Randomized Algorithms Part Two

Outline for Today

• Quicksort

- Can we speed up sorting using randomness?
- Indicator Variables
 - A powerful and versatile technique in randomized algorithms.
- Randomized Max-Cut
 - Approximating **NP**-hard problems with randomized algorithms.

Quicksort

32 17 41 18 52 98 21 68 53 38 54 85 99 70

32 17 41 18 52 98 21 68 53 38 54 85 99 70

32 17 41 18 52 98 21 68 53 38 54 85 99 70

52 32 21 18 17 38 41 53 85 98 54 70 99 68

52 32 21 18 17 38 41 53 85 98 54 70 99 68

Quicksort

- **Quicksort** is as follows:
 - If the sequence has 0 elements, it is sorted.
 - Otherwise, choose a pivot and run a partitioning step to put it into the proper place.
 - Recursively apply quicksort to the elements strictly to the left and right of the pivot.

 Like the partition-based selection algorithms, quicksort's behavior depends on the choice of pivot.

- Like the partition-based selection algorithms, quicksort's behavior depends on the choice of pivot.
- **Really good case:** Always pick the median element as the pivot:

32 41 18 52 98 21 68 54 38 53 85 99 70

- Like the partition-based selection algorithms, quicksort's behavior depends on the choice of pivot.
- **Really good case:** Always pick the median element as the pivot:

32 41 18 52 98 21 68 54 38 <mark>53</mark> 85 99 70

- Like the partition-based selection algorithms, quicksort's behavior depends on the choice of pivot.
- **Really good case:** Always pick the median element as the pivot:

 32
 41
 18
 21
 38
 52
 53
 54
 99
 98
 68
 85
 70

- Like the partition-based selection algorithms, quicksort's behavior depends on the choice of pivot.
- **Really good case:** Always pick the median element as the pivot:

 32
 41
 18
 21
 38
 52
 53
 54
 99
 98
 68
 85
 70

- Like the partition-based selection algorithms, quicksort's behavior depends on the choice of pivot.
- **Really good case:** Always pick the median element as the pivot:

 32
 41
 18
 21
 38
 52
 53
 54
 99
 98
 68
 85
 70

- Like the partition-based selection algorithms, quicksort's behavior depends on the choice of pivot.
- **Really good case:** Always pick the median element as the pivot:

$$T(0) = \Theta(1)$$

$$T(n) = 2T(\lfloor n / 2 \rfloor) + \Theta(n)$$

 $\mathbf{T}(n) = \Theta(n \log n)$
- Like the partition-based selection algorithms, quicksort's behavior depends on the choice of pivot.
- **Really bad case:** Always pick the min or max element as the pivot:

 32
 41
 18
 52
 98
 21
 68
 54
 38
 53
 85
 99
 70

- Like the partition-based selection algorithms, quicksort's behavior depends on the choice of pivot.
- **Really bad case:** Always pick the min or max element as the pivot:

 32
 41
 18
 52
 98
 21
 68
 54
 38
 53
 85
 99
 70

- Like the partition-based selection algorithms, quicksort's behavior depends on the choice of pivot.
- **Really bad case:** Always pick the min or max element as the pivot:

32 41 18 52 98 21 68 54 38 53 85 70 **99**

- Like the partition-based selection algorithms, quicksort's behavior depends on the choice of pivot.
- **Really bad case:** Always pick the min or max element as the pivot:

 32
 41
 18
 52
 98
 21
 68
 54
 38
 53
 85
 70
 99

- Like the partition-based selection algorithms, quicksort's behavior depends on the choice of pivot.
- **Really bad case:** Always pick the min or max element as the pivot:

32 41 **18** 52 98 21 68 54 38 53 85 70 99

- Like the partition-based selection algorithms, quicksort's behavior depends on the choice of pivot.
- **Really bad case:** Always pick the min or max element as the pivot:

18 32 41 52 98 21 68 54 38 53 85 70 99

- Like the partition-based selection algorithms, quicksort's behavior depends on the choice of pivot.
- **Really bad case:** Always pick the min or max element as the pivot:

 18
 32
 41
 52
 98
 21
 68
 54
 38
 53
 85
 70
 99

- Like the partition-based selection algorithms, quicksort's behavior depends on the choice of pivot.
- **Really bad case:** Always pick the min or max element as the pivot:

$$T(0) = \Theta(1)$$

$$T(n) = T(n - 1) + \Theta(n)$$

 $\mathbf{T}(n) = \boldsymbol{\Theta}(n^2)$

Choosing Random Pivots

- As with quickselect, we can ask this question: what happens if you pick pivots purely at random?
- This is called **randomized quicksort**.
- Question: What is the expected runtime of randomized quicksort?

Accounting Tricks

- As with quickselect, we will *not* try to analyze quicksort by writing out a recurrence relation.
- Instead, we will try to account for the work done by the algorithm in a different but equivalent method.
- This will keep the math a *lot* simpler.

Work done comes from two sources:

- 1. Work making recursive calls
- 2. Work partitioning elements.

How much work is from each source?

Counting Recursive Calls

- When the input array has size n > 0, quicksort will
 - Choose a pivot.
 - Recurse on the array formed from all elements before the pivot.
 - Recurse on the array formed from all elements after the pivot.
- Given this information, can we bound the total number of recursive calls the algorithm will make?

Counting Recursive Calls

- Begin with an array of *n* elements.
- Each recursive call deletes one element from the array and recursively processes the remaining subarrays.
- Therefore, there will be *n* recursive calls on nonempty subarrays.
- Therefore, can be at most n + 1 leaf nodes with calls on arrays of size 0.
- Would expect $2n + 1 = \Theta(n)$ recursive calls regardless of how the recursion plays out.

Counting Recursive Calls

Theorem: On any input of size n, quicksort will make exactly 2n + 1 total recursive calls.

Proof: By induction. As a base case, the claim is true when n = 0 since just one call is made.

Assume the claim is true for $0 \le n' < n$. Then quicksort will split the input apart into a piece of size k and a piece of size n - k - 1. The first piece leads to at most 2k + 1 calls and the second to 2n - 2k - 2 + 1 = 2n - 2k - 1 calls. This gives a total of 2n calls, and adding in the initial call yields a total of 2n + 1 calls.

Work done comes from two sources:

- 1. Work making recursive calls
- 2. Work partitioning elements.

How much work is from each source?

Work done comes from two sources:

Work making recursive calls
 Work partitioning elements.

How much work is from each source?

- From before: running partition on an array of size n takes time $\Theta(n)$.
- More precisely: running partition on an array of size n can be done making exactly n – 1 comparisons.
- Quick intuition:

- From before: running partition on an array of size n takes time $\Theta(n)$.
- More precisely: running partition on an array of size n can be done making exactly n – 1 comparisons.
- Quick intuition:

- From before: running partition on an array of size n takes time $\Theta(n)$.
- More precisely: running partition on an array of size n can be done making exactly n – 1 comparisons.
- Quick intuition:

- From before: running partition on an array of size n takes time $\Theta(n)$.
- More precisely: running partition on an array of size n can be done making exactly n – 1 comparisons.
- Quick intuition:

- From before: running partition on an array of size n takes time $\Theta(n)$.
- More precisely: running partition on an array of size n can be done making exactly n – 1 comparisons.
- Quick intuition:

- From before: running partition on an array of size n takes time $\Theta(n)$.
- More precisely: running partition on an array of size n can be done making exactly n – 1 comparisons.
- Quick intuition:

- From before: running partition on an array of size n takes time $\Theta(n)$.
- More precisely: running partition on an array of size n can be done making exactly n – 1 comparisons.
- Quick intuition:

- From before: running partition on an array of size n takes time $\Theta(n)$.
- More precisely: running partition on an array of size n can be done making exactly n – 1 comparisons.
- Quick intuition:

		38	
53	21		1
		68	54

- From before: running partition on an array of size n takes time $\Theta(n)$.
- More precisely: running partition on an array of size n can be done making exactly n – 1 comparisons.
- Quick intuition:

53	21	38	
		68	54

- From before: running partition on an array of size n takes time $\Theta(n)$.
- More precisely: running partition on an array of size n can be done making exactly n – 1 comparisons.
- Quick intuition:

- From before: running partition on an array of size n takes time $\Theta(n)$.
- More precisely: running partition on an array of size n can be done making exactly n – 1 comparisons.
- Quick intuition:

- From before: running partition on an array of size n takes time $\Theta(n)$.
- More precisely: running partition on an array of size n can be done making exactly n – 1 comparisons.
- Idea: Account for the total work done by the partition step by summing up the total number of comparisons made.
- Will only be off by $\Theta(n)$ (the -1 term from n calls to partition); can fix later.

Work done comes from two sources:

- 1. Work making recursive calls
- 2. Work partitioning elements.

How much work is from each source?

Counting Comparisons

- One way to count up total number of comparisons: Look at the sizes of all subarrays across all recursive calls and sum up across those.
- Another way to count up total number of comparisons: Look at all pairs of elements and count how many times each of those pairs was compared.
- Account "vertically" rather than "horizontally"

Return of the Random Variables

- Let's denote by v_i the *i*th largest value of the array to sort, using 1-indexing.
 - For now, assume no duplicates.
- Let C_{ij} be a random variable equal to the number of times v_i and v_j are compared.
- The total number of comparisons made, denoted by the random variable *X*, is

$$X = \sum_{i=1}^{n} \sum_{j=i+1}^{n} C_{ij}$$

• The expected number of comparisons made is E[X], which is

$$E[X] = E[\sum_{i=1}^{n} \sum_{j=i+1}^{n} C_{ij}]$$

• The expected number of comparisons made is E[X], which is

$$E[X] = E[\sum_{i=1}^{n} \sum_{j=i+1}^{n} C_{ij}]$$
$$= \sum_{i=1}^{n} \sum_{j=i+1}^{n} E[C_{ij}]$$

• The expected number of comparisons made is E[X], which is

$$E[X] = E[\sum_{i=1}^{n} \sum_{j=i+1}^{n} C_{ij}]$$
$$= \sum_{i=1}^{n} \sum_{j=i+1}^{n} E[C_{ij}]$$

(Isn't linearity of expectation great?)

• The expected number of comparisons made is E[X], which is

$$E[X] = E[\sum_{i=1}^{n} \sum_{j=i+1}^{n} C_{ij}]$$
$$= \sum_{i=1}^{n} \sum_{j=i+1}^{n} E[C_{ij}]$$

(Isn't linearity of expectation great?)

When Compares Happen

- We need to find a formula for E[C_{ij}], the number of times v_i and v_j are compared.
- Some facts about partition:
 - All n 1 elements other than the pivot are compared against the pivot.
 - No other elements are compared.
- Therefore, v_i and v_j are compared only when v_i or v_j is a pivot in a partitioning step.
When Compares Happen

- Claim: If v_i and v_j are compared once, they are never compared again.
- Suppose v_i and v_j are compared. Then either v_i or v_j is a pivot in a partition step.
- The pivot is never included in either subarray in a recursive call.
- Consequently, this is the only time that v_i and v_j will be compared.

• We can now give a more rigorous definition of C_{ii} :

 $C_{ij} = \begin{cases} 1 & \text{if } v_i \text{ and } v_j \text{ are compared} \\ 0 & \text{otherwise} \end{cases}$

• We can now give a more rigorous definition of C_{ii} :

$$C_{ij} = \begin{cases} 1 & \text{if } v_i \text{ and } v_j \text{ are compared} \\ 0 & \text{otherwise} \end{cases}$$

• Given this, $E[C_{ii}]$ is given by

 $E[C_{ij}] = 0 \cdot P(C_{ij}=0) + 1 \cdot P(C_{ij}=1)$

• We can now give a more rigorous definition of C_{ii} :

$$C_{ij} = \begin{cases} 1 & \text{if } v_i \text{ and } v_j \text{ are compared} \\ 0 & \text{otherwise} \end{cases}$$

• Given this, $E[C_{ii}]$ is given by

• We can now give a more rigorous definition of C_{ii} :

$$C_{ij} = \begin{cases} 1 & \text{if } v_i \text{ and } v_j \text{ are compared} \\ 0 & \text{otherwise} \end{cases}$$

• Given this, $E[C_{ij}]$ is given by

$$\begin{split} \mathbf{E}[C_{ij}] &= \mathbf{0} \cdot P(C_{ij} = \mathbf{0}) + \mathbf{1} \cdot P(C_{ij} = \mathbf{1}) \\ &= P(C_{ij} = \mathbf{1}) \\ &= P(\mathbf{v}_i \text{ and } \mathbf{v}_j \text{ are compared}) \end{split}$$

Our Expected Value

• Using the fact that

$$\begin{split} & \mathrm{E}[C_{ij}] = P(v_i \text{ and } v_j \text{ are compared}) \\ & \text{we have} \\ & \mathrm{E}[X] = \sum_{i=1}^n \sum_{j=i+1}^n \mathrm{E}[C_{ij}] \end{split}$$

Our Expected Value

• Using the fact that

$$\begin{split} & \mathbf{E}[C_{ij}] = P(\mathbf{v}_i \text{ and } \mathbf{v}_j \text{ are compared}) \\ & \text{we have} \\ & \mathbf{E}[X] = \sum_{i=1}^n \sum_{j=i+1}^n \mathbf{E}[C_{ij}] \\ & = \sum_{i=1}^n \sum_{j=i+1}^n P(\mathbf{v}_i \text{ and } \mathbf{v}_j \text{ are compared}) \end{split}$$

Our Expected Value

• Using the fact that

$$\begin{split} \mathbf{E}[C_{ij}] &= P(\mathbf{v}_i \text{ and } \mathbf{v}_j \text{ are compared}) \\ \text{we have} \\ \mathbf{E}[X] &= \sum_{i=1}^n \sum_{j=i+1}^n \mathbf{E}[C_{ij}] \\ &= \sum_{i=1}^n \sum_{j=i+1}^n P(\mathbf{v}_i \text{ and } \mathbf{v}_j \text{ are compared}) \end{split}$$

Amazingly, this reduces to a sum of probabilities!

Indicator Random Variables

• An **indicator random variable** is a random variable of the form

$$X = \begin{cases} 1 & \text{if event } \mathcal{E} \text{ occurs} \\ 0 & \text{otherwise} \end{cases}$$

- For an indicator random variable X with underlying event \mathcal{E} , $\mathcal{E}[X] = P(\mathcal{E})$.
- This interacts very nicely with linearity of expectation, as you just saw.
- We will use indicator random variables extensively when studying randomized algorithms.

What is the probability v_i and v_j are compared?

32 41 18 52 98 21 68 54 38 53 85 99 70

32 41 18 52 98 21 68 54 38 53 85 99 70

32 70 18 54 52 38 53 41 68 21 85 98 99

32 70 18 54 52 38 53 41 68 21 85 98 99

21 18 32 38 53 52 70 54 68 41 85 98 99

21 18 32 38 53 52 70 54 68 41 85 98 99

21 18 32 38 53 52 70 54 68 41 85 98 99

21 18 32 38 52 41 53 54 68 70 85 98 99

32 41 18 52 98 21 68 54 38 53 85 99 70

Comparing Elements

- Claim: v_i and v_j are compared iff v_i or v_j is the first pivot chosen from v_i, v_{i+1}, v_{i+2}, ..., v_{j-1}, v_j.
- Proof Sketch: v_i and v_j are together in the same array as long as no pivots from this range are chosen. As soon as a pivot is chosen from here, they are separated. They are only compared iff v_i or v_j is the chosen pivot.
- Corollary:

 $P(v_i \text{ and } v_j \text{ are compared}) = 2 / (j - i + 1)$

Plugging and Chugging $E[X] = \sum_{i=1}^{n} \sum_{j=i+1}^{n} P(v_i \text{ and } v_j \text{ are compared})$

$E[X] = \sum_{i=1}^{n} \sum_{j=i+1}^{n} P(v_i \text{ and } v_j \text{ are compared})$ $= \sum_{i=1}^{n} \sum_{j=i+1}^{n} \frac{2}{j-i+1}$

$E[X] = \sum_{i=1}^{n} \sum_{j=i+1}^{n} P(v_i \text{ and } v_j \text{ are compared})$ $= \sum_{i=1}^{n} \sum_{j=i+1}^{n} \frac{2}{j-i+1}$

Let k = j - i. Then k + i = j, so we can just the loop bounds as

 $i + 1 \le j \le n$

 $E[X] = \sum_{i=1}^{n} \sum_{j=i+1}^{n} P(v_i \text{ and } v_j \text{ are compared})$ $= \sum_{i=1}^{n} \sum_{j=i+1}^{n} \frac{2}{j-i+1}$

Let k = j - i. Then k + i = j, so we can just the loop bounds as

 $i + 1 \le j \le n$ $i + 1 \le k + i \le n$

 $E[X] = \sum_{i=1}^{n} \sum_{j=i+1}^{n} P(v_i \text{ and } v_j \text{ are compared})$ $= \sum_{i=1}^{n} \sum_{j=i+1}^{n} \frac{2}{j-i+1}$

Let k = j - i. Then k + i = j, so we can just the loop bounds as $i + 1 \le j \le n$ $i + 1 \le k + i \le n$

$$+ 1 \le k + i \le i$$

 $1 \le k \le n - i$

 $E[X] = \sum_{i=1}^{n} \sum_{j=i+1}^{n} P(v_i \text{ and } v_j \text{ are compared})$ $= \sum_{i=1}^{n} \sum_{j=i+1}^{n} \frac{2}{j-i+1}$ $= \sum_{i=1}^{n} \sum_{k=1}^{n-i} \frac{2}{k+1}$

 $E[X] = \sum_{i=1}^{n} \sum_{j=1}^{n} P(v_i \text{ and } v_j \text{ are compared})$ i = 1 j = i + 1 $= \sum_{i=1}^{n} \sum_{j=i+1}^{n} \frac{2}{j-i+1}$ $= \sum_{i=1}^{n} \sum_{k=1}^{n-i} \frac{2}{k+1}$ $\leq \sum_{i=1}^{n} \sum_{k=1}^{n} \frac{2}{k+1}$

 $E[X] = \sum_{i=1}^{n} \sum_{j=1}^{n} P(v_i \text{ and } v_j \text{ are compared})$ i = 1 j = i + 1 $= \sum_{i=1}^{n} \sum_{j=i+1}^{n} \frac{2}{j-i+1}$ $= \sum_{i=1}^{n} \sum_{k=1}^{n-i} \frac{2}{k+1}$ $\leq \sum_{i=1}^{n} \sum_{k=1}^{n} \frac{2}{k+1}$ $= n \sum_{k=1}^{n} \frac{2}{k+1}$

Plugging and Chugging $E[X] = \sum_{i=1}^{n} \sum_{j=1}^{n} P(v_i \text{ and } v_j \text{ are compared})$ i = 1 j = i + 1 $= \sum_{i=1}^{n} \sum_{j=i+1}^{n} \frac{2}{j-i+1}$ $= \sum_{i=1}^{n} \sum_{k=1}^{n-i} \frac{2}{k+1}$ $\leq \sum_{i=1}^n \sum_{k=1}^n \frac{2}{k+1}$

 $= n \sum_{k=1}^{n} \frac{2}{k+1} = 2n \sum_{k=1}^{n} \frac{1}{k+1}$

Plugging and Chugging $E[X] = \sum_{i=1}^{n} \sum_{j=1}^{n} P(v_i \text{ and } v_j \text{ are compared})$ i = 1 j = i + 1 $= \sum_{i=1}^{n} \sum_{j=i+1}^{n} \frac{2}{j-i+1}$ $= \sum_{i=1}^{n} \sum_{k=1}^{n-i} \frac{2}{k+1}$ $\leq \sum_{i=1}^n \sum_{k=1}^n \frac{2}{k+1}$ $= n \sum_{k=1}^{n} \frac{2}{k+1} = 2n \sum_{k=1}^{n} \frac{1}{k+1} \le 2n \sum_{k=1}^{n} \frac{1}{k}$

Harmonic Numbers

• The *n*th **harmonic number**, denoted *H*_{*n*}, is defined as

$$H_n = \sum_{i=1}^n \frac{1}{i}$$

- Some values:
 - $H_0 = 0$ $H_3 = 11 / 6$
 - $H_1 = 1$ H_4
 - $H_2 = 3/2$

 $H_4 = 25 / 12$ $H_5 = 137 / 60$

Mathematical Harmony

- **Theorem:** $H_n = \Theta(\log n)$
- Proof Idea:

Mathematical Harmony

- **Theorem:** $H_n = \Theta(\log n)$
- Proof Idea:

- **Theorem:** $H_n = \Theta(\log n)$
- Proof Idea:

- **Theorem:** $H_n = \Theta(\log n)$
- Proof Idea:

- **Theorem:** $H_n = \Theta(\log n)$
- Proof Idea:

- **Theorem:** $H_n = \Theta(\log n)$
- Proof Idea:

- **Theorem:** $H_n = \Theta(\log n)$
- Proof Idea:

- **Theorem:** $H_n = \Theta(\log n)$
- Proof Idea:

$$\mathbf{E}[X] \leq 2n \sum_{k=1}^{n} \frac{1}{k}$$

$$E[X] \leq 2n \sum_{k=1}^{n} \frac{1}{k}$$
$$= 2n \cdot H_{n}$$

$$E[X] \leq 2n \sum_{k=1}^{n} \frac{1}{k}$$
$$= 2n \cdot H_{n}$$
$$= 2n \cdot \Theta(\log n)$$

$$E[X] \leq 2n \sum_{k=1}^{n} \frac{1}{k}$$
$$= 2n \cdot H_{n}$$
$$= 2n \cdot \Theta(\log n)$$
$$= O(n \log n)$$

Why This Matters

- We have just shown that the runtime of randomized quicksort is, on expectation, O(n log n).
- To do so, we needed to use two new mathematical techniques:
 - Indicator random variables.
 - Bounding summations by integrals.
- We will use the first of these techniques more extensively over the next few days.

Introsort

- As with quickselect, quicksort still has a pathological $\Theta(n^2)$ case, though it's unlikely.
- Quicksort is, on average, faster than heapsort.
- The **introsort** algorithm addresses this:
 - Run quicksort, tracking the recursion depth.
 - If it exceeds some limit, switch to heapsort.
- Given good pivots, runs just as fast as quicksort.
- Given bad pivots, is only marginally worse than heapsort.
- Guarantees $O(n \log n)$ behavior.

A Different Algorithm: Max-Cut

- Given an undirected graph G = (V, E), a cut in G is a pair (S, V S) of two sets S and V S that split the nodes into two groups.
- The **size** or **cost** of a cut, denoted by c(S, V S), is the number of edges with one endpoint in S and one in V S.
- A **global min cut** is a cut in *G* with the least total cost. A **global max cut** is a cut in *G* with maximum total cost.

- Interestingly:
 - There are many polynomial-time algorithms known for global min-cut.
 - Global max-cut is NP-hard and no polynomial-time algorithms are known for it.
- Today, we'll see an algorithm for approximating global max-cut.
- On Friday, we'll see a randomized algorithm for finding a global min-cut.

Approximating Max-Cut

- For a maximization problem, an **\alpha-approximation algorithm** is an algorithm that produces a value that is within a factor of α of the true value.
- A 0.5-approximation to max-cut would produce a cut whose size is at least 50% the size of the true largest cut.
- Our goal will be to find a randomized approximation algorithm for max-cut.

A Really Simple Algorithm

- Here is our algorithm:
 - For each node, toss a fair coin.
 - If it lands heads, place the node into one part of the cut.
 - If it lands tails, place the node into the other part of the cut.

Analyzing the Algorithm

- On expectation, how large of a cut will this algorithm find?
- For each edge e, C_e be an indicator random variable where

$$C_e = \begin{cases} 1 & \text{if } e \text{ crosses the cut} \\ 0 & \text{otherwise} \end{cases}$$

• Then the number of edges X crossing the cut will be given by

$$X = \sum_{e \in E} C_e$$

What Did You Expect?

- The expected number of edges crossing the cut is given by E[X].
- This is

$$\mathbf{E}[X] = \mathbf{E}[\sum_{e \in E} C_e]$$

What Did You Expect?

- The expected number of edges crossing the cut is given by E[X].
- This is

$$E[X] = E[\sum_{e \in E} C_e]$$
$$= \sum_{e \in E} E[C_e]$$

What Did You Expect?

- The expected number of edges crossing the cut is given by E[X].
- This is

$$\begin{split} \mathbf{E}[X] &= & \mathbf{E}[\sum_{e \in E} C_e] \\ &= & \sum_{e \in E} \mathbf{E}[C_e] \\ &= & \sum_{e \in E} P(e \text{ crosses the cut}) \end{split}$$

Four Possibilities

Four Possibilities

That Was Unexpected

- The expected number of edges crossing the cut is given by E[X].
- This is

$$\mathsf{E}[X] = \sum_{e \in E} P(e \text{ crosses the cut})$$

That Was Unexpected

- The expected number of edges crossing the cut is given by E[X].
- This is

$$E[X] = \sum_{e \in E} P(e \text{ crosses the cut})$$
$$= \sum_{e \in E} \frac{1}{2}$$
That Was Unexpected

- The expected number of edges crossing the cut is given by E[X].
- This is

$$E[X] = \sum_{e \in E} P(e \text{ crosses the cut})$$
$$= \sum_{e \in E} \frac{1}{2}$$
$$= \frac{m}{2}$$

That Was Unexpected

- The expected number of edges crossing the cut is given by E[X].
- This is

$$E[X] = \sum_{e \in E} P(e \text{ crosses the cut})$$
$$= \sum_{e \in E} \frac{1}{2}$$
$$= \frac{m}{2}$$

• All cuts have size $\leq m$, so this is always within a factor of two of optimal!

Randomized Approximation Algorithms

- This algorithm is a randomized 0.5-approximation to max-cut.
- The algorithm runs in time O(n).
- It's **NP**-hard to find a true maximum cut, but it's not at all hard to (on expectation) find a cut that has size at least half that of the maximum cut!

Improving the Odds

- Running our algorithm will, on expectation, produce a cut with size m / 2.
- However, we don't know the actual probability that our cut has this size.
- We can use a standard technique to amplify the probability of success.

Do it Again

- Since any *individual* run of the algorithm might not produce a large cut, we could try this approach:
 - Run the algorithm *k* times.
 - Return the largest cut found.
- Goal: Show that with the right choice of *k*, this returns a large cut with high probability.
 - Specifically: Will show we get a cut of size m / 4 with high probability.
- Runtime is O((m + n)k): k rounds of doing
 O(m + n) work (n to build the cut, m to determine the size.)

• Let $X_1, X_2, ..., X_k$ be random variables corresponding to the sizes of the cuts found by each run of the algorithm.

- Let $X_1, X_2, ..., X_k$ be random variables corresponding to the sizes of the cuts found by each run of the algorithm.
- Let \mathcal{E} be the event that our algorithm produces a cut of size less than m / 4. Then

$$\mathcal{E} = \bigcap_{i=1}^k \left(X_i \leq \frac{m}{4} \right)$$

- Let $X_1, X_2, ..., X_k$ be random variables corresponding to the sizes of the cuts found by each run of the algorithm.
- Let \mathcal{E} be the event that our algorithm produces a cut of size less than m / 4. Then

$$\mathcal{E} = \bigcap_{i=1}^k \left(X_i \leq \frac{m}{4} \right)$$

• Since all X_i variables are independent, we have

$$P(\mathcal{E}) = P\left(\bigcap_{i=1}^{k} \left(X_i \leq \frac{m}{4}\right)\right)$$

- Let $X_1, X_2, ..., X_k$ be random variables corresponding to the sizes of the cuts found by each run of the algorithm.
- Let \mathcal{E} be the event that our algorithm produces a cut of size less than m / 4. Then

$$\mathcal{E} = \bigcap_{i=1}^k \left(X_i \leq \frac{m}{4} \right)$$

• Since all X_i variables are independent, we have

$$P(\mathcal{E}) = P\left(\bigcap_{i=1}^{k} \left(X_i \leq \frac{m}{4}\right)\right) = \prod_{i=1}^{k} P(X_i \leq \frac{m}{4})$$

A Simplification

 Let Y₁, Y₂, ..., Y_k be random variables defined as follows:

$$Y_{i} = m - X_{i}$$

• Then

$$P(\mathcal{E}) = \prod_{i=1}^{k} P(X_i \le \frac{m}{4}) = \prod_{i=1}^{k} P(Y_i \ge \frac{3m}{4})$$

• What now?

Markov's Inequality

• Markov's Inequality states that for any nonnegative random variable *X*, that

$$P(X \geq C) \leq \frac{\mathrm{E}[X]}{C}$$

• Equivalently:

$$P(X \geq c \operatorname{E}[X]) \leq \frac{1}{c}$$

- This holds for any random variable *X*.
- Can often get tighter bounds if we know something about the distribution of *X*.

 Let Y₁, Y₂, ..., Y_k be random variables defined as follows:

$$Y_i = m - X_i$$

• Let *Y*₁, *Y*₂, ..., *Y*_k be random variables defined as follows:

$$Y_i = m - X_i$$

• Then

 $E[Y_i] = m - E[X_i] = m - m / 2 = m / 2$

• Let *Y*₁, *Y*₂, ..., *Y*_k be random variables defined as follows:

$$Y_i = m - X_i$$

• Then

$$E[Y_i] = m - E[X_i] = m - m / 2 = m / 2$$

• Then $P(\mathcal{E}) = \prod_{i=1}^{k} P(Y_i \ge \frac{3m}{4})$

• Let *Y*₁, *Y*₂, ..., *Y*_k be random variables defined as follows:

$$Y_i = m - X_i$$

• Then

$$E[Y_i] = m - E[X_i] = m - m / 2 = m / 2$$

• Then $P(\mathcal{E}) = \prod_{i=1}^{k} P(Y_i \ge \frac{3m}{4}) \le \prod_{i=1}^{k} \frac{\mathbf{E}[Y_i]}{3m/4}$

• Let *Y*₁, *Y*₂, ..., *Y*_k be random variables defined as follows:

$$Y_i = m - X_i$$

• Then

$$E[Y_i] = m - E[X_i] = m - m / 2 = m / 2$$

• Then $P(\mathcal{E}) = \prod_{i=1}^{k} P(Y_i \ge \frac{3m}{4}) \le \prod_{i=1}^{k} \frac{E[Y_i]}{3m/4}$ $= \prod_{i=1}^{k} \frac{m/2}{3m/4}$

• Let *Y*₁, *Y*₂, ..., *Y*_k be random variables defined as follows:

$$Y_i = m - X_i$$

• Then

 $E[Y_i] = m - E[X_i] = m - m / 2 = m / 2$

• Then $P(\mathcal{E}) = \prod_{i=1}^{k} P(Y_i \ge \frac{3m}{4}) \le \prod_{i=1}^{k} \frac{E[Y_i]}{3m/4}$ $= \prod_{i=1}^{k} \frac{m/2}{3m/4} = \prod_{i=1}^{k} \frac{2/3}{3m/4}$

• Let *Y*₁, *Y*₂, ..., *Y*_k be random variables defined as follows:

$$Y_i = m - X_i$$

• Then

 $E[Y_i] = m - E[X_i] = m - m / 2 = m / 2$

• Then $P(\mathcal{E}) = \prod_{i=1}^{k} P(Y_i \ge \frac{3m}{4}) \le \prod_{i=1}^{k} \frac{E[Y_i]}{3m/4}$ $= \prod_{i=1}^{k} \frac{m/2}{3m/4} = \prod_{i=1}^{k} \frac{2}{3} \left(\frac{2}{3}\right)^k$

The Finishing Touches

- If we run the algorithm k times and take the maximum cut we find, then the probability that we don't get m / 4 edges or more is at most (2 / 3)^k.
- The probability we do get at least m / 4 edges is at least $1 (2 / 3)^k$.
- If we set $k = \log_{3/2} m$, the probability we get at least m / 4 edges is 1 1 / m.
- There is a randomized, O((m + n) log m)-time algorithm that finds a (0.25)-approximation to max-cut with probability 1 1 / m.

Why This Works

- Given a randomized algorithm that has a probability *p* of success, we can amplify that probability significantly by repeating the algorithm multiple times.
- This technique is used extensively in randomized algorithms; we'll see another example of this on Friday.

Next Time

- Karger's Algorithm
- Finding a Global Min-Cut
- Applications of Global Min-Cut