

Randomized Algorithms
Part Two

Outline for Today

● Quicksort
● Can we speed up sorting using randomness?

● Indicator Variables
● A powerful and versatile technique in

randomized algorithms.

● Randomized Max-Cut
● Approximating NP-hard problems with

randomized algorithms.

Quicksort

Quicksort

● Quicksort is as follows:
● If the sequence has 0 elements, it is

sorted.
● Otherwise, choose a pivot and run a

partitioning step to put it into the
proper place.

● Recursively apply quicksort to the
elements strictly to the left and right of
the pivot.

Initial Observations

● Like the partition-based selection
algorithms, quicksort's behavior depends
on the choice of pivot.

● Really good case: Always pick the
median element as the pivot:

T(0) = Θ(1)
T(n) = 2T(⌊n / 2⌋) + Θ(n)
T(0) = Θ(1)
T(n) = 2T(⌊n / 2⌋) + Θ(n)

T(n) = Θ(n log n)

Initial Observations

● Like the partition-based selection
algorithms, quicksort's behavior depends
on the choice of pivot.

● Really bad case: Always pick the min or
max element as the pivot:

T(0) = Θ(1)
T(n) = T(n – 1) + Θ(n)
T(0) = Θ(1)
T(n) = T(n – 1) + Θ(n)

T(n) = Θ(n2)

Choosing Random Pivots

● As with quickselect, we can ask this
question: what happens if you pick pivots
purely at random?

● This is called randomized quicksort.
● Question: What is the expected runtime

of randomized quicksort?

Accounting Tricks

● As with quickselect, we will not try to
analyze quicksort by writing out a
recurrence relation.

● Instead, we will try to account for the
work done by the algorithm in a different
but equivalent method.

● This will keep the math a lot simpler.

4 1 0 3 2

1 0 3 2 5

2 3

3

0

5

Work done comes from two
sources:

 1. Work making recursive calls
 2. Work partitioning elements.

How much work is from each
source?

Work done comes from two
sources:

 1. Work making recursive calls
 2. Work partitioning elements.

How much work is from each
source?

Counting Recursive Calls

● When the input array has size n > 0,
quicksort will
● Choose a pivot.
● Recurse on the array formed from all

elements before the pivot.
● Recurse on the array formed from all

elements after the pivot.

● Given this information, can we bound the
total number of recursive calls the
algorithm will make?

Counting Recursive Calls

● Begin with an array of n elements.

● Each recursive call deletes one element from
the array and recursively processes the
remaining subarrays.

● Therefore, there will be n recursive calls on
nonempty subarrays.

● Therefore, can be at most n + 1 leaf nodes with
calls on arrays of size 0.

● Would expect 2n + 1 = Θ(n) recursive calls
regardless of how the recursion plays out.

Counting Recursive Calls

Theorem: On any input of size n, quicksort will
make exactly 2n + 1 total recursive calls.

Proof: By induction. As a base case, the claim
is true when n = 0 since just one call is made.

Assume the claim is true for 0 ≤ n' < n. Then
quicksort will split the input apart into a piece
of size k and a piece of size n – k – 1. The first
piece leads to at most 2k + 1 calls and the
second to 2n – 2k – 2 + 1 = 2n – 2k – 1 calls.
This gives a total of 2n calls, and adding in the
initial call yields a total of 2n + 1 calls. ■

Counting Partition Work

● From before: running partition on an
array of size n takes time Θ(n).

● More precisely: running partition on an
array of size n can be done making
exactly n – 1 comparisons.

● Idea: Account for the total work done by
the partition step by summing up the
total number of comparisons made.

● Will only be off by Θ(n) (the -1 term from
n calls to partition); can fix later.

4 1 0 3 2

1 0 3 2 5

2 3

3

0

5

Work done comes from two
sources:

 1. Work making recursive calls
 2. Work partitioning elements.

How much work is from each
source?

Work done comes from two
sources:

 1. Work making recursive calls
 2. Work partitioning elements.

How much work is from each
source?

Θ(n + #compares)

Counting Comparisons

● One way to count up total number of
comparisons: Look at the sizes of all
subarrays across all recursive calls and
sum up across those.

● Another way to count up total number of
comparisons: Look at all pairs of elements
and count how many times each of those
pairs was compared.

● Account “vertically” rather than
“horizontally”

Return of the Random Variables

● Let's denote by vi the ith largest value of
the array to sort, using 1-indexing.
● For now, assume no duplicates.

● Let Cij be a random variable equal to the
number of times vi and vj are compared.

● The total number of comparisons made,
denoted by the random variable X, is

X=∑
i=1

n

∑
j=i+1

n

Cij

Expecting the Unexpected

● The expected number of comparisons
made is E[X], which is

(Isn't linearity of expectation great?)

E[X] = E[∑
i=1

n

∑
j=i+1

n

Ci j]

= ∑
i=1

n

∑
j=i+1

n

E[Ci j]

When Compares Happen

● We need to find a formula for E[Cij], the
number of times vi and vj are compared.

● Some facts about partition:
● All n – 1 elements other than the pivot are

compared against the pivot.
● No other elements are compared.

● Therefore, vi and vj are compared only
when vi or vj is a pivot in a partitioning
step.

When Compares Happen

● Claim: If vi and vj are compared once,
they are never compared again.

● Suppose vi and vj are compared. Then
either vi or vj is a pivot in a partition step.

● The pivot is never included in either
subarray in a recursive call.

● Consequently, this is the only time that vi
and vj will be compared.

Defining Cij

● We can now give a more rigorous
definition of Cij:

● Given this, E[Cij] is given by

Cij={1 if vi and v j are compared
0 otherwise

E[Cij] = 0⋅P (Cij=0)+1⋅P (Cij=1)

= P (Cij=1)

= P (vi and v j are compared)

Our Expected Value

● Using the fact that

E[Cij] = P(vi and vj are compared)

we have

● Amazingly, this reduces to a sum of
probabilities!

E[X] = ∑
i=1

n

∑
j=i+1

n

E [Ci j]

= ∑
i=1

n

∑
j=i+1

n

P (vi and v j are compared)

Indicator Random Variables

● An indicator random variable is a random
variable of the form

● For an indicator random variable X with
underlying event Ɛ, E[X] = P(Ɛ).

● This interacts very nicely with linearity of
expectation, as you just saw.

● We will use indicator random variables
extensively when studying randomized
algorithms.

X={1 if event Ɛ occurs
0 otherwise

What is the probability
vi and vj are compared?

Comparing Elements

● Claim: vi and vj are compared iff vi or vj is the
first pivot chosen from vi, vi+1, vi+2, …, vj-1, vj.

● Proof Sketch: vi and vj are together in the
same array as long as no pivots from this range
are chosen. As soon as a pivot is chosen from
here, they are separated. They are only
compared iff vi or vj is the chosen pivot.

● Corollary:

P(vi and vj are compared) = 2 / (j – i + 1)

E[X] = ∑
i=1

n

∑
j=i+1

n

P (vi and v j are compared)

= ∑
i=1

n

∑
j=i+1

n 2
j−i+1

= ∑
i=1

n

∑
k=1

n−i
2

k+1

≤ ∑
i=1

n

∑
k=1

n
2

k+1

= n∑
k=1

n 2
k+1

= 2n∑
k=1

n 1
k+1

≤ 2n∑
k=1

n 1
k

Plugging and Chugging

Let k = j – i. Then k + i = j,
so we can just the loop
bounds as

i + 1 ≤ j ≤ n
i + 1 ≤ k + i ≤ n

1 ≤ k ≤ n - i

Let k = j – i. Then k + i = j,
so we can just the loop
bounds as

i + 1 ≤ j ≤ n
i + 1 ≤ k + i ≤ n

1 ≤ k ≤ n - i

Plugging and Chugging

E[X] = ∑
i=1

n

∑
j=i+1

n

P (vi and v j are compared)

= ∑
i=1

n

∑
j=i+1

n 2
j−i+1

= ∑
i=1

n

∑
k=1

n−i
2

k+1

≤ ∑
i=1

n

∑
k=1

n
2

k+1

= n∑
k=1

n 2
k+1

= 2n∑
k=1

n 1
k+1

≤ 2n∑
k=1

n 1
k

Harmonic Numbers

● The nth harmonic number, denoted Hₙ,
is defined as

● Some values:
● H₀ = 0 H₃ = 11 / 6
● H₁ = 1 H₄ = 25 / 12
● H₂ = 3/2 H₅ = 137 / 60

Hn=∑
i=1

n 1
i

Mathematical Harmony

● Theorem: Hₙ = Θ(log n)
● Proof Idea:

1 2 3 4 5 6 7 8

Hn ≤ 1+∫
1

n
dx
x

= lnn+1

1
x

Mathematical Harmony

● Theorem: Hₙ = Θ(log n)
● Proof Idea:

1 2 3 4 5 6 7 8

1
x+1

Hn ≤ 1+∫
1

n
dx
x

= lnn+1

Hn ≥ ∫
0

n
dx

x+1
= ln(n+1)

ln(n+1) ≤ Hn ≤ lnn+1

The Finishing Touches

E[X] ≤ 2n∑
k=1

n 1
k

= 2n⋅Hn

= 2n⋅Θ(logn)

= O(n logn)

Why This Matters

● We have just shown that the runtime of
randomized quicksort is, on expectation,
O(n log n).

● To do so, we needed to use two new
mathematical techniques:
● Indicator random variables.
● Bounding summations by integrals.

● We will use the first of these techniques
more extensively over the next few days.

Introsort

● As with quickselect, quicksort still has a
pathological Θ(n2) case, though it's unlikely.

● Quicksort is, on average, faster than heapsort.

● The introsort algorithm addresses this:
● Run quicksort, tracking the recursion depth.
● If it exceeds some limit, switch to heapsort.

● Given good pivots, runs just as fast as quicksort.

● Given bad pivots, is only marginally worse than
heapsort.

● Guarantees O(n log n) behavior.

A Different Algorithm: Max-Cut

Global Cuts

● Given an undirected graph G = (V, E), a cut
in G is a pair (S, V – S) of two sets S and
V – S that split the nodes into two groups.

● The size or cost of a cut, denoted by
c(S, V – S), is the number of edges with one
endpoint in S and one in V – S.

● A global min cut is a cut in G with the
least total cost. A global max cut is a cut
in G with maximum total cost.

Global Cuts

● Interestingly:
● There are many polynomial-time algorithms

known for global min-cut.
● Global max-cut is NP-hard and no

polynomial-time algorithms are known for it.

● Today, we'll see an algorithm for
approximating global max-cut.

● On Friday, we'll see a randomized
algorithm for finding a global min-cut.

Approximating Max-Cut

● For a maximization problem, an
α-approximation algorithm is an
algorithm that produces a value that is
within a factor of α of the true value.

● A 0.5-approximation to max-cut would
produce a cut whose size is at least 50%
the size of the true largest cut.

● Our goal will be to find a randomized
approximation algorithm for max-cut.

A Really Simple Algorithm

● Here is our algorithm:
● For each node, toss a fair coin.
● If it lands heads, place the node into one

part of the cut.
● If it lands tails, place the node into the other

part of the cut.

Analyzing the Algorithm

● On expectation, how large of a cut will this
algorithm find?

● For each edge e, Cₑ be an indicator
random variable where

● Then the number of edges X crossing the
cut will be given by

Cₑ={1 if e crosses the cut
0 otherwise

X=∑
e∈E

Ce

What Did You Expect?

● The expected number of edges crossing
the cut is given by E[X].

● This is

E [X] = E[∑
e∈E

Ce]

= ∑
e∈E

E [Ce]

= ∑
e∈E

P (e crosses the cut)

Four Possibilities

That Was Unexpected

E[X] = ∑
e∈E

P (e crosses the cut)

= ∑
e∈E

1
2

=
m
2

● The expected number of edges crossing
the cut is given by E[X].

● This is

● All cuts have size ≤ m, so this is always
within a factor of two of optimal!

Randomized Approximation Algorithms

● This algorithm is a randomized
0.5-approximation to max-cut.

● The algorithm runs in time O(n).
● It's NP-hard to find a true maximum cut,

but it's not at all hard to (on expectation)
find a cut that has size at least half that
of the maximum cut!

Improving the Odds

● Running our algorithm will, on
expectation, produce a cut with size
m / 2.

● However, we don't know the actual
probability that our cut has this size.

● We can use a standard technique to
amplify the probability of success.

Do it Again

● Since any individual run of the algorithm might
not produce a large cut, we could try this
approach:
● Run the algorithm k times.
● Return the largest cut found.

● Goal: Show that with the right choice of k, this
returns a large cut with high probability.
● Specifically: Will show we get a cut of size m / 4

with high probability.
● Runtime is O((m + n)k): k rounds of doing

O(m + n) work (n to build the cut, m to determine
the size.)

More Probabilities

● Let X₁, X₂, …, Xₖ be random variables
corresponding to the sizes of the cuts found by
each run of the algorithm.

● Let Ɛ be the event that our algorithm produces a
cut of size less than m / 4. Then

● Since all Xi variables are independent, we have

Ɛ=∩
i=1

k

(X i ≤
m
4)

P (Ɛ) = P (∩i=1

k

(X i ≤
m
4)) = ∏

i=1

k

P (X i ≤
m
4

)

A Simplification

● Let Y₁, Y₂, …, Yₖ be random variables
defined as follows:

Yi = m – Xi

● Then

● What now?

P (Ɛ) = ∏
i=1

k

P (X i ≤
m
4

) = ∏
i=1

k

P (Y i ≥
3m
4

)

Markov's Inequality

● Markov's Inequality states that for any
nonnegative random variable X, that

● Equivalently:

● This holds for any random variable X.
● Can often get tighter bounds if we know

something about the distribution of X.

P (X ≥ cE[X]) ≤
1
c

P (X ≥ c) ≤
E[X]

c

Markov to the Rescue

● Let Y₁, Y₂, …, Yₖ be random variables
defined as follows:

Yi = m – Xi

● Then

E[Yi] = m – E[Xi] = m – m / 2 = m / 2

● Then
P (Ɛ) = ∏

i=1

k

P (Y i ≥
3m
4

) ≤ ∏
i=1

k E[Y i]

3m/4

= ∏
i=1

k
m/2

3m/4
 = ∏

i=1

k

2 /3 = (2
3)

k

The Finishing Touches

● If we run the algorithm k times and take the
maximum cut we find, then the probability that
we don't get m / 4 edges or more is at most
(2 / 3)k.

● The probability we do get at least m / 4 edges
is at least 1 – (2 / 3)k.

● If we set k = log3/2 m, the probability we get at
least m / 4 edges is 1 – 1 / m.

● There is a randomized, O((m + n) log m)-time
algorithm that finds a (0.25)-approximation
to max-cut with probability 1 – 1 / m.

Why This Works

● Given a randomized algorithm that has a
probability p of success, we can amplify
that probability significantly by repeating
the algorithm multiple times.

● This technique is used extensively in
randomized algorithms; we'll see another
example of this on Friday.

Next Time

● Karger's Algorithm
● Finding a Global Min-Cut
● Applications of Global Min-Cut

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51

