position at least p(i + 1, J*). Therefore,
p(i + 1, J) ≥ p(i + 1, J*).

So p(i + 1, J) ≥ p(i + 1, J*), completing the induction. ■

Lemma 2: For all 0 ≤ i ≤ | J*|, we have p(i, J) ≥ p(i, J*).

Proof: By induction. As a base case, if i = 0, then
p(0, J) = 0 ≥ 0 = p(0, J*) since the frog hasn't moved.

For the inductive step, assume that the claim holds
for some 0 ≤ i < | J*|. We will prove the claim holds
for i + 1 by considering two cases:

Case 1: p(i, J) ≥ p(i + 1, J*). Since each jump moves
forward, we have p(i + 1, J) ≥ p(i, J), so we have
p(i + 1, J) ≥ p(i + 1, J*).

Case 2: p(i, J) < p(i + 1, J*). Each jump is of size at
most r, so p(i + 1, J*) ≤ p(i, J*) + r. By our IH, we
know p(i, J) ≥ p(i, J*), so p(i + 1, J*) ≤ p(i, J) + r.
Therefore, the greedy algorithm can jump to
position at least p(i + 1, J*). Therefore,
p(i + 1, J) ≥ p(i + 1, J*).

So p(i + 1, J) ≥ p(i + 1, J*), completing the induction. ■

Lemma 2: For all 0 ≤ i ≤ | J*|, we have p(i, J) ≥ p(i, J*).

Proof: By induction. As a base case, if i = 0, then
p(0, J) = 0 ≥ 0 = p(0, J*) since the frog hasn't moved.

For the inductive step, assume that the claim holds
for some 0 ≤ i < | J*|. We will prove the claim holds
for i + 1 by considering two cases:

Case 1: p(i, J) ≥ p(i + 1, J*). Since each jump moves
forward, we have p(i + 1, J) ≥ p(i, J), so we have
p(i + 1, J) ≥ p(i + 1, J*).

Case 2: p(i, J) < p(i + 1, J*). Each jump is of size at
most r, so p(i + 1, J*) ≤ p(i, J*) + r. By our IH, we
know p(i, J) ≥ p(i, J*), so p(i + 1, J*) ≤ p(i, J) + r.
Therefore, the greedy algorithm can jump to
position at least p(i + 1, J*). Therefore,
p(i + 1, J) ≥ p(i + 1, J*).

So p(i + 1, J) ≥ p(i + 1, J*), completing the induction. ■

Lemma 2: For all 0 ≤ i ≤ | J*|, we have p(i, J) ≥ p(i, J*).

Proof: By induction. As a base case, if i = 0, then
p(0, J) = 0 ≥ 0 = p(0, J*) since the frog hasn't moved.

For the inductive step, assume that the claim holds
for some 0 ≤ i < | J*|. We will prove the claim holds
for i + 1 by considering two cases:

Case 1: p(i, J) ≥ p(i + 1, J*). Since each jump moves
forward, we have p(i + 1, J) ≥ p(i, J), so we have
p(i + 1, J) ≥ p(i + 1, J*).

Case 2: p(i, J) < p(i + 1, J*). Each jump is of size at
most r, so p(i + 1, J*) ≤ p(i, J*) + r. By our IH, we
know p(i, J) ≥ p(i, J*), so p(i + 1, J*) ≤ p(i, J) + r.
Therefore, the greedy algorithm can jump to
position at least p(i + 1, J*). Therefore,
p(i + 1, J) ≥ p(i + 1, J*).

So p(i + 1, J) ≥ p(i + 1, J*), completing the induction. ■

Lemma 2: For all 0 ≤ i ≤ | J*|, we have p(i, J) ≥ p(i, J*).

Proof: By induction. As a base case, if i = 0, then
p(0, J) = 0 ≥ 0 = p(0, J*) since the frog hasn't moved.

For the inductive step, assume that the claim holds
for some 0 ≤ i < | J*|. We will prove the claim holds
for i + 1 by considering two cases:

Case 1: p(i, J) ≥ p(i + 1, J*). Since each jump moves
forward, we have p(i + 1, J) ≥ p(i, J), so we have
p(i + 1, J) ≥ p(i + 1, J*).

Case 2: p(i, J) < p(i + 1, J*). Each jump is of size at
most r, so p(i + 1, J*) ≤ p(i, J*) + r. By our IH, we
know p(i, J) ≥ p(i, J*), so p(i + 1, J*) ≤ p(i, J) + r.
Therefore, the greedy algorithm can jump to
position at least p(i + 1, J*). Therefore,
p(i + 1, J) ≥ p(i + 1, J*).

So p(i + 1, J) ≥ p(i + 1, J*), completing the induction. ■

Lemma 2: For all 0 ≤ i ≤ | J*|, we have p(i, J) ≥ p(i, J*).

Proof: By induction. As a base case, if i = 0, then
p(0, J) = 0 ≥ 0 = p(0, J*) since the frog hasn't moved.

For the inductive step, assume that the claim holds
for some 0 ≤ i < | J*|. We will prove the claim holds
for i + 1 by considering two cases:

Case 1: p(i, J) ≥ p(i + 1, J*). Since each jump moves
forward, we have p(i + 1, J) ≥ p(i, J), so we have
p(i + 1, J) ≥ p(i + 1, J*).

Case 2: p(i, J) < p(i + 1, J*). Each jump is of size at
most r, so p(i + 1, J*) ≤ p(i, J*) + r. By our IH, we
know p(i, J) ≥ p(i, J*), so p(i + 1, J*) ≤ p(i, J) + r.
Therefore, the greedy algorithm can jump to
position at least p(i + 1, J*). Therefore,
p(i + 1, J) ≥ p(i + 1, J*).

So p(i + 1, J) ≥ p(i + 1, J*), completing the induction. ■

Lemma 2: For all 0 ≤ i ≤ | J*|, we have p(i, J) ≥ p(i, J*).

Proof: By induction. As a base case, if i = 0, then
p(0, J) = 0 ≥ 0 = p(0, J*) since the frog hasn't moved.

For the inductive step, assume that the claim holds
for some 0 ≤ i < | J*|. We will prove the claim holds
for i + 1 by considering two cases:

Case 1: p(i, J) ≥ p(i + 1, J*). Since each jump moves
forward, we have p(i + 1, J) ≥ p(i, J), so we have
p(i + 1, J) ≥ p(i + 1, J*).

Case 2: p(i, J) < p(i + 1, J*). Each jump is of size at
most r, so p(i + 1, J*) ≤ p(i, J*) + r. By our IH, we
know p(i, J) ≥ p(i, J*), so p(i + 1, J*) ≤ p(i, J) + r.
Therefore, the greedy algorithm can jump to
position at least p(i + 1, J*). Therefore,
p(i + 1, J) ≥ p(i + 1, J*).

So p(i + 1, J) ≥ p(i + 1, J*), completing the induction. ■

Lemma 2: For all 0 ≤ i ≤ | J*|, we have p(i, J) ≥ p(i, J*).

Proof: By induction. As a base case, if i = 0, then
p(0, J) = 0 ≥ 0 = p(0, J*) since the frog hasn't moved.

For the inductive step, assume that the claim holds
for some 0 ≤ i < | J*|. We will prove the claim holds
for i + 1 by considering two cases:

Case 1: p(i, J) ≥ p(i + 1, J*). Since each jump moves
forward, we have p(i + 1, J) ≥ p(i, J), so we have
p(i + 1, J) ≥ p(i + 1, J*).

Case 2: p(i, J) < p(i + 1, J*). Each jump is of size at
most r, so p(i + 1, J*) ≤ p(i, J*) + r. By our IH, we
know p(i, J) ≥ p(i, J*), so p(i + 1, J*) ≤ p(i, J) + r.
Therefore, the greedy algorithm can jump to
position at least p(i + 1, J*). Therefore,
p(i + 1, J) ≥ p(i + 1, J*).

So p(i + 1, J) ≥ p(i + 1, J*), completing the induction. ■

Lemma 2: For all 0 ≤ i ≤ | J*|, we have p(i, J) ≥ p(i, J*).

Proof: By induction. As a base case, if i = 0, then
p(0, J) = 0 ≥ 0 = p(0, J*) since the frog hasn't moved.

For the inductive step, assume that the claim holds
for some 0 ≤ i < | J*|. We will prove the claim holds
for i + 1 by considering two cases:

Case 1: p(i, J) ≥ p(i + 1, J*). Since each jump moves
forward, we have p(i + 1, J) ≥ p(i, J), so we have
p(i + 1, J) ≥ p(i + 1, J*).

Case 2: p(i, J) < p(i + 1, J*). Each jump is of size at
most r, so p(i + 1, J*) ≤ p(i, J*) + r. By our IH, we
know p(i, J) ≥ p(i, J*), so p(i + 1, J*) ≤ p(i, J) + r.
Therefore, the greedy algorithm can jump to
position at least p(i + 1, J*). Therefore,
p(i + 1, J) ≥ p(i + 1, J*).

So p(i + 1, J) ≥ p(i + 1, J*), completing the induction. ■

Lemma 2: For all 0 ≤ i ≤ | J*|, we have p(i, J) ≥ p(i, J*).

Proof: By induction. As a base case, if i = 0, then
p(0, J) = 0 ≥ 0 = p(0, J*) since the frog hasn't moved.

For the inductive step, assume that the claim holds
for some 0 ≤ i < | J*|. We will prove the claim holds
for i + 1 by considering two cases:

Case 1: p(i, J) ≥ p(i + 1, J*). Since each jump moves
forward, we have p(i + 1, J) ≥ p(i, J), so we have
p(i + 1, J) ≥ p(i + 1, J*).

Case 2: p(i, J) < p(i + 1, J*). Each jump is of size at
most r, so p(i + 1, J*) ≤ p(i, J*) + r. By our IH, we
know p(i, J) ≥ p(i, J*), so p(i + 1, J*) ≤ p(i, J) + r.
Therefore, the greedy algorithm can jump to
position at least p(i + 1, J*). Therefore,
p(i + 1, J) ≥ p(i + 1, J*).

So p(i + 1, J) ≥ p(i + 1, J*), completing the induction. ■

Theorem: Let J be the series of jumps produced by
the greedy algorithm and J* be any optimal series
of jumps. Then | J| = | J*|.

Proof: Since J* is an optimal solution, we know that
| J*| ≤ | J|. We will prove | J*| ≥ | J|.

Suppose for contradiction that | J*| < | J|. Let
k = | J*|. By Lemma 2, we have p(k, J*) ≤ p(k, J).
Because the frog arrives at position n after k jumps
along series J*, we know n ≤ p(k, J). Because the
greedy algorithm never jumps past position n, we
know p(k, J) ≤ n, so n = p(k, J). Since | J*| < | J|,
the greedy algorithm must have taken another
jump after its kth jump, contradicting that the
algorithm stops after reaching position n.

We have reached a contradiction, so our
assumption was wrong and | J*| = | J|, so the
greedy algorithm produces an optimal solution. ■

Theorem: Let J be the series of jumps produced by
the greedy algorithm and J* be any optimal series
of jumps. Then | J| = | J*|.

Proof: Since J* is an optimal solution, we know that
| J*| ≤ | J|. We will prove | J*| ≥ | J|.

Suppose for contradiction that | J*| < | J|. Let
k = | J*|. By Lemma 2, we have p(k, J*) ≤ p(k, J).
Because the frog arrives at position n after k jumps
along series J*, we know n ≤ p(k, J). Because the
greedy algorithm never jumps past position n, we
know p(k, J) ≤ n, so n = p(k, J). Since | J*| < | J|,
the greedy algorithm must have taken another
jump after its kth jump, contradicting that the
algorithm stops after reaching position n.

We have reached a contradiction, so our
assumption was wrong and | J*| = | J|, so the
greedy algorithm produces an optimal solution. ■

Theorem: Let J be the series of jumps produced by
the greedy algorithm and J* be any optimal series
of jumps. Then | J| = | J*|.

Proof: Since J* is an optimal solution, we know that
| J*| ≤ | J|. We will prove | J*| ≥ | J|.

Suppose for contradiction that | J*| < | J|. Let
k = | J*|. By Lemma 2, we have p(k, J*) ≤ p(k, J).
Because the frog arrives at position n after k jumps
along series J*, we know n ≤ p(k, J). Because the
greedy algorithm never jumps past position n, we
know p(k, J) ≤ n, so n = p(k, J). Since | J*| < | J|,
the greedy algorithm must have taken another
jump after its kth jump, contradicting that the
algorithm stops after reaching position n.

We have reached a contradiction, so our
assumption was wrong and | J*| = | J|, so the
greedy algorithm produces an optimal solution. ■

Theorem: Let J be the series of jumps produced by
the greedy algorithm and J* be any optimal series
of jumps. Then | J| = | J*|.

Proof: Since J* is an optimal solution, we know that
| J*| ≤ | J|. We will prove | J*| ≥ | J|.

Suppose for contradiction that | J*| < | J|. Let
k = | J*|. By Lemma 2, we have p(k, J*) ≤ p(k, J).
Because the frog arrives at position n after k jumps
along series J*, we know n ≤ p(k, J). Because the
greedy algorithm never jumps past position n, we
know p(k, J) ≤ n, so n = p(k, J). Since | J*| < | J|,
the greedy algorithm must have taken another
jump after its kth jump, contradicting that the
algorithm stops after reaching position n.

We have reached a contradiction, so our
assumption was wrong and | J*| = | J|, so the
greedy algorithm produces an optimal solution. ■

Theorem: Let J be the series of jumps produced by
the greedy algorithm and J* be any optimal series
of jumps. Then | J| = | J*|.

Proof: Since J* is an optimal solution, we know that
| J*| ≤ | J|. We will prove | J*| ≥ | J|.

Suppose for contradiction that | J*| < | J|. Let
k = | J*|. By Lemma 2, we have p(k, J*) ≤ p(k, J).
Because the frog arrives at position n after k jumps
along series J*, we know n ≤ p(k, J). Because the
greedy algorithm never jumps past position n, we
know p(k, J) ≤ n, so n = p(k, J). Since | J*| < | J|,
the greedy algorithm must have taken another
jump after its kth jump, contradicting that the
algorithm stops after reaching position n.

We have reached a contradiction, so our
assumption was wrong and | J*| = | J|, so the
greedy algorithm produces an optimal solution. ■

Theorem: Let J be the series of jumps produced by
the greedy algorithm and J* be any optimal series
of jumps. Then | J| = | J*|.

Proof: Since J* is an optimal solution, we know that
| J*| ≤ | J|. We will prove | J*| ≥ | J|.

Suppose for contradiction that | J*| < | J|. Let
k = | J*|. By Lemma 2, we have p(k, J*) ≤ p(k, J).
Because the frog arrives at position n after k jumps
along series J*, we know n ≤ p(k, J). Because the
greedy algorithm never jumps past position n, we
know p(k, J) ≤ n, so n = p(k, J). Since | J*| < | J|,
the greedy algorithm must have taken another
jump after its kth jump, contradicting that the
algorithm stops after reaching position n.

We have reached a contradiction, so our
assumption was wrong and | J*| = | J|, so the
greedy algorithm produces an optimal solution. ■

Theorem: Let J be the series of jumps produced by
the greedy algorithm and J* be any optimal series
of jumps. Then | J| = | J*|.

Proof: Since J* is an optimal solution, we know that
| J*| ≤ | J|. We will prove | J*| ≥ | J|.

Suppose for contradiction that | J*| < | J|. Let
k = | J*|. By Lemma 2, we have p(k, J*) ≤ p(k, J).
Because the frog arrives at position n after k jumps
along series J*, we know n ≤ p(k, J). Because the
greedy algorithm never jumps past position n, we
know p(k, J) ≤ n, so n = p(k, J). Since | J*| < | J|,
the greedy algorithm must have taken another
jump after its kth jump, contradicting that the
algorithm stops after reaching position n.

We have reached a contradiction, so our
assumption was wrong and | J*| = | J|, so the
greedy algorithm produces an optimal solution. ■

Theorem: Let J be the series of jumps produced by
the greedy algorithm and J* be any optimal series
of jumps. Then | J| = | J*|.

Proof: Since J* is an optimal solution, we know that
| J*| ≤ | J|. We will prove | J*| ≥ | J|.

Suppose for contradiction that | J*| < | J|. Let
k = | J*|. By Lemma 2, we have p(k, J*) ≤ p(k, J).
Because the frog arrives at position n after k jumps
along series J*, we know n ≤ p(k, J). Because the
greedy algorithm never jumps past position n, we
know p(k, J) ≤ n, so n = p(k, J). Since | J*| < | J|,
the greedy algorithm must have taken another
jump after its kth jump, contradicting that the
algorithm stops after reaching position n.

We have reached a contradiction, so our
assumption was wrong and | J*| = | J|, so the
greedy algorithm produces an optimal solution. ■

Greedy Stays Ahead

● The style of proof we just wrote is an example
of a greedy stays ahead proof.

● The general proof structure is the following:
● Find a series of measurements M₁, M₂, …, Mₖ

you can apply to any solution.
● Show that the greedy algorithm's measures are

at least as good as any solution's measures.
(This usually involves induction.)

● Prove that because the greedy solution's
measures are at least as good as any solution's
measures, the greedy solution must be optimal.
(This is usually a proof by contradiction.)

Another Problem:
Activity Scheduling

Activity Scheduling
3 4 5 6 7 8 9 10

Night Snorkeling

11 12 1

Llama Hugging

Gardening

Skydiving

Navel Gazing

Fancy Dinner

Salsa Dancing

Bar Crawling

Bonfire

Tree Climbing

Jazz Concert

Evening Hike

Activity Scheduling
3 4 5 6 7 8 9 10

Night Snorkeling

11 12 1

Llama Hugging

Gardening

Skydiving

Navel Gazing

Fancy Dinner

Salsa Dancing

Bar Crawling

Bonfire

Tree Climbing

Jazz Concert

Evening Hike

Activity Scheduling
3 4 5 6 7 8 9 10

Night Snorkeling

11 12 1

Llama Hugging

Gardening

Skydiving

Navel Gazing

Fancy Dinner

Salsa Dancing

Bar Crawling

Bonfire

Tree Climbing

Jazz Concert

Evening Hike

Activity Scheduling

● You are given a list of activities (s₁, e₁),
(s₂ , e₂), …, (sₙ, eₙ) denoted by their start
and end times.

● All activities are equally attractive to
you, and you want to maximize the
number of activities you do.

● Goal: Choose the largest number of
non-overlapping activities possible.

Thinking Greedily

● If we want to try solving this using a
greedy approach, we should think about
different ways of picking activities
greedily.

● A few options:
● Be Impulsive: Choose activities in ascending

order of start times.
● Avoid Commitment: Choose activities in

ascending order of length.
● Finish Fast: Choose activities in ascending

order of end times.

Be Impulsive
3 4 5 6 7 8 9 10

Night Snorkeling

11 12 1

Llama Hugging

Gardening

Skydiving

Navel Gazing

Fancy Dinner

Salsa Dancing

Bar Crawling

Bonfire

Tree Climbing

Jazz Concert

Evening Hike

Be Impulsive
3 4 5 6 7 8 9 10

Night Snorkeling

11 12 1

Llama Hugging

Gardening

Skydiving

Navel Gazing

Fancy Dinner

Salsa Dancing

Bar Crawling

Bonfire

Tree Climbing

Jazz Concert

Evening Hike

Be Impulsive
3 4 5 6 7 8 9 10

Night Snorkeling

11 12 1

Llama Hugging

Gardening

Skydiving

Navel Gazing

Fancy Dinner

Salsa Dancing

Bar Crawling

Bonfire

Tree Climbing

Jazz Concert

Evening Hike

Be Impulsive
3 4 5 6 7 8 9 10

Night Snorkeling

11 12 1

Llama Hugging

Navel Gazing

Fancy Dinner

Salsa Dancing

Bar Crawling

Bonfire

Jazz Concert

Be Impulsive
3 4 5 6 7 8 9 10

Night Snorkeling

11 12 1

Llama Hugging

Navel Gazing

Fancy Dinner

Salsa Dancing

Bar Crawling

Bonfire

Jazz Concert

Be Impulsive
3 4 5 6 7 8 9 10

Night Snorkeling

11 12 1

Llama Hugging

Navel Gazing

Bonfire

Jazz Concert

Be Impulsive
3 4 5 6 7 8 9 10

Night Snorkeling

11 12 1

Llama Hugging

Navel Gazing

Bonfire

Jazz Concert

Be Impulsive
3 4 5 6 7 8 9 10 11 12 1

Llama Hugging

Navel Gazing

Bonfire

Impulse Control
3 4 5 6 7 8 9 10

Night Snorkeling

11 12 1

Llama Hugging Salsa Dancing

Day Trip

Impulse Control
3 4 5 6 7 8 9 10

Night Snorkeling

11 12 1

Llama Hugging Salsa Dancing

Day Trip

Impulse Control
3 4 5 6 7 8 9 10

Night Snorkeling

11 12 1

Llama Hugging Salsa Dancing

Day Trip

Impulse Control
3 4 5 6 7 8 9 10 11 12 1

Day Trip

Impulse Control
3 4 5 6 7 8 9 10

Night Snorkeling

11 12 1

Llama Hugging Salsa Dancing

Day Trip

Impulse Control
3 4 5 6 7 8 9 10

Night Snorkeling

11 12 1

Llama Hugging Salsa Dancing

Thinking Greedily

● If we want to try solving this using a
greedy approach, we should think about
different ways of picking activities
greedily.

● A few options:
● Be Impulsive: Choose activities in ascending

order of start times.
● Avoid Commitment: Choose activities in

ascending order of length.
● Finish Fast: Choose activities in ascending

order of end times.

Thinking Greedily

● If we want to try solving this using a
greedy approach, we should think about
different ways of picking activities
greedily.

● A few options:
● Be Impulsive: Choose activities in ascending

order of start times.
● Avoid Commitment: Choose activities in

ascending order of length.
● Finish Fast: Choose activities in ascending

order of end times.

Avoid Commitment
3 4 5 6 7 8 9 10

Night Snorkeling

11 12 1

Llama Hugging

Gardening

Skydiving

Navel Gazing

Fancy Dinner

Salsa Dancing

Bar Crawling

Bonfire

Tree Climbing

Jazz Concert

Evening Hike

Avoid Commitment
3 4 5 6 7 8 9 10

Night Snorkeling

11 12 1

Llama Hugging

Gardening

Skydiving

Navel Gazing

Fancy Dinner

Salsa Dancing

Bar Crawling

Bonfire

Tree Climbing

Jazz Concert

Evening Hike

Avoid Commitment
3 4 5 6 7 8 9 10

Night Snorkeling

11 12 1

Llama Hugging

Gardening

Skydiving

Navel Gazing

Fancy Dinner

Salsa Dancing

Bar Crawling

Bonfire

Tree Climbing

Jazz Concert

Evening Hike

Avoid Commitment
3 4 5 6 7 8 9 10 11 12 1

Llama Hugging

Gardening

Skydiving

Fancy Dinner

Tree Climbing

Avoid Commitment
3 4 5 6 7 8 9 10 11 12 1

Llama Hugging

Gardening

Skydiving

Fancy Dinner

Tree Climbing

Avoid Commitment
3 4 5 6 7 8 9 10 11 12 1

Gardening Fancy Dinner

Thinking Greedily

● If we want to try solving this using a
greedy approach, we should think about
different ways of picking activities
greedily.

● A few options:
● Be Impulsive: Choose activities in ascending

order of start times.
● Avoid Commitment: Choose activities in

ascending order of length.
● Finish Fast: Choose activities in ascending

order of end times.

Thinking Greedily

● If we want to try solving this using a
greedy approach, we should think about
different ways of picking activities
greedily.

● A few options:
● Be Impulsive: Choose activities in ascending

order of start times.
● Avoid Commitment: Choose activities in

ascending order of length.
● Finish Fast: Choose activities in ascending

order of end times.

Finish Fast
3 4 5 6 7 8 9 10

Night Snorkeling

11 12 1

Llama Hugging

Gardening

Skydiving

Navel Gazing

Fancy Dinner

Salsa Dancing

Bar Crawling

Bonfire

Tree Climbing

Jazz Concert

Evening Hike

Finish Fast
3 4 5 6 7 8 9 10

Night Snorkeling

11 12 1

Llama Hugging

Gardening

Skydiving

Navel Gazing

Fancy Dinner

Salsa Dancing

Bar Crawling

Bonfire

Tree Climbing

Jazz Concert

Evening Hike

Finish Fast
3 4 5 6 7 8 9 10

Night Snorkeling

11 12 1

Llama Hugging

Gardening

Skydiving

Navel Gazing

Fancy Dinner

Salsa Dancing

Bar Crawling

Bonfire

Tree Climbing

Jazz Concert

Evening Hike

Finish Fast
3 4 5 6 7 8 9 10

Night Snorkeling

11 12 1

Gardening

Navel Gazing

Fancy Dinner

Salsa Dancing

Bar Crawling

Bonfire

Jazz Concert

Finish Fast
3 4 5 6 7 8 9 10

Night Snorkeling

11 12 1

Gardening

Navel Gazing

Fancy Dinner

Salsa Dancing

Bar Crawling

Bonfire

Jazz Concert

Finish Fast
3 4 5 6 7 8 9 10

Night Snorkeling

11 12 1

Gardening

Navel Gazing

Bonfire

Jazz Concert

Finish Fast
3 4 5 6 7 8 9 10

Night Snorkeling

11 12 1

Gardening

Navel Gazing

Bonfire

Jazz Concert

Finish Fast
3 4 5 6 7 8 9 10 11 12 1

Gardening

Navel Gazing

Bonfire

Finish Fast
3 4 5 6 7 8 9 10

Night Snorkeling

11 12 1

Llama Hugging Salsa Dancing

Day Trip

Finish Fast
3 4 5 6 7 8 9 10

Night Snorkeling

11 12 1

Llama Hugging Salsa Dancing

Day Trip

Finish Fast
3 4 5 6 7 8 9 10

Night Snorkeling

11 12 1

Llama Hugging Salsa Dancing

Day Trip

Finish Fast
3 4 5 6 7 8 9 10

Night Snorkeling

11 12 1

Llama Hugging Salsa Dancing

Finish Fast
3 4 5 6 7 8 9 10

Night Snorkeling

11 12 1

Llama Hugging Salsa Dancing

Finish Fast
3 4 5 6 7 8 9 10

Night Snorkeling

11 12 1

Llama Hugging Salsa Dancing

Thinking Greedily

● Of the three options we saw, only the third
one seems to work:

Choose activities in ascending
order of finishing times.

● More formally:
● Sort the activities into ascending order by

finishing time and add them to a set U.
● While U is not empty:

– Choose any activity with the earliest finishing time.
– Add that activity to S.
– Remove from U all activities that overlap S.

Proving Legality

● Lemma: The schedule produced this way
is a legal schedule.

● Proof Idea: Use induction to show that
at each step, the set U only contains
activities that don't conflict with
activities picked from S.

Proving Optimality

● To prove that the schedule S produced by
the algorithm is optimal, we will use
another “greedy stays ahead” argument:
● Find some measures by which the algorithm

is at least as good as any other solution.
● Show that those measures mean that the

algorithm must produce an optimal solution.

Comparing Solutions
3 4 5 6 7 8 9 10

Cupcake Baking

11 12 1

Muffin Collecting

Gallivanting

Pondering

Wandering

Fancy Dinner

Basket Weaving

Meandering

Clubbing

Movies

Comparing Solutions
3 4 5 6 7 8 9 10

Cupcake Baking

11 12 1

Muffin Collecting

Gallivanting

Pondering

Wandering

Fancy Dinner

Basket Weaving

Meandering

Clubbing

Movies

Comparing Solutions
3 4 5 6 7 8 9 10

Cupcake Baking

11 12 1

Muffin Collecting

Gallivanting

Pondering

Wandering

Fancy Dinner

Basket Weaving

Meandering

Clubbing

Movies

Comparing Solutions
3 4 5 6 7 8 9 10

Cupcake Baking

11 12 1

Muffin Collecting

Gallivanting

Pondering

Wandering

Fancy Dinner

Basket Weaving

Meandering

Clubbing

Movies

Comparing Solutions
3 4 5 6 7 8 9 10

Cupcake Baking

11 12 1

Muffin Collecting

Gallivanting

Pondering

Wandering

Fancy Dinner

Basket Weaving

Meandering

Clubbing

Movies

Comparing Solutions
3 4 5 6 7 8 9 10

Cupcake Baking

11 12 1

Muffin Collecting

Gallivanting

Pondering

Wandering

Fancy Dinner

Basket Weaving

Meandering

Clubbing

Movies

Comparing Solutions
3 4 5 6 7 8 9 10

Cupcake Baking

11 12 1

Muffin Collecting

Gallivanting

Pondering

Wandering

Fancy Dinner

Basket Weaving

Meandering

Clubbing

Movies

Greedy Stays Ahead

● Observation: The kth activity chosen by
the greedy algorithm finishes no later
than the kth activity chosen in any legal
schedule.

● We need to
● Prove that this is actually true, and
● Show that, if it's true, the algorithm is

optimal.

● We'll do this out of order.

Some Notation

● Let S be the schedule our algorithm
produces and S* be any optimal
schedule.

● Note that |S| ≤ |S*|.
● Let f(i, S) denote the time that the ith

activity finishes in schedule S.
● Lemma: For any 1 ≤ i ≤ |S|, we have

f(i, S) ≤ f(i, S*).

Theorem: The greedy algorithm for activity selection
produces an optimal schedule.

Proof: Let S be the schedule the algorithm produced
and S* be any optimal schedule. Since S* is
optimal, we have |S| ≤ |S*|. We will prove |S| ≥ |S*|.

Assume for contradiction that |S| < |S*|. Let k = |S|.
By our lemma, we know f(k, S) ≤ f(k, S*), so the kth
activity in S finishes no later than the kth activity in
S*. Since |S| < |S*|, there is a (k + 1)st activity in S*,
and its start time must be after f(k, S*) and therefore
after f(k, S). Thus after the greedy algorithm added
its kth activity to S, the (k + 1)st activity from S*
would still belong to U. But the greedy algorithm
ended after k activities, so U must have been empty.

We have reached a contradiction, so our assumption
must have been wrong. Thus the greedy algorithm
must be optimal. ■

Theorem: The greedy algorithm for activity selection
produces an optimal schedule.

Proof: Let S be the schedule the algorithm produced
and S* be any optimal schedule. Since S* is
optimal, we have |S| ≤ |S*|. We will prove |S| ≥ |S*|.

Assume for contradiction that |S| < |S*|. Let k = |S|.
By our lemma, we know f(k, S) ≤ f(k, S*), so the kth
activity in S finishes no later than the kth activity in
S*. Since |S| < |S*|, there is a (k + 1)st activity in S*,
and its start time must be after f(k, S*) and therefore
after f(k, S). Thus after the greedy algorithm added
its kth activity to S, the (k + 1)st activity from S*
would still belong to U. But the greedy algorithm
ended after k activities, so U must have been empty.

We have reached a contradiction, so our assumption
must have been wrong. Thus the greedy algorithm
must be optimal. ■

Theorem: The greedy algorithm for activity selection
produces an optimal schedule.

Proof: Let S be the schedule the algorithm produced
and S* be any optimal schedule. Since S* is
optimal, we have |S| ≤ |S*|. We will prove |S| ≥ |S*|.

Assume for contradiction that |S| < |S*|. Let k = |S|.
By our lemma, we know f(k, S) ≤ f(k, S*), so the kth
activity in S finishes no later than the kth activity in
S*. Since |S| < |S*|, there is a (k + 1)st activity in S*,
and its start time must be after f(k, S*) and therefore
after f(k, S). Thus after the greedy algorithm added
its kth activity to S, the (k + 1)st activity from S*
would still belong to U. But the greedy algorithm
ended after k activities, so U must have been empty.

We have reached a contradiction, so our assumption
must have been wrong. Thus the greedy algorithm
must be optimal. ■

Theorem: The greedy algorithm for activity selection
produces an optimal schedule.

Proof: Let S be the schedule the algorithm produced
and S* be any optimal schedule. Since S* is
optimal, we have |S| ≤ |S*|. We will prove |S| ≥ |S*|.

Assume for contradiction that |S| < |S*|. Let k = |S|.
By our lemma, we know f(k, S) ≤ f(k, S*), so the kth
activity in S finishes no later than the kth activity in
S*. Since |S| < |S*|, there is a (k + 1)st activity in S*,
and its start time must be after f(k, S*) and therefore
after f(k, S). Thus after the greedy algorithm added
its kth activity to S, the (k + 1)st activity from S*
would still belong to U. But the greedy algorithm
ended after k activities, so U must have been empty.

We have reached a contradiction, so our assumption
must have been wrong. Thus the greedy algorithm
must be optimal. ■

Theorem: The greedy algorithm for activity selection
produces an optimal schedule.

Proof: Let S be the schedule the algorithm produced
and S* be any optimal schedule. Since S* is
optimal, we have |S| ≤ |S*|. We will prove |S| ≥ |S*|.

Assume for contradiction that |S| < |S*|. Let k = |S|.
By our lemma, we know f(k, S) ≤ f(k, S*), so the kth
activity in S finishes no later than the kth activity in
S*. Since |S| < |S*|, there is a (k + 1)st activity in S*,
and its start time must be after f(k, S*) and therefore
after f(k, S). Thus after the greedy algorithm added
its kth activity to S, the (k + 1)st activity from S*
would still belong to U. But the greedy algorithm
ended after k activities, so U must have been empty.

We have reached a contradiction, so our assumption
must have been wrong. Thus the greedy algorithm
must be optimal. ■

Theorem: The greedy algorithm for activity selection
produces an optimal schedule.

Proof: Let S be the schedule the algorithm produced
and S* be any optimal schedule. Since S* is
optimal, we have |S| ≤ |S*|. We will prove |S| ≥ |S*|.

Assume for contradiction that |S| < |S*|. Let k = |S|.
By our lemma, we know f(k, S) ≤ f(k, S*), so the kth
activity in S finishes no later than the kth activity in
S*. Since |S| < |S*|, there is a (k + 1)st activity in S*,
and its start time must be after f(k, S*) and therefore
after f(k, S). Thus after the greedy algorithm added
its kth activity to S, the (k + 1)st activity from S*
would still belong to U. But the greedy algorithm
ended after k activities, so U must have been empty.

We have reached a contradiction, so our assumption
must have been wrong. Thus the greedy algorithm
must be optimal. ■

Theorem: The greedy algorithm for activity selection
produces an optimal schedule.

Proof: Let S be the schedule the algorithm produced
and S* be any optimal schedule. Since S* is
optimal, we have |S| ≤ |S*|. We will prove |S| ≥ |S*|.

Assume for contradiction that |S| < |S*|. Let k = |S|.
By our lemma, we know f(k, S) ≤ f(k, S*), so the kth
activity in S finishes no later than the kth activity in
S*. Since |S| < |S*|, there is a (k + 1)st activity in S*,
and its start time must be after f(k, S*) and therefore
after f(k, S). Thus after the greedy algorithm added
its kth activity to S, the (k + 1)st activity from S*
would still belong to U. But the greedy algorithm
ended after k activities, so U must have been empty.

We have reached a contradiction, so our assumption
must have been wrong. Thus the greedy algorithm
must be optimal. ■

Theorem: The greedy algorithm for activity selection
produces an optimal schedule.

Proof: Let S be the schedule the algorithm produced
and S* be any optimal schedule. Since S* is
optimal, we have |S| ≤ |S*|. We will prove |S| ≥ |S*|.

Assume for contradiction that |S| < |S*|. Let k = |S|.
By our lemma, we know f(k, S) ≤ f(k, S*), so the kth
activity in S finishes no later than the kth activity in
S*. Since |S| < |S*|, there is a (k + 1)st activity in S*,
and its start time must be after f(k, S*) and therefore
after f(k, S). Thus after the greedy algorithm added
its kth activity to S, the (k + 1)st activity from S*
would still belong to U. But the greedy algorithm
ended after k activities, so U must have been empty.

We have reached a contradiction, so our assumption
must have been wrong. Thus the greedy algorithm
must be optimal. ■

Theorem: The greedy algorithm for activity selection
produces an optimal schedule.

Proof: Let S be the schedule the algorithm produced
and S* be any optimal schedule. Since S* is
optimal, we have |S| ≤ |S*|. We will prove |S| ≥ |S*|.

Assume for contradiction that |S| < |S*|. Let k = |S|.
By our lemma, we know f(k, S) ≤ f(k, S*), so the kth
activity in S finishes no later than the kth activity in
S*. Since |S| < |S*|, there is a (k + 1)st activity in S*,
and its start time must be after f(k, S*) and therefore
after f(k, S). Thus after the greedy algorithm added
its kth activity to S, the (k + 1)st activity from S*
would still belong to U. But the greedy algorithm
ended after k activities, so U must have been empty.

We have reached a contradiction, so our assumption
must have been wrong. Thus the greedy algorithm
must be optimal. ■

Theorem: The greedy algorithm for activity selection
produces an optimal schedule.

Proof: Let S be the schedule the algorithm produced
and S* be any optimal schedule. Since S* is
optimal, we have |S| ≤ |S*|. We will prove |S| ≥ |S*|.

Assume for contradiction that |S| < |S*|. Let k = |S|.
By our lemma, we know f(k, S) ≤ f(k, S*), so the kth
activity in S finishes no later than the kth activity in
S*. Since |S| < |S*|, there is a (k + 1)st activity in S*,
and its start time must be after f(k, S*) and therefore
after f(k, S). Thus after the greedy algorithm added
its kth activity to S, the (k + 1)st activity from S*
would still belong to U. But the greedy algorithm
ended after k activities, so U must have been empty.

We have reached a contradiction, so our assumption
must have been wrong. Thus the greedy algorithm
must be optimal. ■

Lemma: If S is a schedule produced by the greedy
algorithm and S* is an optimal schedule, then for
any 1 ≤ i ≤ |S|, we have f(i, S) ≤ f(i, S*).

Proof: By induction. For our base case, we prove
f(1, S) ≤ f(1, S*). The first activity the greedy
algorithm selects must be an activity that ends no
later than any other activity, so f(1, S) ≤ f(1, S*).

For the inductive step, assume the claim holds for
some i in 1 ≤ i < |S|. Since f(i, S) ≤ f(i, S*), the ith
activity in S finishes before the ith activity in S*.
Since the (i+1)st activity in S* must start after the
ith activity in S* ends, the (i + 1)st activity in S*
must start after the ith activity in S ends. Therefore,
the (i+1)st activity in S* must be in U when the
greedy algorithm selects its (i+1)st activity. Since
the greedy algorithm selects the activity in U with
the lowest end time, we have f(i + 1, S) ≤ f(i, S*),
completing the induction. ■

Lemma: If S is a schedule produced by the greedy
algorithm and S* is an optimal schedule, then for
any 1 ≤ i ≤ |S|, we have f(i, S) ≤ f(i, S*).

Proof: By induction. For our base case, we prove
f(1, S) ≤ f(1, S*). The first activity the greedy
algorithm selects must be an activity that ends no
later than any other activity, so f(1, S) ≤ f(1, S*).

For the inductive step, assume the claim holds for
some i in 1 ≤ i < |S|. Since f(i, S) ≤ f(i, S*), the ith
activity in S finishes before the ith activity in S*.
Since the (i+1)st activity in S* must start after the
ith activity in S* ends, the (i + 1)st activity in S*
must start after the ith activity in S ends. Therefore,
the (i+1)st activity in S* must be in U when the
greedy algorithm selects its (i+1)st activity. Since
the greedy algorithm selects the activity in U with
the lowest end time, we have f(i + 1, S) ≤ f(i, S*),
completing the induction. ■

Lemma: If S is a schedule produced by the greedy
algorithm and S* is an optimal schedule, then for
any 1 ≤ i ≤ |S|, we have f(i, S) ≤ f(i, S*).

Proof: By induction. For our base case, we prove
f(1, S) ≤ f(1, S*). The first activity the greedy
algorithm selects must be an activity that ends no
later than any other activity, so f(1, S) ≤ f(1, S*).

For the inductive step, assume the claim holds for
some i in 1 ≤ i < |S|. Since f(i, S) ≤ f(i, S*), the ith
activity in S finishes before the ith activity in S*.
Since the (i+1)st activity in S* must start after the
ith activity in S* ends, the (i + 1)st activity in S*
must start after the ith activity in S ends. Therefore,
the (i+1)st activity in S* must be in U when the
greedy algorithm selects its (i+1)st activity. Since
the greedy algorithm selects the activity in U with
the lowest end time, we have f(i + 1, S) ≤ f(i, S*),
completing the induction. ■

Lemma: If S is a schedule produced by the greedy
algorithm and S* is an optimal schedule, then for
any 1 ≤ i ≤ |S|, we have f(i, S) ≤ f(i, S*).

Proof: By induction. For our base case, we prove
f(1, S) ≤ f(1, S*). The first activity the greedy
algorithm selects must be an activity that ends no
later than any other activity, so f(1, S) ≤ f(1, S*).

For the inductive step, assume the claim holds for
some i in 1 ≤ i < |S|. Since f(i, S) ≤ f(i, S*), the ith
activity in S finishes before the ith activity in S*.
Since the (i+1)st activity in S* must start after the
ith activity in S* ends, the (i + 1)st activity in S*
must start after the ith activity in S ends. Therefore,
the (i+1)st activity in S* must be in U when the
greedy algorithm selects its (i+1)st activity. Since
the greedy algorithm selects the activity in U with
the lowest end time, we have f(i + 1, S) ≤ f(i, S*),
completing the induction. ■

Lemma: If S is a schedule produced by the greedy
algorithm and S* is an optimal schedule, then for
any 1 ≤ i ≤ |S|, we have f(i, S) ≤ f(i, S*).

Proof: By induction. For our base case, we prove
f(1, S) ≤ f(1, S*). The first activity the greedy
algorithm selects must be an activity that ends no
later than any other activity, so f(1, S) ≤ f(1, S*).

For the inductive step, assume the claim holds for
some i in 1 ≤ i < |S|. Since f(i, S) ≤ f(i, S*), the ith
activity in S finishes before the ith activity in S*.
Since the (i+1)st activity in S* must start after the
ith activity in S* ends, the (i + 1)st activity in S*
must start after the ith activity in S ends. Therefore,
the (i+1)st activity in S* must be in U when the
greedy algorithm selects its (i+1)st activity. Since
the greedy algorithm selects the activity in U with
the lowest end time, we have f(i + 1, S) ≤ f(i, S*),
completing the induction. ■

Lemma: If S is a schedule produced by the greedy
algorithm and S* is an optimal schedule, then for
any 1 ≤ i ≤ |S|, we have f(i, S) ≤ f(i, S*).

Proof: By induction. For our base case, we prove
f(1, S) ≤ f(1, S*). The first activity the greedy
algorithm selects must be an activity that ends no
later than any other activity, so f(1, S) ≤ f(1, S*).

For the inductive step, assume the claim holds for
some i in 1 ≤ i < |S|. Since f(i, S) ≤ f(i, S*), the ith
activity in S finishes before the ith activity in S*.
Since the (i+1)st activity in S* must start after the
ith activity in S* ends, the (i + 1)st activity in S*
must start after the ith activity in S ends. Therefore,
the (i+1)st activity in S* must be in U when the
greedy algorithm selects its (i+1)st activity. Since
the greedy algorithm selects the activity in U with
the lowest end time, we have f(i + 1, S) ≤ f(i, S*),
completing the induction. ■

Lemma: If S is a schedule produced by the greedy
algorithm and S* is an optimal schedule, then for
any 1 ≤ i ≤ |S|, we have f(i, S) ≤ f(i, S*).

Proof: By induction. For our base case, we prove
f(1, S) ≤ f(1, S*). The first activity the greedy
algorithm selects must be an activity that ends no
later than any other activity, so f(1, S) ≤ f(1, S*).

For the inductive step, assume the claim holds for
some i in 1 ≤ i < |S|. Since f(i, S) ≤ f(i, S*), the ith
activity in S finishes before the ith activity in S*.
Since the (i+1)st activity in S* must start after the
ith activity in S* ends, the (i + 1)st activity in S*
must start after the ith activity in S ends. Therefore,
the (i+1)st activity in S* must be in U when the
greedy algorithm selects its (i+1)st activity. Since
the greedy algorithm selects the activity in U with
the lowest end time, we have f(i + 1, S) ≤ f(i, S*),
completing the induction. ■

Lemma: If S is a schedule produced by the greedy
algorithm and S* is an optimal schedule, then for
any 1 ≤ i ≤ |S|, we have f(i, S) ≤ f(i, S*).

Proof: By induction. For our base case, we prove
f(1, S) ≤ f(1, S*). The first activity the greedy
algorithm selects must be an activity that ends no
later than any other activity, so f(1, S) ≤ f(1, S*).

For the inductive step, assume the claim holds for
some i in 1 ≤ i < |S|. Since f(i, S) ≤ f(i, S*), the ith
activity in S finishes before the ith activity in S*.
Since the (i+1)st activity in S* must start after the
ith activity in S* ends, the (i + 1)st activity in S*
must start after the ith activity in S ends. Therefore,
the (i+1)st activity in S* must be in U when the
greedy algorithm selects its (i+1)st activity. Since
the greedy algorithm selects the activity in U with
the lowest end time, we have f(i + 1, S) ≤ f(i, S*),
completing the induction. ■

Lemma: If S is a schedule produced by the greedy
algorithm and S* is an optimal schedule, then for
any 1 ≤ i ≤ |S|, we have f(i, S) ≤ f(i, S*).

Proof: By induction. For our base case, we prove
f(1, S) ≤ f(1, S*). The first activity the greedy
algorithm selects must be an activity that ends no
later than any other activity, so f(1, S) ≤ f(1, S*).

For the inductive step, assume the claim holds for
some i in 1 ≤ i < |S|. Since f(i, S) ≤ f(i, S*), the ith
activity in S finishes before the ith activity in S*.
Since the (i+1)st activity in S* must start after the
ith activity in S* ends, the (i + 1)st activity in S*
must start after the ith activity in S ends. Therefore,
the (i+1)st activity in S* must be in U when the
greedy algorithm selects its (i+1)st activity. Since
the greedy algorithm selects the activity in U with
the lowest end time, we have
f(i + 1, S) ≤ f(i + 1, S*), completing the induction. ■

Summary

● Greedy algorithms aim for global
optimality by iteratively making a locally
optimal decision.

● To show correctness, typically need to
show
● The algorithm produces a legal answer, and
● The algorithm produces an optimal answer.

● Often use “greedy stays ahead” to show
optimality.

Next Time

● Minimum Spanning Trees
● Prim's Algorithm
● Exchange Arguments

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137

