Randomized Algorithms Part Four

Announcements

- Problem Set Three due right now.
- Due Wednesday using a late day.
- Problem Set Four out, due next Monday, July 29.
- Play around with randomized algorithms!
- Approximate NP-hard problems!
- Explore a recent algorithm and why hashing matters!
- Handout: "Guide to Randomized Algorithms" also released.

Outline for Today

- Chained Hash Tables
- How can you compactly store a small subset of a large set of elements?
- Universal Hash Functions
- Groups of functions that distribute elements nicely.

Associative Structures

- The data structures we've seen so far are linear:
- Stacks, queues, priority queues, lists, etc.
- In many cases, we want to store data in an unordered fashion.
- Queries like
- Add element x.
- Remove element x.
- Is element x contained?

Bitvectors

- A bitvector is a data structure for storing a set of integers in the range $\{0,1,2,3, \ldots, Z-1\}$.
- Store as an array of Z bits.
- If bit at position x is $0, x$ does not appear in the set.
- If bit at position x is $1, x$ appears in the set.

Analyzing Bitvectors

- What is the runtime for
- Inserting an element?
- Removing an element?
- Checking if an element is present?
- How much space is used if the bitvector contains all Z possible elements?
- How much space is used if the bitvector contains n of the Z possible elements?

Another Idea

- Store elements in an unsorted array.
- To determine whether x is contained, scan over the array elements and return whether x is found.
- To add x, check to see x is contained and, if not, append x.
- To remove x, check to see if x is contained and, if so, remove x.

Analyzing this Approach

- How much space is used if the array contains all Z possible elements?
- How much space is used if the array contains n of the Z possible elements?
- What is the runtime for
- Inserting an element?
- Removing an element?
- Checking if an element is present?

The Tradeoff

- Bitvectors are fast because we know where to look to find each element.
- Bitvectors are space-inefficient because we store one bit per possible element.
- Unsorted arrays are slow because we have to scan every element.
- Unsorted arrays are space-efficient because we only store the elements we use.
- This is a time-space tradeoff: we can improve performance by using more space.

Combining the Approaches

- Bitvectors always use a fixed amount of space and support fast lookups.
- Good when number of possible elements is low, bad when number of possible elements is large.
- Unsorted arrays use variable space and don't support fast lookups.
- Good when number of used elements is low, bad when number of used elements is large.

Chained Hash Tables

- Suppose we have a universe U consisting of all possible elements that we could want to store.
- Create m buckets, numbered $\{0,1,2, \ldots, m-1\}$ as an array of length m. Each bucket is an unsorted array of elements.
- Find a rule associating each element in U with some bucket.
- To see if x is contained, look in the bucket x is associated with and see if x is there.
- To add x, see if x is contained and add it to the appropriate bucket if it's not.
- To remove x, see if x is contained and remove it from its bucket if it is.

Association rule: (length of first name) $\bmod 4$

Bucket 0 Bucket 1 Bucket 2 Bucket 3

Piers
Jacob
Moses
Horwitz
David Cornwell
Mary Ann Evans
Jean-Baptiste Poquelin
Theodore Geisel
Julius Marx
Samuel Clemens
Malcolm Little

Analyzing Runtime

- The three basic operations on a hash table (insert, remove, lookup) all run in time $\mathrm{O}(1+X)$, where X is the total number of elements in the bucket visited.
- (Why is there a 1 here?)
- Runtime depends on how well the elements are distributed.
- If n elements are distributed evenly across all the buckets, runtime is $\mathrm{O}(1+n / m)$.
- If there are n elements distributed all into the same bucket, runtime is $\mathrm{O}(n)$.

Hash Functions

- Chained hash tables only work if we have a mechanism for associating elements of the universe with buckets.
- A hash function is a function

$$
h: U \rightarrow\{0,1,2, \ldots, m-1\}
$$

- In other words, for any $x \in U$, the value of $h(x)$ is the bucket that x belongs to.
- Since h is a mathematical function, it's defined for all inputs in U and always produces the same output given the same input.
- For simplicity, we'll assume hash functions can be computed in $\mathrm{O}(1)$ time.

Choosing Good Hash Functions

- The efficiency of a hash table depends on the choice of hash function.
- In the upcoming analysis, we will assume $|U| \gg m$ (that is, there are vastly more elements in the universe than there are buckets in the hash table.)
- Assume at least $|U|>m n$, but probably more.

A Problem

Theorem: For any hash function h, there is a series of n values that, if stored in the table, all hash to the same bucket.

Proof: Because there are m buckets, under the assumption that $|U|>m n$, by the pigeonhole principle there must be at least $n+1$ elements that hash to the same bucket. Inserting any n of those elements into the hash table places all those elements into the same bucket.

A Problem

- No matter how clever we are with our choice of hash function, there will always be an input that will degenerate operations to worst-case $\Omega(n)$ time.
- Theoretically, limits the worst-case effectiveness of chained hashing.
- Practically, leads to denial-of-service attacks.

Randomness to the Rescue

- For any fixed hash function, there is a degenerate series of inputs.
- The hash function itself cannot involve randomness.
- (Why?)
- However, what if we choose which hash function to use at random?

A (Very Strong) Assumption

- Let's suppose that when we create our hash table, we choose a totally random function $h: U \rightarrow\{0,1,2, \ldots, m-1\}$ as our hash function.
- This has some issues; more on that later.
- Under this assumption, what would the expected cost of the three major hash table operations be?

Some Notation

- As before, let n be the number of elements in a hash table.
- Let those elements be $\chi_{1}, \chi_{2}, \ldots, \chi_{n}$.
- Suppose that the element that we're looking up is the element z.
- Perhaps z is in the list; perhaps it's not.

Analyzing Efficiency

- Suppose we perform an operation (insert, lookup, delete) on element z.
- The runtime is proportional to the number of elements in the same bucket as z.
- For any χ_{k}, let C_{k} be an indicator variable that is 1 if χ_{k} and z hash to the same bucket (i.e. $h\left(x_{k}\right)=h(z)$) and is 0 otherwise.
- Let random variable X be equal to the number of elements in the same bucket as z. Then

$$
X=\sum_{x_{i} \neq z} C_{i}
$$

$$
\begin{aligned}
\text { Analyzing Efficiency } \\
\begin{aligned}
\mathrm{E}[X] & =\mathrm{E}\left[\sum_{x_{x} \neq z} C_{i}\right] \\
& =\sum_{x_{i} \neq z}^{\mathrm{E}}\left[C_{i}\right] \\
& =\sum_{x_{i} \neq z} P\left(h\left(x_{i}\right)=h(z)\right) \\
& =\sum_{x_{x} \neq z} \frac{1}{m} \\
& \leq \frac{n}{m}
\end{aligned} \text { 景 }
\end{aligned}
$$

So the expected cost of an operation is $\mathrm{O}(1+\mathrm{E}[X])=\mathbf{O}(\mathbf{1}+\boldsymbol{n} / \mathbf{m})$

Analyzing Efficiency

- Assuming we choose a function uniformly at random from all functions, the expected cost of a hash table operation is $\mathrm{O}(1+n / m)$.
- What's the space usage?
- $O(m)$ space for buckets.
- O(n) space for elements.
- Some unknown amount of space to store the hash function.

A Problem

- We assume h is chosen uniformly at random from all functions from U to $\{0,1, \ldots, m-1\}$.
- There are $m^{|U|}$ possible functions from U to $\{0,1, \ldots, m-1\}$. (Why?)
- How much memory does it take to store h ?
- If we assign k bits to store h, there are 2^{k} possible combinations of those bits.
- We need at least $|\boldsymbol{U}| \log _{2} \boldsymbol{m}$ bits to store h.
- Question: How can we get this performance without the huge space penalty?

$$
\begin{aligned}
& \text { Analyzing Efficiency } \\
& \begin{aligned}
\mathrm{E}[X] & =\mathrm{E}\left[\sum_{x_{i} \neq z} C_{i}\right] \\
& =\sum_{x_{i} \neq z} \mathrm{E}\left[C_{i}\right] \\
& =\sum_{x_{i} \neq z} P\left(h\left(x_{i}\right)=h(z)\right) \\
& =\sum_{x_{i} \neq z} \frac{1}{m} \\
& \leq \frac{n}{m}
\end{aligned}
\end{aligned}
$$

So the expected cost of an operation is $\mathrm{O}(1+\mathrm{E}[X])=\mathbf{O}(\mathbf{1}+\boldsymbol{n} / \boldsymbol{m})$

Universal Hash Functions

- A set \mathscr{H} of hash functions from U to $\{0,1, \ldots$, $m-1\}$ is called a universal family of hash functions iff
For any $x, y \in U$ where $x \neq y$, if h is drawn uniformly at random from \mathcal{H}, then

$$
P(h(x)=h(y)) \leq 1 / m
$$

- In other words, the probability of a collision between two elements is at most $1 / \mathrm{m}$ as long as we choose h from \mathscr{H} uniformly at random.

$$
\begin{aligned}
& \text { Universal Hashing } \\
& \begin{aligned}
\mathrm{E}[X] & =\mathrm{E}\left[\sum_{x_{i} \neq z} C_{i}\right] \\
& =\sum_{x_{i}, z z} \mathrm{E}\left[C_{i}\right] \\
& =\sum_{x_{x} \neq z} P\left(h\left(x_{i}\right)=h(z)\right) \\
& \leq \sum_{x_{i x} \neq z} \frac{1}{m} \\
& \leq \frac{n}{m}
\end{aligned}
\end{aligned}
$$

So the expected cost of an operation is $\mathrm{O}(1+\mathrm{E}[X])=\mathbf{O}(\mathbf{1}+\boldsymbol{n} / \mathbf{m})$

Universal Hash Functions

- The set of all possible functions from U to $\{0,1, \ldots$, $m-1\}$ is a universal family of hash functions.
- However, requires $\Omega(|U| \log m)$ space.
- For certain types of elements, can find families of universal hash functions we can evaluate in $\mathrm{O}(1)$ time and store in $\mathrm{O}(1)$ space.
- The Good News: The intuitions behind these functions are quite nice.
- The Bad News: Formally proving that they're universal requires number theory and/or field theory, which is beyond the scope of this class.

Simple Universal Hash Functions

- We'll start with a simplifying assumption and generalize from there.
- Assume $U=\{0,1,2, \ldots, m-1\}$ and that m is prime. (We'll relax this later.)
- Let \mathscr{H} be the set of all functions of the form

$$
h(x)=a x+b(\bmod m)
$$

- Where $a, b \in\{0,1,2, \ldots, m-1\}$
- Claim: \mathscr{H} is universal.

Showing Universality

- We'll show \mathscr{H} is universal by showing it obeys a stronger property called 2 -independence:
For any $x_{1}, x_{2} \in U$ where $\chi_{1} \neq x_{2}$, if h is chosen uniformly at random from \mathscr{H}, then for any y_{1} and y_{2} we have

$$
P\left(h\left(x_{1}\right)=y_{1} \wedge h\left(x_{2}\right)=y_{2}\right)=1 / m^{2}
$$

- (The probability that you can guess where any two distinct elements will be hashed is $1 / \mathrm{m}^{2}$).
- Claim: Any 2-independent family of hash functions is universal.

$$
h(x)=a x+b
$$

Showing Universality

- If $h(x)=a x+b(\bmod m)$, knowing two points on the line determines the entire line.
- Can only guess the output at two points by guessing the coefficients: probability is $1 / m^{2}$!
- Need to use some more advanced math to formalize why this works; revolves around the fact that \mathbb{F}_{m} is a finite field.

Generalizing the Result

- This hash function only works if m is prime and $|U|=m$.
- Suppose we can break apart any $x \in U$ into k integer "blocks" $\chi_{1}, \chi_{2}, \ldots, \chi_{k}$, where each block is between 0 and $m-1$.
- Then the set \mathscr{H} of all hash functions of the form

$$
h(x)=a_{1} X_{1}+a_{2} X_{2}+\ldots+a_{k} X_{k}+b(\bmod m)
$$

is universal.

- Intuitively, after evaluating $k-1$ of the products, you're left with a linear function in one remaining block and the same argument applies.

A Quick Aside

- Most programming languages associate "a" hash code with each object:
- Java: Object.hashCode
- Python: __hash__
- C++: std::hash
- Unless special care is taken, there always exists the possibility of extensive hash collisions!

Looking Forward

- This is not the only type of hash table; others exist as well:
- Dynamic perfect hash tables have worst-case $\mathrm{O}(1)$ lookup times and $\mathrm{O}(n)$ total storage space, but use a bit more memory.
- Open addressing hash tables avoid chaining and have better locality, but require stronger guarantees on the hash function.
- Hash functions have lots of applications beyond hash tables; you'll see one in the problem set.

Next Time

- Greedy Algorithms
- Interval Scheduling

