Randomized Algorithms Part Two

Outline for Today

- Quicksort
- Can we speed up sorting using randomness?
- Indicator Variables
- A powerful and versatile technique in randomized algorithms.
- Randomized Max-Cut
- Approximating NP-hard problems with randomized algorithms.

Quicksort

Quicksort

- Quicksort is as follows:
- If the sequence has 0 elements, it is sorted.
- Otherwise, choose a pivot and run a partitioning step to put it into the proper place.
- Recursively apply quicksort to the elements strictly to the left and right of the pivot.

Initial Observations

- Like the partition-based selection algorithms, quicksort's behavior depends on the choice of pivot.
- Really good case: Always pick the median element as the pivot:

$$
\begin{aligned}
& \mathrm{T}(0)=\Theta(1) \\
& \mathrm{T}(n)=2 \mathrm{~T}(\lfloor n / 2\rfloor)+\Theta(n)
\end{aligned}
$$

$$
T(n)=\Theta(n \log n)
$$

Initial Observations

- Like the partition-based selection algorithms, quicksort's behavior depends on the choice of pivot.
- Really bad case: Always pick the min or max element as the pivot:

$$
\begin{aligned}
& \mathrm{T}(0)=\Theta(1) \\
& \mathrm{T}(n)=\mathrm{T}(n-1)+\Theta(n)
\end{aligned}
$$

$$
T(n)=\Theta\left(n^{2}\right)
$$

Choosing Random Pivots

- As with quickselect, we can ask this question: what happens if you pick pivots purely at random?
- This is called randomized quicksort.
- Question: What is the expected runtime of randomized quicksort?

Accounting Tricks

- As with quickselect, we will not try to analyze quicksort by writing out a recurrence relation.
- Instead, we will try to account for the work done by the algorithm in a different but equivalent method.
- This will keep the math a lot simpler.

410325

1032

5

Work done comes from two sources:

1. Work making recursive calls 2. Work partitioning elements.

How much work is from each source?

Counting Recursive Calls

- When the input array has size $n>0$, quicksort will
- Choose a pivot.
- Recurse on the array formed from all elements before the pivot.
- Recurse on the array formed from all elements after the pivot.
- Given this information, can we bound the total number of recursive calls the algorithm will make?

Counting Recursive Calls

- Begin with an array of n elements.
- Each recursive call deletes one element from the array and recursively processes the remaining subarrays.
- Therefore, there will be n recursive calls on nonempty subarrays.
- Therefore, can be at most $n+1$ leaf nodes with calls on arrays of size 0 .
- Would expect $2 n+1=\boldsymbol{\Theta}$ (n) recursive calls regardless of how the recursion plays out.

Counting Recursive Calls

Theorem: On any input of size n, quicksort will make exactly $2 n+1$ total recursive calls.

Proof: By induction. As a base case, the claim is true when $n=0$ since just one call is made.
Assume the claim is true for $0 \leq n^{\prime}<n$. Then quicksort will split the input apart into a piece of size k and a piece of size $n-k-1$. The first piece leads to at most $2 k+1$ calls and the second to $2 n-2 k-2+1=2 n-2 k-1$ calls. This gives a total of $2 n$ calls, and adding in the initial call yields a total of $2 n+1$ calls.

Counting Partition Work

- From before: running partition on an array of size n takes time $\Theta(n)$.
- More precisely: running partition on an array of size n can be done making exactly $n-1$ comparisons.
- Idea: Account for the total work done by the partition step by summing up the total number of comparisons made.
- Will only be off by $\Theta(n)$ (the - 1 term from n calls to partition); can fix later.

410325

1032

5

$\Theta(n+$ \#compares)

Work done comes from two sources:

1. Work making recursive calls
2. Work partitioning elements.

How much work is from each source?

Counting Comparisons

- One way to count up total number of comparisons: Look at the sizes of all subarrays across all recursive calls and sum up across those.
- Another way to count up total number of comparisons: Look at all pairs of elements and count how many times each of those pairs was compared.
- Account "vertically" rather than "horizontally"

Return of the Random Variables

- Let's denote by v_{i} the i th largest value of the array to sort, using 1-indexing.
- For now, assume no duplicates.
- Let $C_{i j}$ be a random variable equal to the number of times v_{i} and v_{j} are compared.
- The total number of comparisons made, denoted by the random variable X, is

$$
X=\sum_{i=1}^{n} \sum_{j=i+1}^{n} C_{i j}
$$

Expecting the Unexpected

- The expected number of comparisons made is $\mathrm{E}[X]$, which is

$$
\begin{aligned}
\mathrm{E}[X] & =\mathrm{E}\left[\sum_{i=1}^{n} \sum_{j=i+1}^{n} C_{i j}\right] \\
& =\sum_{i=1}^{n} \sum_{j=i+1}^{n} \mathrm{E}\left[C_{i j}\right]
\end{aligned}
$$

(Isn't linearity of expectation great?)

When Compares Happen

- We need to find a formula for $\mathrm{E}\left[C_{i j}\right]$, the number of times v_{i} and v_{j} are compared.
- Some facts about partition:
- All n - 1 elements other than the pivot are compared against the pivot.
- No other elements are compared.
- Therefore, v_{i} and v_{j} are compared only when v_{i} or v_{j} is a pivot in a partitioning step.

When Compares Happen

- Claim: If v_{i} and v_{j} are compared once, they are never compared again.
- Suppose v_{i} and v_{j} are compared. Then either v_{i} or v_{j} is a pivot in a partition step.
- The pivot is never included in either subarray in a recursive call.
- Consequently, this is the only time that v_{i} and v_{j} will be compared.

Defining $C_{i j}$

- We can now give a more rigorous definition of $C_{i j}$:

$$
C_{i j}= \begin{cases}1 & \text { if } v_{i} \text { and } v_{j} \text { are compared } \\ 0 & \text { otherwise }\end{cases}
$$

- Given this, $\mathrm{E}\left[C_{i j}\right]$ is given by

$$
\begin{aligned}
\mathrm{E}\left[C_{i j}\right] & =0 \cdot P\left(C_{i j}=0\right)+1 \cdot P\left(C_{i j}=1\right) \\
& =P\left(C_{i j}=1\right) \\
& =P\left(v_{i} \text { and } v_{j} \text { are compared }\right)
\end{aligned}
$$

Our Expected Value

- Using the fact that

$$
\mathrm{E}\left[C_{i j}\right]=P\left(v_{i} \text { and } v_{j} \text { are compared }\right)
$$

we have

$$
\begin{aligned}
\mathrm{E}[X] & =\sum_{i=1}^{n} \sum_{j=i+1}^{n} \mathrm{E}\left[C_{i j}\right] \\
& =\sum_{i=1}^{n} \sum_{j=i+1}^{n} P\left(v_{i} \text { and } v_{j} \text { are compared }\right)
\end{aligned}
$$

- Amazingly, this reduces to a sum of probabilities!

Indicator Random Variables

- An indicator random variable is a random variable of the form

$$
X= \begin{cases}1 & \text { if event } \varepsilon \text { occurs } \\ 0 & \text { otherwise }\end{cases}
$$

- For an indicator random variable X with underlying event $\mathcal{E}, \mathrm{E}[X]=P(\mathcal{E})$.
- This interacts very nicely with linearity of expectation, as you just saw.
- We will use indicator random variables extensively when studying randomized algorithms.

What is the probability v_{i} and v_{j} are compared?

Comparing Elements

- Claim: v_{i} and v_{j} are compared iff v_{i} or v_{j} is the first pivot chosen from $v_{i}, v_{i+1}, v_{i+2}, \ldots, v_{j-1}, v_{j}$.
- Proof Sketch: v_{i} and v_{j} are together in the same array as long as no pivots from this range are chosen. As soon as a pivot is chosen from here, they are separated. They are only compared iff v_{i} or v_{j} is the chosen pivot.
- Corollary:
$P\left(v_{i}\right.$ and v_{j} are compared $)=2 /(j-i+1)$

Plugging and Chugging

$\mathrm{E}[X]=\sum_{i=1}^{n} \sum_{j=i+1}^{n} P\left(v_{i}\right.$ and v_{j} are compared $)$

$$
=\sum_{i=1}^{n} \sum_{j=i+1}^{n} \frac{2}{j-i+1}
$$

Let $\boldsymbol{k}=\boldsymbol{j}-\mathbf{i}$. Then $k+i=j$, so we can just the loop bounds as

$$
\begin{gathered}
i+1 \leq j \leq n \\
i+1 \leq k+i \leq n \\
\mathbf{1} \leq \boldsymbol{k} \leq \boldsymbol{n}-\boldsymbol{i}
\end{gathered}
$$

Plugging and Chugging

$$
\begin{aligned}
\mathrm{E}[X] & =\sum_{i=1}^{n} \sum_{j=i+1}^{n} P\left(v_{i} \text { and } v_{j} \text { are compared }\right) \\
& =\sum_{i=1}^{n} \sum_{j=i+1}^{n} \frac{2}{j-i+1} \\
& =\sum_{i=1}^{n} \sum_{k=1}^{n-i} \frac{2}{k+1} \\
& \leq \sum_{i=1}^{n} \sum_{k=1}^{n} \frac{2}{k+1} \\
& =n \sum_{k=1}^{n} \frac{2}{k+1}=2 n \sum_{k=1}^{n} \frac{1}{k+1} \leq 2 n \sum_{k=1}^{n} \frac{1}{k}
\end{aligned}
$$

Harmonic Numbers

- The nth harmonic number, denoted H_{n}, is defined as

$$
H_{n}=\sum_{i=1}^{n} \frac{1}{i}
$$

- Some values:
- $H_{0}=0$

$$
H_{3}=11 / 6
$$

- $H_{1}=1$
$H_{4}=25 / 12$
- $\mathrm{H}_{2}=3 / 2$
$H_{5}=137 / 60$

Mathematical Harmony

- Theorem: $H_{n}=\Theta(\log n)$
- Proof Idea:

Mathematical Harmony

- Theorem: $H_{n}=\Theta(\log n)$
- Proof Idea:

The Finishing Touches

$$
\begin{aligned}
\mathrm{E}[X] & \leq 2 n \sum_{k=1}^{n} \frac{1}{k} \\
& =2 n \cdot H_{n} \\
& =2 n \cdot \Theta(\log n) \\
& =\mathrm{O}(n \log n)
\end{aligned}
$$

Why This Matters

- We have just shown that the runtime of randomized quicksort is, on expectation, $\mathrm{O}(n \log n)$.
- To do so, we needed to use two new mathematical techniques:
- Indicator random variables.
- Bounding summations by integrals.
- We will use the first of these techniques more extensively over the next few days.

Introsort

- As with quickselect, quicksort still has a pathological $\Theta\left(n^{2}\right)$ case, though it's unlikely.
- Quicksort is, on average, faster than heapsort.
- The introsort algorithm addresses this:
- Run quicksort, tracking the recursion depth.
- If it exceeds some limit, switch to heapsort.
- Given good pivots, runs just as fast as quicksort.
- Given bad pivots, is only marginally worse than heapsort.
- Guarantees O($n \log n$) behavior.

A Different Algorithm: Max-Cut

Global Cuts

- Given an undirected graph $G=(V, E)$, a cut in G is a pair ($S, V-S$) of two sets S and $\mathrm{V}-S$ that split the nodes into two groups.
- The size or cost of a cut, denoted by $c(S, V-S)$, is the number of edges with one endpoint in S and one in $V-S$.
- A global min cut is a cut in G with the least total cost. A global max cut is a cut in G with maximum total cost.

Global Cuts

- Interestingly:
- There are many polynomial-time algorithms known for global min-cut.
- Global max-cut is NP-hard and no polynomial-time algorithms are known for it.
- Today, we'll see an algorithm for approximating global max-cut.
- On Friday, we'll see a randomized algorithm for finding a global min-cut.

Approximating Max-Cut

- For a maximization problem, an $\boldsymbol{\alpha}$-approximation algorithm is an algorithm that produces a value that is within a factor of α of the true value.
- A 0.5-approximation to max-cut would produce a cut whose size is at least 50% the size of the true largest cut.
- Our goal will be to find a randomized approximation algorithm for max-cut.

A Really Simple Algorithm

- Here is our algorithm:
- For each node, toss a fair coin.
- If it lands heads, place the node into one part of the cut.
- If it lands tails, place the node into the other part of the cut.

Analyzing the Algorithm

- On expectation, how large of a cut will this algorithm find?
- For each edge e, C_{e} be an indicator random variable where

$$
C_{e}= \begin{cases}1 & \text { if } e \text { crosses the cut } \\ 0 & \text { otherwise }\end{cases}
$$

- Then the number of edges X crossing the cut will be given by

$$
X=\sum_{e \in E} C_{e}
$$

What Did You Expect?

- The expected number of edges crossing the cut is given by $\mathrm{E}[X]$.
- This is

$$
\begin{aligned}
\mathrm{E}[X] & =\mathrm{E}\left[\sum_{e \in E} C_{e}\right] \\
& =\sum_{e \in E} \mathrm{E}\left[C_{e}\right] \\
& =\sum_{e \in E} P(e \text { crosses the cut })
\end{aligned}
$$

Four Possibilities

That Was Unexpected

- The expected number of edges crossing the cut is given by $\mathrm{E}[X]$.
- This is

$$
\begin{aligned}
\mathrm{E}[X] & =\sum_{e \in E} P(e \text { crosses the cut }) \\
& =\sum_{e \in E} \frac{1}{2} \\
& =\frac{m}{2}
\end{aligned}
$$

- All cuts have size $\leq m$, so this is always within a factor of two of optimal!

Randomized Approximation Algorithms

- This algorithm is a randomized 0.5 -approximation to max-cut.
- The algorithm runs in time $\mathrm{O}(n)$.
- It's NP-hard to find a true maximum cut, but it's not at all hard to (on expectation) find a cut that has size at least half that of the maximum cut!

Improving the Odds

- Running our algorithm will, on expectation, produce a cut with size m / 2.
- However, we don't know the actual probability that our cut has this size.
- We can use a standard technique to amplify the probability of success.

Do it Again

- Since any individual run of the algorithm might not produce a large cut, we could try this approach:
- Run the algorithm k times.
- Return the largest cut found.
- Goal: Show that with the right choice of k, this returns a large cut with high probability.
- Specifically: Will show we get a cut of size m / 4 with high probability.
- Runtime is $\mathrm{O}((m+n) k)$: k rounds of doing $\mathrm{O}(m+n$) work (n to build the cut, m to determine the size.)

More Probabilities

- Let $X_{1}, X_{2}, \ldots, X_{\mathrm{k}}$ be random variables corresponding to the sizes of the cuts found by each run of the algorithm.
- Let \mathcal{E} be the event that our algorithm produces a cut of size less than $m / 4$. Then

$$
\mathcal{E}=\bigcap_{i=1}^{k}\left(X_{i} \leq \frac{m}{4}\right)
$$

- Since all X_{i} variables are independent, we have

$$
P(\mathcal{E})=P\left(\bigcap_{i=1}^{k}\left(X_{i} \leq \frac{m}{4}\right)\right)=\prod_{i=1}^{k} P\left(X_{i} \leq \frac{m}{4}\right)
$$

A Simplification

- Let $Y_{1}, Y_{2}, \ldots, Y_{\mathrm{k}}$ be random variables defined as follows:

$$
Y_{\mathrm{i}}=m-X_{i}
$$

- Then

$$
P(\varepsilon)=\prod_{i=1}^{k} P\left(X_{i} \leq \frac{m}{4}\right)=\prod_{i=1}^{k} P\left(Y_{i} \geq \frac{3 m}{4}\right)
$$

- What now?

Markov's Inequality

- Markov's Inequality states that for any nonnegative random variable X, that

$$
P(X \geq c) \leq \frac{\mathrm{E}[X]}{c}
$$

- Equivalently:

$$
P(X \geq c \mathrm{E}[X]) \leq \frac{1}{c}
$$

- This holds for any random variable X.
- Can often get tighter bounds if we know something about the distribution of X.

Markov to the Rescue

- Let $Y_{1}, Y_{2}, \ldots, Y_{k}$ be random variables defined as follows:

$$
Y_{i}=m-X_{i}
$$

- Then

$$
\mathrm{E}\left[Y_{i}\right]=m-\mathrm{E}\left[X_{i}\right]=m-m / 2=m / 2
$$

- Then

$$
\left.\begin{array}{rl}
P(\varepsilon) & =\prod_{i=1}^{k} P\left(Y_{i} \geq \frac{3 m}{4}\right) \leq \prod_{i=1}^{k} \frac{\mathrm{E}\left[Y_{i}\right]}{3 m / 4} \\
& =\prod_{i=1}^{k} \frac{m / 2}{3 m / 4}
\end{array}=\prod_{i=1}^{k} 2 / 3=\left(\frac{2}{3}\right)^{k}\right)
$$

The Finishing Touches

- If we run the algorithm k times and take the maximum cut we find, then the probability that we don't get $m / 4$ edges or more is at most (2 / 3) ${ }^{k}$.
- The probability we do get at least m / 4 edges is at least $1-(2 / 3)^{k}$.
- If we set $k=\log _{3 / 2} m$, the probability we get at least m / 4 edges is $\mathbf{1 - 1 / m}$.
- There is a randomized, $\mathbf{O}((\boldsymbol{m}+\boldsymbol{n}) \mathbf{l o g} \boldsymbol{m})$-time algorithm that finds a (0.25)-approximation to max-cut with probability 1-1/m.

Why This Works

- Given a randomized algorithm that has a probability p of success, we can amplify that probability significantly by repeating the algorithm multiple times.
- This technique is used extensively in randomized algorithms; we'll see another example of this on Friday.

Next Time

- Karger's Algorithm
- Finding a Global Min-Cut
- Applications of Global Min-Cut

