

Randomized Algorithms
Part One

Announcements

● Problem Set 2 due right now if you're
using a late period.
● Solutions released right after lecture.

● Julie's Tuesday office hours this week will
be remote office hours. Details emailed
out tomorrow.

Outline for Today

● Randomized Algorithms
● How can randomness help solve problems?

● Quickselect
● Can we do away with median-of-medians?

● Techniques in Randomization
● Linearity of expectation, the union bound,

and other tricks.

Randomized Algorithms

Deterministic Algorithms

● The algorithms we've seen so far have
been deterministic.

● We want to aim for properties like
● Good worst-case behavior.
● Getting exact solutions.

● Much of our complexity arises from the
fact that there is little flexibility here.

● Often find complex algorithms with
nuanced correctness proofs.

Randomized Algorithms

● A randomized algorithm is an
algorithm that incorporates randomness
as part of its operation.

● Often aim for properties like
● Good average-case behavior.
● Getting exact answers with high probability.
● Getting answers that are close to the right

answer.

● Often find very simple algorithms with
dense but clean analyses.

Where We're Going

● Motivating examples:
● Quickselect and quicksort are Las Vegas

algorithms: they always find the right
answer, but might take a while to do so.

● Karger's algorithm is a Monte Carlo
algorithm: it might not always find the right
answer, but has dependable performance.

● Hash tables with universal hash functions
are randomized data structures that have
high performance due to randomness.

Our First Randomized Algorithm:
Quickselect

The Selection Problem

● Recall from last time: the selection
problem is to find the kth largest element
in an unsorted array.

● Can solve in O(n log n) time by sorting
and taking the kth largest element.

● Can solve in O(n) time (with a large
constant factor) using the
“median-of-medians” algorithm.

Comparison of Selection Algorithms

Array Size Sorting Median of
Medians

10000000 0.92 0.37

20000000 1.9 0.74

30000000 2.9 1.05

40000000 3.94 1.43

50000000 5.01 1.83

60000000 6.06 2.12

70000000 7.16 2.54

80000000 8.26 2.89

90000000 9.3 3.2

Partition-Based Selection

● Recall: The median-of-medians algorithm
belongs to a family of algorithms based
on the partition algorithm:
● Choose a pivot.
● Use partition to place it correctly.
● Stop if the pivot is in the right place.
● Recurse on one piece of the array otherwise.

● With no constraints on how the pivot is
chosen, runtime is Ω(n) and O(n2).

Partition-Based Selection

32 17 41 18 52 98 21 68 53 38 54 85 99 70

Partition-Based Selection

32 17 41 18 52 98 21 68 53 38 54 85 99 70

Partition-Based Selection

32 17 41 18 52 98 21 68 53 38 54 85 99 70

Partition-Based Selection

32 174118 52 982168 53 3854 859970

Partition-Based Selection

32 174118 52 982168 53 3854 859970

Partition-Based Selection

32 174118 52 982168 53 3854 859970

Partition-Based Selection

32 17 4118 52 9821 68 5338 54 859970

Partition-Based Selection

32 17 4118 52 9821 68 5338 54 859970

Partition-Based Selection

32 17 4118 52 9821 68 5338 54 859970

Partition-Based Selection

32 17 4118 52 9821 685338 54 859970

Partition-Based Selection

32 17 4118 52 9821 685338 54 859970

Partition-Based Selection

32 17 4118 52 9821 685338 54 859970

Partition-Based Selection

32 17 4118 52 9821 685338 54 859970

Randomized Selection

● Silly question: What happens if you pick
pivots completely at random?

● Intuitively, gives reasonably good
probability of picking a good pivot.

● This algorithm is called quickselect.

Analyzing Quickselect

● When analyzing a randomized algorithm, we
typically are interested in learning the
following:
● What is the average-case runtime of the

function?
● How likely are we to achieve that average-case

runtime?
● We'll answer these questions in a few minutes.

● For now, let's start off with a simpler
question...

The Worst Case

● In the worst-case, a partition-based
selection algorithm can take O(n2) time.

● Recall: What triggers the worst-case
behavior of the selection algorithm?

● Answer: Continuously pick the largest or
smallest element on each iteration.

● Since quickselect picks pivots randomly,
what is the probability that this happens
in quickselect?

Triggering the Worst Case

32 17 41 18 52 98 21 68 53 38 54 85 99 70

Triggering the Worst Case

32 17 41 18 52 98 21 68 53 38 54 85 99 70

Triggering the Worst Case

3217 41 18 52 98 21 68 53 38 54 85 99 70

Triggering the Worst Case

3217 41 18 52 98 21 68 53 38 54 85 99 70

Triggering the Worst Case

3217 41 18 52 98 21 68 53 38 54 85 9970

Triggering the Worst Case

3217 41 18 52 98 21 68 53 38 54 85 9970

Triggering the Worst Case

● Let Ɛₖ be the event that we pick the largest or
smallest element of the array when there are k
elements left.

● Let event Ɛ correspond to the worst-case
runtime of quickselect occurring.

● We can then define Ɛ as the event

● Question: What is P(Ɛ)?

Ɛ = ∩
i=1

n

Ɛi

Triggering the Worst Case

● We have

● Since all Ɛi's are independent (we make
independent random choices at each level),
this simplifies to

If i > 1, then P(Ɛi) = 2 / i. P(Ɛ1) = 1. Thus

P (Ɛ) = P (∩
i=1

n

Ɛi)

P (Ɛ) = ∏
i=1

n

P (Ɛi)

P (Ɛ) = ∏
i=1

n

P (Ɛi) = ∏
i=2

n
2
i

=
2n−1

n!

Triggering the Worst Case

● We have

● Since all Ɛi's are independent (we make
independent random choices at each level),
this simplifies to

If i > 1, then P(Ɛi) = 2 / i. P(Ɛ1) = 1. Thus

P (Ɛ) = P (∩
i=1

n

Ɛi)

P (Ɛ) = P (∩
i=1

n

Ɛi) = ∏
i=1

n

P (Ɛi)

P (Ɛ) = ∏
i=1

n

P (Ɛi) = ∏
i=2

n
2
i

=
2n−1

n!

Triggering the Worst Case

● We have

● Since all Ɛi's are independent (we make
independent random choices at each level),
this simplifies to

● If i > 1, then P(Ɛi) = 2 / i. P(Ɛ1) = 1. Thus

P (Ɛ) = P (∩
i=1

n

Ɛi)

P (Ɛ) = ∏
i=1

n

P (Ɛi) = ∏
i=2

n
2
i

=
2n−1

n!

P (Ɛ) = P (∩
i=1

n

Ɛi) = ∏
i=1

n

P (Ɛi)

Triggering the Worst Case

● We have

● Since all Ɛi's are independent (we make
independent random choices at each level),
this simplifies to

● If i > 1, then P(Ɛi) = 2 / i. P(Ɛ1) = 1. Thus

P (Ɛ) = P (∩
i=1

n

Ɛi)

P (Ɛ) = ∏
i=1

n

P (Ɛi) = ∏
i=2

n
2
i

=
2n−1

n!

P (Ɛ) = P (∩
i=1

n

Ɛi) = ∏
i=1

n

P (Ɛi)

Triggering the Worst Case

● We have

● Since all Ɛi's are independent (we make
independent random choices at each level),
this simplifies to

● If i > 1, then P(Ɛi) = 2 / i. P(Ɛ1) = 1. Thus

P (Ɛ) = P (∩
i=1

n

Ɛi)

P (Ɛ) = ∏
i=1

n

P (Ɛi) = ∏
i=2

n
2
i

=
2n−1

n!

P (Ɛ) = P (∩
i=1

n

Ɛi) = ∏
i=1

n

P (Ɛi)

Triggering the Worst Case

● We have

● Since all Ɛi's are independent (we make
independent random choices at each level),
this simplifies to

● If i > 1, then P(Ɛi) = 2 / i. P(Ɛ1) = 1. Thus

P (Ɛ) = P (∩
i=1

n

Ɛi)

P (Ɛ) = ∏
i=1

n

P (Ɛi) = ∏
i=2

n
2
i

=
2n−1

n!

P (Ɛ) = P (∩
i=1

n

Ɛi) = ∏
i=1

n

P (Ɛi)

Eensy Weensy Numbers

● The probability of triggering the
worst-case behavior of quickselect is

● To put that in perspective: if n = 31, then
2n-1 ≈ 109 and n! ≈ 8 × 1033.

● This is extremely unlikely!

P (Ɛ) =
2n−1

n!

On Average

● We know that the probability of getting a
worst-case runtime is vanishingly small.

● But how does the algorithm do on
average? Is it Θ(n)? Θ(n log n)?
Something else?

● Totally reasonable thing to do: try
running it and see what happens!

Comparison of Selection Algorithms
Array Size Sorting Median of

Medians
Quickselect

10000000 0.92 0.37 0.11

20000000 1.9 0.74 0.14

30000000 2.9 1.05 0.27

40000000 3.94 1.43 0.44

50000000 5.01 1.83 0.53

60000000 6.06 2.12 0.64

70000000 7.16 2.54 0.69

80000000 8.26 2.89 1.01

90000000 9.3 3.2 0.72

An Average-Case Analysis

● Our guess: average runtime is Θ(n).
● How would we go about proving this?
● Since algorithm is recursive, might want

to write a recurrence relation.
● This is challenging: the split size isn't

guaranteed, so we have no idea how big
our subproblems will be!

● Let's try another approach...

An Accounting Trick

● Because quickselect makes at most one
recursive call, we can think of the algorithm as
a chain of recursive calls:

● Accounting trick: group multiple calls together
into one “phase” of the algorithm.

The sum of the work done by all calls is equal
to the sum of the work done by all phases.

Goal: Pick phases intelligently to simplify
analysis.

137 96 64 42 13 7

An Accounting Trick

● Because quickselect makes at most one
recursive call, we can think of the algorithm as
a chain of recursive calls:

● Accounting trick: group multiple calls together
into one “phase” of the algorithm.

● The sum of the work done by all calls is equal
to the sum of the work done by all phases.

● Goal: Pick phases intelligently to simplify
analysis.

137 96 64 42 13 7

Picking Phases

● Let's define one “phase” of the algorithm
to be when the algorithm decreases the
size of the input array to 75% of the
original size or less.

● Why 75%?
● If array shrinks by any constant factor from

phase to phase and only does linear work per
phase, total work done is linear.

● The number 75% has a nice intuition...

Triggering 75% / 25%

● Suppose that we pick a pivot whose value
is in the middle 50% of all array values.

● Then 25% of array values are larger and
25% of array values are smaller.

● Guaranteed to get a 75% / 25% split!
● A phase ends as soon as we pick a pivot

in the middle 50% of all values.

Analyzing the Runtime

● Number the phases 0, 1, 2, …

● In phase k, the array size is (3n / 4)k.

● Number of phases is at most ⌈log4/3 n⌉.

● Let Xₖ be a random variable equal to the number of
recursive calls in phase k.

● Work done in phase k is at most

● Let W be a random variable denoting the total
work done. Then

Xk⋅cn(
3
4

)
k

 (for some constant c)

W ≤ ∑
k=0

⌈log4 /3n⌉

(Xk⋅cn(
3
4

)
k

) = cn ∑
k=0

⌈log4 /3n⌉

(Xk(
3
4

)
k

)

Analyzing the Runtime

● Number the phases 0, 1, 2, …

● In phase k, the array size is at most n(3 / 4)k.

● Number of phases is at most ⌈log4/3 n⌉.

● Let Xₖ be a random variable equal to the number of
recursive calls in phase k.

● Work done in phase k is at most

● Let W be a random variable denoting the total
work done. Then

Xk⋅cn(
3
4

)
k

 (for some constant c)

W ≤ ∑
k=0

⌈log4 /3n⌉

(Xk⋅cn(
3
4

)
k

) = cn ∑
k=0

⌈log4 /3n⌉

(Xk(
3
4

)
k

)

Analyzing the Runtime

● Number the phases 0, 1, 2, …

● In phase k, the array size is at most n(3 / 4)k.

● Last phase numbered at most ⌈log4/3 n⌉.

● Let Xₖ be a random variable equal to the number of
recursive calls in phase k.

● Work done in phase k is at most

● Let W be a random variable denoting the total
work done. Then

Xk⋅cn(
3
4

)
k

 (for some constant c)

W ≤ ∑
k=0

⌈log4 /3n⌉

(Xk⋅cn(
3
4

)
k

) = cn ∑
k=0

⌈log4 /3n⌉

(Xk(
3
4

)
k

)

Analyzing the Runtime

● Number the phases 0, 1, 2, …

● In phase k, the array size is at most n(3 / 4)k.

● Last phase numbered at most ⌈log4/3 n⌉.

● Let Xₖ be a random variable equal to the number of
recursive calls in phase k.

● Work done in phase k is at most

● Let W be a random variable denoting the total
work done. Then

Xk⋅cn(
3
4

)
k

 (for some constant c)

W ≤ ∑
k=0

⌈log4 /3n⌉

(Xk⋅cn(
3
4

)
k

) = cn ∑
k=0

⌈log4 /3n⌉

(Xk(
3
4

)
k

)

Analyzing the Runtime

● Number the phases 0, 1, 2, …

● In phase k, the array size is at most n(3 / 4)k.

● Last phase numbered at most ⌈log4/3 n⌉.

● Let Xₖ be a random variable equal to the number of
recursive calls in phase k.

● Work done in phase k is at most

● Let W be a random variable denoting the total
work done. Then

Xk⋅cn(
3
4

)
k

 (for some constant c)

W ≤ ∑
k=0

⌈log4 /3n⌉

(Xk⋅cn(
3
4

)
k

) = cn ∑
k=0

⌈log4 /3n⌉

(Xk(
3
4

)
k

)

 W ≤ ∑
k=0

⌈log4 /3n⌉

(Xk⋅cn(
3
4

)
k

) = cn ∑
k=0

⌈log4 /3n⌉

(Xk(
3
4

)
k

)

Analyzing the Runtime

● Number the phases 0, 1, 2, …

● In phase k, the array size is at most n(3 / 4)k.

● Last phase numbered at most ⌈log4/3 n⌉.

● Let Xₖ be a random variable equal to the number of
recursive calls in phase k.

● Work done in phase k is at most

● Let W be a random variable denoting the total
work done. Then

Xk⋅cn(
3
4

)
k

 (for some constant c)

Analyzing the Runtime

● Number the phases 0, 1, 2, …

● In phase k, the array size is at most n(3 / 4)k.

● Last phase numbered at most ⌈log4/3 n⌉.

● Let Xₖ be a random variable equal to the number of
recursive calls in phase k.

● Work done in phase k is at most

● Let W be a random variable denoting the total
work done. Then

Xk⋅cn(
3
4

)
k

 (for some constant c)

W ≤ ∑
k=0

⌈log4 /3n⌉

(Xk⋅cn(
3
4

)
k

) = cn ∑
k=0

⌈log4 /3n⌉

(Xk(
3
4

)
k

)

The Average-Case Analysis

● Our goal is to determine the expected
runtime for quickselect on an array of
size n.

● This is E[W], the expected value of W.
● This is given by

E[W] ≤ E [cn ∑
k=0

⌈ log4/3n⌉

(X k(
3
4

)
k

)]

Properties of Expectation

● The expected value of a constant or
non-random variable is just that constant or
variable itself:

 E[c] = c
● Expected value is a linear operator:

E[aX + b] = aE[X] + b

E[X + Y] = E[X] + E[Y]
● Note that the second claim holds even if X and

Y are dependent variables.

Simplifying Our Expression

E[W] ≤ E [cn ∑
k=0

⌈log4 /3n⌉

(Xk(
3
4

)
k

)]
= cn⋅E [∑

k=0

⌈ log4 /3n ⌉

(Xk(
3
4

)
k

)]
= cn⋅ ∑

k=0

⌈ log4/3 n⌉

E [Xk(
3
4

)
k

]
= cn⋅ ∑

k=0

⌈ log4/3 n⌉

E [X k](
3
4

)
k

Simplifying Our Expression

E[W] ≤ E [cn ∑
k=0

⌈log4 /3n⌉

(Xk(
3
4

)
k

)]
= cn⋅E [∑

k=0

⌈ log4 /3n ⌉

(Xk(
3
4

)
k

)]
= cn⋅ ∑

k=0

⌈ log4/3 n⌉

E [Xk(
3
4

)
k

]
= cn⋅ ∑

k=0

⌈ log4/3 n⌉

E [X k](
3
4

)
k

Simplifying Our Expression

E[W] ≤ E [cn ∑
k=0

⌈log4 /3n⌉

(Xk(
3
4

)
k

)]
= cn⋅E [∑

k=0

⌈ log4 /3n ⌉

(Xk(
3
4

)
k

)]
= cn⋅ ∑

k=0

⌈ log4/3 n⌉

E [Xk(
3
4

)
k

]
= cn⋅ ∑

k=0

⌈ log4/3 n⌉

E [X k](
3
4

)
k

Simplifying Our Expression

E[W] ≤ E [cn ∑
k=0

⌈log4 /3n⌉

(Xk(
3
4

)
k

)]
= cn⋅E [∑

k=0

⌈ log4 /3n ⌉

(Xk(
3
4

)
k

)]
= cn⋅ ∑

k=0

⌈ log4/3 n⌉

E [Xk(
3
4

)
k

]
= cn⋅ ∑

k=0

⌈ log4/3 n⌉

E [X k](
3
4

)
k

Simplifying Our Expression

E[W] ≤ E [cn ∑
k=0

⌈log4 /3n⌉

(Xk(
3
4

)
k

)]
= cn⋅E [∑

k=0

⌈ log4 /3n ⌉

(Xk(
3
4

)
k

)]
= cn⋅ ∑

k=0

⌈ log4/3 n⌉

E [Xk(
3
4

)
k

]
= cn⋅ ∑

k=0

⌈ log4/3 n⌉

E [X k](
3
4

)
k

E[Xₖ]

● By definition:

Recall: Xₖ is the number of calls within phase k.

● Equivalently: The number of calls before a
pivot is chosen in the middle 50% of the
elements.

● Can we determine this explicitly?

E[Xk]=∑
i=0

∞

i⋅P (Xk=i)

E[Xₖ]

E[Xk]=∑
i=0

∞

i⋅P (Xk=i)

● E[Xₖ] is defined by

● P(Xₖ = i) is the probability that the first i – 1

pivots we chose weren't in the middle 50% and
that the ith pivot is in the middle 50%.

● (As an edge case, it's 0 when i = 0.)
● As a simplification: assume that whenever we

pick a pivot, we can choose from any of the n
elements present at the start of the phase.

● Only makes it harder to end the phase;
provides an upper bound on the phase length.

E[Xₖ]

● Recall: E[Xₖ] is defined by

● Under the assumption that all pivot choices are

independent, P(Xₖ = i) is given by

P(Xₖ = i) = (1 / 2)i

Probability the first i – 1 pivots are in the outer
50% and the ith pivot was in the inner 50%.

● Therefore

E[Xk]=∑
i=0

∞

i⋅P (Xk=i)

E[Xk] = ∑
i=0

∞

i⋅P (Xk=i) ≤ ∑
i=1

∞ i
2i

= 2

E[Xₖ]

● Recall: E[Xₖ] is defined by

● Under the assumption that all pivot choices are

independent, P(Xₖ = i) is given by

P(Xₖ = i) = (1 / 2)i

Probability the first i – 1 pivots are in the outer
50% and the ith pivot was in the inner 50%.

● Therefore

E[Xk]=∑
i=0

∞

i⋅P (Xk=i)

E[Xk] = ∑
i=0

∞

i⋅P (Xk=i) ≤ ∑
i=1

∞ i
2i

= 2

E[Xₖ]

● Recall: E[Xₖ] is defined by

● Under the assumption that all pivot choices are

independent, P(Xₖ = i) is given by

P(Xₖ = i) = (1 / 2)i

● Probability the first i – 1 pivots are in the outer
50% and the ith pivot was in the inner 50%.

● Therefore

E[Xk]=∑
i=0

∞

i⋅P (Xk=i)

E[Xk] = ∑
i=0

∞

i⋅P (Xk=i) ≤ ∑
i=1

∞ i
2i

= 2

E[Xₖ]

● Recall: E[Xₖ] is defined by

● Under the assumption that all pivot choices are

independent, P(Xₖ = i) is given by

P(Xₖ = i) = (1 / 2)i

● Probability the first i – 1 pivots are in the outer
50% and the ith pivot was in the inner 50%.

● Therefore

E[Xk]=∑
i=0

∞

i⋅P (Xk=i)

E[Xk] = ∑
i=0

∞

i⋅P (Xk=i) ≤ ∑
i=1

∞ i
2i

= 2

E[Xₖ]

● Recall: E[Xₖ] is defined by

● Under the assumption that all pivot choices are

independent, P(Xₖ = i) is given by

P(Xₖ = i) = (1 / 2)i

● Probability the first i – 1 pivots are in the outer
50% and the ith pivot was in the inner 50%.

● Therefore

E[Xk]=∑
i=0

∞

i⋅P (Xk=i)

E[Xk] = ∑
i=0

∞

i⋅P (Xk=i) ≤ ∑
i=1

∞ i
2i

= 2

E[Xₖ]

● Recall: E[Xₖ] is defined by

● Under the assumption that all pivot choices are

independent, P(Xₖ = i) is given by

P(Xₖ = i) = (1 / 2)i

● Probability the first i – 1 pivots are in the outer
50% and the ith pivot was in the inner 50%.

● Therefore

E[Xk]=∑
i=0

∞

i⋅P (Xk=i)

E[Xk] = ∑
i=0

∞

i⋅P (Xk=i) ≤ ∑
i=1

∞ i
2i

= 2

Finalizing the Computation

E[W] ≤ cn⋅ ∑
k=0

⌈ log4/3n⌉

E [X k](
3
4

)
k

= cn⋅ ∑
k=0

⌈ log4/3n⌉

2(
3
4

)
k

= 2cn⋅ ∑
k=0

⌈ log4/3n ⌉

(
3
4

)
k

≤ 2cn⋅∑
k=0

∞

(
3
4

)
k

= 8cn
= O(n)

Finalizing the Computation

E[W] ≤ cn⋅ ∑
k=0

⌈ log4/3n⌉

E [X k](
3
4

)
k

≤ cn⋅ ∑
k=0

⌈ log4/3n⌉

2(
3
4

)
k

= 2cn⋅ ∑
k=0

⌈ log4/3n ⌉

(
3
4

)
k

≤ 2cn⋅∑
k=0

∞

(
3
4

)
k

= 8cn
= O(n)

Finalizing the Computation

E[W] ≤ cn⋅ ∑
k=0

⌈ log4/3n⌉

E [X k](
3
4

)
k

≤ cn⋅ ∑
k=0

⌈ log4/3n⌉

2(
3
4

)
k

= 2cn⋅ ∑
k=0

⌈ log4/3n ⌉

(
3
4

)
k

≤ 2cn⋅∑
k=0

∞

(
3
4

)
k

= 8cn
= O(n)

Finalizing the Computation

E[W] ≤ cn⋅ ∑
k=0

⌈ log4/3n⌉

E [X k](
3
4

)
k

≤ cn⋅ ∑
k=0

⌈ log4/3n⌉

2(
3
4

)
k

= 2cn⋅ ∑
k=0

⌈ log4/3n ⌉

(
3
4

)
k

≤ 2cn⋅∑
k=0

∞

(
3
4

)
k

= 8cn
= O(n)

Finalizing the Computation

E[W] ≤ cn⋅ ∑
k=0

⌈ log4/3n⌉

E [X k](
3
4

)
k

≤ cn⋅ ∑
k=0

⌈ log4/3n⌉

2(
3
4

)
k

= 2cn⋅ ∑
k=0

⌈ log4/3n ⌉

(
3
4

)
k

≤ 2cn⋅∑
k=0

∞

(
3
4

)
k

= 8cn
= O(n)

Finalizing the Computation

E[W] ≤ cn⋅ ∑
k=0

⌈ log4/3n⌉

E [X k](
3
4

)
k

≤ cn⋅ ∑
k=0

⌈ log4/3n⌉

2(
3
4

)
k

= 2cn⋅ ∑
k=0

⌈ log4/3n ⌉

(
3
4

)
k

≤ 2cn⋅∑
k=0

∞

(
3
4

)
k

= 8cn
= O(n)

Bounding the Spread

● We now know that quickselect runs in
expected O(n) time.

● How likely is it that the runtime is O(n)?

Bounding the Spread

● Idea: Devise a formula for the probability that every
phase terminates within r steps.

● If this happens, quickselect will run in time

● Goal: Find the probability (as a function of r)
that this occurs.

cn⋅ ∑
k=0

⌈ log4 /3n⌉

Xk(
3
4

)
k

≤ cn⋅ ∑
k=0

⌈log4 /3n⌉

r (
3
4

)
k

= cnr⋅ ∑
k=0

⌈ log4 /3n⌉

(
3
4

)
k

≤ 4cnr
= O(nr)

Bounding the Spread

● Idea: Devise a formula for the probability that every
phase terminates within r steps.

● If this happens, quickselect will run in time

● Goal: Find the probability (as a function of r)
that this occurs.

cn⋅ ∑
k=0

⌈ log4 /3n⌉

Xk(
3
4

)
k

≤ cn⋅ ∑
k=0

⌈log4 /3n⌉

r (
3
4

)
k

= cnr⋅ ∑
k=0

⌈ log4 /3n⌉

(
3
4

)
k

≤ 4cnr
= O(nr)

Bounding the Spread

● Idea: Devise a formula for the probability that every
phase terminates within r steps.

● If this happens, quickselect will run in time

● Goal: Find the probability (as a function of r)
that this occurs.

cn⋅ ∑
k=0

⌈ log4 /3n⌉

Xk(
3
4

)
k

≤ cn⋅ ∑
k=0

⌈log4 /3n⌉

r (
3
4

)
k

= cnr⋅ ∑
k=0

⌈ log4 /3n⌉

(
3
4

)
k

≤ 4cnr
= O(nr)

Bounding the Spread

● Idea: Devise a formula for the probability that every
phase terminates within r steps.

● If this happens, quickselect will run in time

● Goal: Find the probability (as a function of r)
that this occurs.

cn⋅ ∑
k=0

⌈ log4 /3n⌉

Xk(
3
4

)
k

≤ cn⋅ ∑
k=0

⌈log4 /3n⌉

r (
3
4

)
k

= cnr⋅ ∑
k=0

⌈ log4 /3n⌉

(
3
4

)
k

≤ 4cnr
= O(nr)

Bounding the Spread

● Idea: Devise a formula for the probability that every
phase terminates within r steps.

● If this happens, quickselect will run in time

● Goal: Find the probability (as a function of r)
that this occurs.

cn⋅ ∑
k=0

⌈ log4 /3n⌉

Xk(
3
4

)
k

≤ cn⋅ ∑
k=0

⌈log4 /3n⌉

r (
3
4

)
k

= cnr⋅ ∑
k=0

⌈ log4 /3n⌉

(
3
4

)
k

≤ 4cnr
= O(nr)

Bounding the Spread

● Idea: Devise a formula for the probability that every
phase terminates within r steps.

● If this happens, quickselect will run in time

● Goal: Find the probability (as a function of r)
that this occurs.

cn⋅ ∑
k=0

⌈ log4 /3n⌉

Xk(
3
4

)
k

≤ cn⋅ ∑
k=0

⌈log4 /3n⌉

r (
3
4

)
k

= cnr⋅ ∑
k=0

⌈ log4 /3n⌉

(
3
4

)
k

≤ 4cnr
= O(nr)

Bounding the Spread

● Idea: Devise a formula for the probability that every
phase terminates within r steps.

● If this happens, quickselect will run in time

● Goal: Find the probability (as a function of r)
that this occurs.

cn⋅ ∑
k=0

⌈ log4 /3n⌉

Xk(
3
4

)
k

≤ cn⋅ ∑
k=0

⌈log4 /3n⌉

r (
3
4

)
k

= cnr⋅ ∑
k=0

⌈ log4 /3n⌉

(
3
4

)
k

≤ 4cnr
= O(nr)

Bounding the Spread

● We want the probability of the event

All phases terminate within r steps.
● Mathematically, it's easier to work with

the probability of the complement of this
event:

At least one phase terminates
in at least r + 1 steps.

● We can compute the probability of the
first event by subtracting the probability
of the second event from one.

Long Phase Runtimes

● The probability that phase k takes more
than r steps to finish is given by

P(Xₖ > r)
● This is

● Since these events are all mutually
exclusive:

P (Xk>r) = ∑
i=r +1

∞

P (Xk=i) ≤ ∑
i=r+1

∞ 1
2i

=
1
2r

P (Xk > r) = P (∪
i=r +1

∞

Xk=i)

Long Phase Runtimes

● The probability that phase k takes more
than r steps to finish is given by

P(Xₖ > r)
● This is

● Since these events are all mutually
exclusive:

P (Xk>r) = ∑
i=r +1

∞

P (Xk=i) ≤ ∑
i=r+1

∞ 1
2i

=
1
2r

P (Xk > r) = P (∪
i=r +1

∞

Xk=i)

Long Phase Runtimes

● The probability that phase k takes more
than r steps to finish is given by

P(Xₖ > r)
● This is

● Since these events are all mutually
exclusive:

P (Xk>r) = ∑
i=r +1

∞

P (Xk=i) ≤ ∑
i=r+1

∞ 1
2i

=
1
2r

P (Xk > r) = P (∪
i=r +1

∞

Xk=i)

Long Phase Runtimes

● The probability that phase k takes more
than r steps to finish is given by

P(Xₖ > r)
● This is

● Since these events are all mutually
exclusive:

P (Xk>r) = ∑
i=r +1

∞

P (Xk=i) ≤ ∑
i=r+1

∞ 1
2i

=
1
2r

P (Xk > r) = P (∪
i=r +1

∞

Xk=i)

Long Phase Runtimes

● The probability that phase k takes more
than r steps to finish is given by

P(Xₖ > r)
● This is

● Since these events are all mutually
exclusive:

P (Xk>r) = ∑
i=r +1

∞

P (Xk=i) ≤ ∑
i=r+1

∞ 1
2i

=
1
2r

P (Xk > r) = P (∪
i=r +1

∞

Xk=i)

Long Phase Runtimes

● The probability that any phase takes more than
r steps to finish is

● These are not mutually exclusive events – we
may have multiple different phases finish in
more than r steps.

● We can use the union bound to get an
upper-bound on the true value:

P (∪
i=0

⌈log4/3n⌉

X i>r)

P (∪
i=0

∞

Ɛ i) ≤ ∑
i=0

∞

P (Ɛ i)

P (∪
i=0

⌈ log4 /3n⌉

X i>r) ≤ ∑
i=0

⌈log4 /3n⌉

P (X i>r) ≤ ∑
i=0

⌈log4 /3n⌉
1
2r =

⌈log4/3n⌉

2r

Long Phase Runtimes

● The probability that any phase takes
more than r steps to finish is

● Using the union bound:

P (∪
i=0

⌈log4/3n⌉

X i>r)

P (∪
i=0

⌈ log4 /3n⌉

X i>r) ≤ ∑
i=0

⌈log4 /3n⌉

P (X i>r) ≤ ∑
i=0

⌈log4 /3n⌉
1
2r =

⌈log4/3n⌉

2r

Long Phase Runtimes

● The probability that any phase takes
more than r steps to finish is

● Using the union bound:

P (∪
i=0

⌈log4/3n⌉

X i>r)

P (∪
i=0

⌈ log4 /3n⌉

X i>r) ≤ ∑
i=0

⌈log4 /3n⌉

P (X i>r) ≤ ∑
i=0

⌈log4 /3n⌉
1
2r =

⌈log4/3n⌉

2r

Long Phase Runtimes

● The probability that any phase takes
more than r steps to finish is

● Using the union bound:

P (∪
i=0

⌈log4/3n⌉

X i>r)

P (∪
i=0

⌈ log4 /3n⌉

X i>r) ≤ ∑
i=0

⌈log4 /3n⌉

P (X i>r) ≤ ∑
i=0

⌈log4 /3n⌉
1
2r =

⌈log4/3n⌉+1

2r

Long Phase Runtimes

● The probability that any phase takes
more than r steps to finish is

● Using the union bound:

P (∪
i=0

⌈log4/3n⌉

X i>r)

Long Phase Runtimes

● For any number r, the probability that any one
phase takes more than r steps to finish is

● If for any value s we pick ,

then the probability that any phase takes at
most r steps to complete is at most

● So the probability every phase ends within
 steps is at least 1 – 1 / 2s.

r=s+log2(⌈log4 /3n⌉+1)

⌈log4/3n⌉+1

2r
=

⌈log4/3n⌉+1

2s+log2(⌈ log4 /3n⌉+1)
=

⌈log4/3n⌉+1

2s(⌈log4 /3n⌉+1)
=

1
2s

r=s+log2⌈log4/3n⌉

⌈ log4/3n⌉+1

2r

Long Phase Runtimes

● For any number r, the probability that any one
phase takes more than r steps to finish is

● If for any value s we pick ,

then the probability that any phase takes more
than r steps to complete is at most

● So the probability every phase ends within
 steps is at least 1 – 1 / 2s.

r=s+log2(⌈log4 /3n⌉+1)

⌈log4/3n⌉+1

2r
=

⌈log4/3n⌉+1

2s+log2(⌈ log4 /3n⌉+1)
=

⌈log4/3n⌉+1

2s(⌈log4 /3n⌉+1)
=

1
2s

r=s+log2⌈log4/3n⌉

⌈ log4/3n⌉+1

2r

Long Phase Runtimes

● For any number r, the probability that any one
phase takes more than r steps to finish is

● If for any value s we pick ,

then the probability that any phase takes more
than r steps to complete is at most

● So the probability every phase ends within
 steps is at least 1 – 1 / 2s.

r=s+log2(⌈log4 /3n⌉+1)

⌈log4/3n⌉+1

2r
=

⌈log4/3n⌉+1

2s+log2(⌈ log4 /3n⌉+1)
=

⌈log4/3n⌉+1

2s(⌈log4 /3n⌉+1)
=

1
2s

r=s+log2⌈log4/3n⌉

⌈ log4/3n⌉+1

2r

Long Phase Runtimes

● For any number r, the probability that any one
phase takes more than r steps to finish is

● If for any value s we pick ,

then the probability that any phase takes more
than r steps to complete is at most

● So the probability every phase ends within
 steps is at least 1 – 1 / 2s.

r=s+log2(⌈log4 /3n⌉+1)

⌈log4/3n⌉+1

2r
=

⌈log4/3n⌉+1

2s+log2(⌈ log4 /3n⌉+1)
=

⌈log4/3n⌉+1

2s(⌈log4 /3n⌉+1)
=

1
2s

r=s+log2⌈log4/3n⌉

⌈ log4/3n⌉+1

2r

Long Phase Runtimes

● For any number r, the probability that any one
phase takes more than r steps to finish is

● If for any value s we pick ,

then the probability that any phase takes more
than r steps to complete is at most

● So the probability every phase ends within
 steps is at least 1 – 1 / 2s.

r=s+log2(⌈log4 /3n⌉+1)

⌈log4/3n⌉+1

2r
=

⌈log4/3n⌉+1

2s+log2(⌈ log4 /3n⌉+1)
=

⌈log4/3n⌉+1

2s(⌈log4 /3n⌉+1)
=

1
2s

r=s+log2⌈log4/3n⌉

⌈ log4/3n⌉+1

2r

Bounding the Runtime

● Recall: If all phases terminate within r steps,
the total runtime will be O(nr).

● If we pick , then the
runtime will be O(ns + n log log n) with
probability at least 1 – 1/2s.

● For any constant k, pick s = log₂ nk = k log₂ n.
Probability that the runtime is O(n log n) is at
least 1 – 1 / nk.

● Definition: Event Ɛ occurs with high
probability iff P(Ɛ) ≥ 1 – 1 / nc for some c ≥ 1.

● Quickselect runs in time at most O(n log n)
with high probability.

r=s+log2(⌈log4 /3n⌉+1)

Wrap-Up: Introselect

Where We Stand

● The median-of-medians algorithm has
runtime O(n), but has a large constant
factor.

● Quickselect has average-case runtime
O(n) with a low constant factor, but isn't
guaranteed to run in time O(n).

● Can we get the best of both worlds?

Introspective Selection

● The introselect algorithm intelligently
combines median-of-medians and quickselect.

● Idea: Run quickselect, but keep track of how
many iterations have passed in the current
phase.

● If the phase ends before the number of
iterations exceeds some constant k, reset the
counter and continue.

● Otherwise, run the median-of-medians
algorithm to choose a pivot and reset the
counter.

Introspective Selection

● Assuming introselect makes good random
choices, it is inappreciably slower than
normal quickselect.

● If it makes too many bad choices, we do
some expensive median-of-medians steps,
which is slower but ensures linear time.

● Net result is an algorithm that has
worst-case O(n) runtime and on expectation
matches quickselect's runtime.

Comparison of Selection Algorithms

Array Size Sorting Median of
Medians

Quickselect Introselect

10000000 0.92 0.37 0.11 0.07

20000000 1.9 0.74 0.14 0.17

30000000 2.9 1.05 0.27 0.17

40000000 3.94 1.43 0.44 0.33

50000000 5.01 1.83 0.53 0.42

60000000 6.06 2.12 0.64 0.41

70000000 7.16 2.54 0.69 0.51

80000000 8.26 2.89 1.01 0.56

90000000 9.3 3.2 0.72 0.88

Next Time

● Quicksort
● Indicator Random Variables
● Harmonic Numbers

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107

