
  

Divide-and-Conquer Algorithms
Part Four



  

Announcements

● Problem Set 2 due right now.
● Can submit by Monday at 2:15PM using one 

late period.

● Problem Set 3 out, due July 22.
● Play around with divide-and-conquer 

algorithms and recurrence relations!
● Covers material up through and including 

today's lecture.



  



  

Outline for Today

● The Selection Problem
● A problem halfway between searching and 

sorting.

● A Linear-Time Selection Algorithm
● A nonobvious algorithm with a nontrivial 

runtime.

● The Substitution Method
● Solving recurrences the Master Theorem can't 

handle.



  

Order Statistics

● Given a collection of data, the kth order 
statistic is the kth smallest value in the data 
set.

● For the purposes of this course, we'll use 
zero-indexing, so the smallest element would be 
given by the 0th order statistic.

● To give a robust definition: the kth order statistic 
is the element that would appear at position k if 
the data were sorted.
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The Selection Problem

● The selection problem is the following: Given 
a data set S (typically represented as an array) 
and a number k, return the kth order statistic 
of that set.

● Has elements of searching and sorting: Want to 
search for the kth-smallest element, but this is 
defined relative to a sorted ordering.

● For today, we'll assume all values are distinct.
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An Initial Solution

● Any ideas how to solve this?
● Here is one simple solution:

● Sort the array.
● Return the element at the kth position.

● Unless we know something special about 
the array, this will run in time O(n log n).

● Can we do better?



  

A Useful Subroutine: Partition

● Given an input array, a partition algorithm 
chooses some element p (called the pivot), 
then rearranges the array so that
● All elements less than or equal to p are before p.
● All elements greater p are after p.
● p is in the position it would occupy if the array 

were sorted.
● The algorithm then returns the index of p.

● We'll talk about how to choose which element 
should be the pivot later; right now, assume the 
algorithm chooses one arbitrarily.



  

Partitioning an Array
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Partitioning and Selection

● There is a close connection between 
partitioning and the selection problem.

Let k be the desired index and p be the 
pivot index after a partition step.  Then:

If p = k, return A[k].

If p < k, recursively select element k from the 
elements before the pivot.

If p > k, recursively select element (k – p – 1) 
from the elements after the pivot.
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procedure select(array A, int k):
  let p = partition(A)
  if p = k:
    return A[p]
  else if p > k:
    return select(A[0 … p–1], k)
  else (if p < k):
    return select(A[p+1 … length(A)–1], k – p – 1)

procedure select(array A, int k):
  let p = partition(A)
  if p = k:
    return A[p]
  else if p > k:
    return select(A[0 … p–1], k)
  else (if p < k):
    return select(A[p+1 … length(A)–1], k – p – 1)



  

Some Facts

● The partitioning algorithm on an array of 
length n can be made to run in time Θ(n).
● Check the Problem Set Advice handout for 

an outline of an algorithm to do this.

● Partitioning algorithms give no 
guarantee about which element is 
selected as the pivot.

● Each recursive call does Θ(n) work, then 
makes a recursive call on a smaller array.



  

Analyzing the Runtime

● The runtime of our algorithm depends on 
our choice of pivot.

● In the best-case, if we pick a pivot that ends 
up at position k, the runtime is Θ(n).

● In the worst case, we pick always pick pivot 
that is the minimum or maximum value in 
the array.  The runtime is given by this 
recurrence:

T(1) = Θ(1)
T(n) = T(n – 1) + Θ(n)
T(1) = Θ(1)
T(n) = T(n – 1) + Θ(n)



  

Analyzing the Runtime

● Our runtime is given by this recurrence:

● Can we apply the Master Theorem?
● This recurrence solves to Θ(n2).

● First call does roughly n work, second does 
roughly n – 1, third does roughly n – 2, etc.

● Total work is n + (n – 1) + (n – 2) + … + 1.
● This is Θ(n2).

T(1) = Θ(1)
T(n) = T(n – 1) + Θ(n)
T(1) = Θ(1)
T(n) = T(n – 1) + Θ(n)



  

The Story So Far

● If we have no control over the pivot in 
the partition step, our algorithm has 
runtime Ω(n) and O(n2).

● Using heapsort, we could guarantee 
O(n log n) behavior.

● Can we improve our worst-case bounds?



  

Finding a Good Pivot

● Recall: We recurse on one of the two 
pieces of the array if we don't 
immediately find the element we want.

● A good pivot should split the array so 
that each piece is some constant fraction 
of the size of the array.
● (Those sizes don't have to be the same, 

though.)
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Finding a Good Pivot

● Recall: We recurse on one of the two 
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● A good pivot should split the array so 
that each piece is some constant fraction 
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An Initial Insight

● Here's an idea we can use to find a good pivot:
● Recursively find the median of the first two-thirds of 

the array.
● Use that median as a pivot in the partition step.

● Claim: guarantees a two-thirds / one-third split in 
the partition step.

The median of the first two thirds of the array is 
smaller than one third of the array elements and 
greater than one third of the array elements.
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Analyzing the Runtime

● Our algorithm
● Recursively calls itself on the first 2/3 of the 

array.
● Runs a partition step.
● Then, either immediately terminates, or 

recurses in a piece of size n / 3 or a piece of 
size 2n / 3.

● This gives the following recurrence:

T(1) = Θ(1)
T(n) ≤ 2T(2n / 3) + Θ(n)
T(1) = Θ(1)
T(n) ≤ 2T(2n / 3) + Θ(n)



  

Analyzing the Runtime

● We have the following recurrence:

● Can we apply the Master Theorem?

What are a, b, and d?

a = 2, b = 3 / 2, and d = 1.

Since log3 / 2 2 > 1, the runtime is
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O(n
log3 /22

) ≈ O(n1.26)



  

A Better Idea

● The following algorithm for picking a 
good pivot is due to these computer 
scientists:
● Manuel Blum (Turing Award Winner)
● Robert Floyd (Turing Award Winner)
● Vaughan Pratt (Stanford Professor Emeritus)
● Ron Rivest (Turing Award Winner)
● Robert Tarjan (Turing Award Winner)

● If what follows does not seem at all 
obvious, don't worry!



  

The Algorithm

● Break the input apart into block of five 
elements each, putting leftover elements into 
their own block.

● Determine the median of each of these 
blocks.  (Note that each median can be found 
in time O(1), since the block size is a 
constant).

● Recursively determine the median of these 
medians.

● Use that median as a pivot.



  

Why This Works
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Why This Works

 
 

● The median-of-medians ( ) is larger than 3/5 of the ★
elements from (roughly) the first half of the blocks.

●  ★ larger than about 3/10 of the total elements.

●  ★ is smaller than about 3/10 of the total elements.

● Guarantees a 30% / 70% split.
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The New Recurrence

● The median-of-medians algorithm does the 
following:

● Split the input into blocks of size 5 in time Θ(n).
● Compute the median of each block non-recursively.  

Takes time Θ(n), since there are about n / 5 blocks.
● Recursively invoke the algorithm on this list of n / 5 

blocks to get a pivot.
● Partition using that pivot in time Θ(n).
● Make up to one recursive call on an input of size at 

most 7n / 10.

T(1) = Θ(1)
T(n) ≤ T(⌊n / 5⌋) + T(⌊7n / 10⌋) + Θ(n)
T(1) = Θ(1)
T(n) ≤ T(⌊n / 5⌋) + T(⌊7n / 10⌋) + Θ(n)
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The New Recurrence

● Our new recurrence is

 

 

● Can we apply the Master Theorem here?
● Is the work increasing, decreasing, or the same 

across all levels?

● What do you expect the recurrence to solve to?
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T(n) ≤ T(⌊n / 5⌋) + T(⌊7n / 10⌋) + Θ(n)
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A Problem

● What is the value of this recurrence 
when n = 4?

● It's undefined!
● Why haven't we seen this before?
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Fixing the Recurrence

● For very small values of n, this 
recurrence will try to evaluate T(0), even 
though that's not defined.

● To fix this, we will use the “fat base case” 
approach and redefine the recurrence as 
follows:

● (There are still some small errors we'll 
correct later.)

T(n) = Θ(1)                                            if n ≤ 100
T(n) ≤ T(⌊n / 5⌋) + T(⌊7n / 10⌋) + Θ(n)   otherwise

T(n) = Θ(1)                                            if n ≤ 100
T(n) ≤ T(⌊n / 5⌋) + T(⌊7n / 10⌋) + Θ(n)   otherwise



  

Setting up the Recurrence

● We will show that the following recurrence is O(n):

● Making our standard simplifying assumptions 
about the values hidden in the Θ terms: 

T(n) = Θ(1)                                            if n ≤ 100
T(n) ≤ T(⌊n / 5⌋) + T(⌊7n / 10⌋) + Θ(n)   otherwise

T(n) = Θ(1)                                            if n ≤ 100
T(n) ≤ T(⌊n / 5⌋) + T(⌊7n / 10⌋) + Θ(n)   otherwise

T(n) ≤ c                                            if n ≤ 100
T(n) ≤ T(⌊n / 5⌋) + T(⌊7n / 10⌋) + cn  otherwise

T(n) ≤ c                                            if n ≤ 100
T(n) ≤ T(⌊n / 5⌋) + T(⌊7n / 10⌋) + cn  otherwise



  

Proving the O(n) Bound

● We cannot easily use the iteration method 
because of the floors and ceilings.

● The recursion-tree method is unlikely to be 
helpful because the tree shape is lopsided.

● Instead, we will use a technique called the 
substitution method.

● We will guess that T(n) ≤ kn for some constant 
k we will determine later.

● We will then use a proof by induction to show 
that for the right constants, T(n) ≤ kn is true.



  

Theorem: T(n) = O(n).

Proof: We guess that for all n ≥ 1, T(n) ≤ kn for some k that
we will determine later; this means T(n) = O(n).

We proceed by induction.  As a base case, if 1 ≤ n ≤ 100, 
then T(n) ≤ c ≤ kn will be true as long as we pick k ≥ c.  
For the inductive step, assume for some n ≥ 100 that the 
claim holds for all 1 ≤ n' < n. Note that 1 ≤ ⌊n / 5⌋ < n and 
1 ≤ ⌊7n / 10⌋ < n.  Then

  T(n) ≤ T(⌊n / 5⌋) + T(⌊7n / 10⌋) + cn
  ≤ k⌊n / 5⌋ + k⌊7n / 10⌋ + cn
   ≤ k(n / 5) + k(7n / 10) + cn
  = k(9n / 10) + cn
  = n(9k / 10 + c)

If we pick k so 9k / 10 + c ≤ k, then T(n) ≤ kn holds.  This is 
true when c ≤ k / 10, which happens when 10c ≤ k.  If we 
pick k = 10c, then T(n) ≤ kn, completing the induction. ■

T(n) ≤ c                                        if n ≤ 100
T(n) ≤ T(⌊n / 5⌋) + T(⌊7n / 10⌋) + cn otherwise

T(n) ≤ c                                        if n ≤ 100
T(n) ≤ T(⌊n / 5⌋) + T(⌊7n / 10⌋) + cn otherwise
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The Substitution Method

● To use the substitution method, proceed as 
follows:
● Make a guess of the form of your answer (for 

example, kn or k₁ n logk₂n.

● Proceed by induction to prove the bound holds, 
noting what constraints arise on the values of 
your undetermined constants.

● If the induction succeeds, you will have values 
for your undetermined constants and are done.

● If the induction fails, you either need to 
strengthen your assumption about the function 
or relax your bound.



  

Nitty-Gritty Details

● The recurrence we just analyzed was 
close to the real recurrence, but is 
slightly inaccurate due to some rough 
assumptions about the split size.

● Let's try to get a tighter bound on the 
split size.
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A Better Analysis

● There are ⌈n / 5⌉ blocks, including the leftover 
elements.

● ⌈⌈n / 5⌉ / 2⌉ blocks have elements greater than 
or equal to the median-of-medians .★

● The block containing ★ and the very last block 
are special cases.  If we ignore them, there are 
at least ⌈⌈n / 5⌉ / 2⌉ – 2 “normal” blocks greater 
than the median block.



  

A Better Analysis
● Each of the ⌈⌈n / 5⌉ / 2⌉ – 2 “normal” blocks 

contributes three elements greater than .★
● If we let X denote the number of elements 

greater than , we get★

  X ≥ 3(⌈⌈n / 5⌉ / 2⌉ – 2)

   ≥ 3(n / 10 – 2)

   = 3n / 10 – 6
● Our recursive call can be on a subarray of size

 n – X ≤ n – (3n / 10 – 6)

    ≤ 7n / 10 + 6



  

The Real Recurrence Relation

● The most accurate recurrence relation 
for our algorithm is the following:

● Let's see if we can prove this is O(n).

T(n) ≤ c                                                    if n ≤ 100
T(n) ≤ T(⌈n / 5⌉) + T(⌈7n / 10 + 6⌉) + cn  otherwise

T(n) ≤ c                                                    if n ≤ 100
T(n) ≤ T(⌈n / 5⌉) + T(⌈7n / 10 + 6⌉) + cn  otherwise



  

Theorem: T(n) = O(n).

Proof: We will prove that for some constant k to be chosen
later, T(n) ≤ kn for all n ≥ 1; T(n) = O(n) follows.  We
proceed by induction.  As our base case, if 1 ≤ n ≤ 100,
then T(n) ≤ c ≤ kn if we choose k ≥ c.

For the inductive step, assume that for some n ≥ 100, the 
claim holds for all 1 ≤ n' < n.  Note that if n ≥ 100 that 
⌈n / 5⌉ < n and ⌈7n / 10 + 6⌉ < n.  Therefore:

  T(n) ≤ T(⌈n / 5⌉) + T(⌈7n / 10 + 6⌉) + cn
  ≤ k⌈n / 5⌉ + k(⌈7n / 10 + 6⌉) + cn
  ≤ k(n / 5 + 1) + k(7n / 10 + 6 + 1) + cn
  = 9kn / 10 + 8k + cn
  = kn + (8k + cn – kn / 10)

If (8k + cn – kn / 10) ≤ 0, then T(n) ≤ kn.  It's left as an 
exercise to the reader to check that this is true if we pick 
k = 11c.  Thus T(n) ≤ kn, completing the induction. ■

T(n) ≤ c                                                    if n ≤ 100
T(n) ≤ T(⌈n / 5⌉) + T(⌈7n / 10 + 6⌉) + cn  otherwise

T(n) ≤ c                                                    if n ≤ 100
T(n) ≤ T(⌈n / 5⌉) + T(⌈7n / 10 + 6⌉) + cn  otherwise



  

Theorem: T(n) = O(n).

Proof: We will prove that for some constant k to be chosen
later, T(n) ≤ kn for all n ≥ 1; T(n) = O(n) follows.  We
proceed by induction.  As our base case, if 1 ≤ n ≤ 100,
then T(n) ≤ c ≤ kn if we choose k ≥ c.

For the inductive step, assume that for some n ≥ 100, the 
claim holds for all 1 ≤ n' < n.  Note that if n ≥ 100 that 
⌈n / 5⌉ < n and ⌈7n / 10 + 6⌉ < n.  Therefore:

  T(n) ≤ T(⌈n / 5⌉) + T(⌈7n / 10 + 6⌉) + cn
  ≤ k⌈n / 5⌉ + k(⌈7n / 10 + 6⌉) + cn
  ≤ k(n / 5 + 1) + k(7n / 10 + 6 + 1) + cn
  = 9kn / 10 + 8k + cn
  = kn + (8k + cn – kn / 10)

If (8k + cn – kn / 10) ≤ 0, then T(n) ≤ kn.  It's left as an 
exercise to the reader to check that this is true if we pick 
k = 11c.  Thus T(n) ≤ kn, completing the induction. ■

T(n) ≤ c                                                    if n ≤ 100
T(n) ≤ T(⌈n / 5⌉) + T(⌈7n / 10 + 6⌉) + cn  otherwise

T(n) ≤ c                                                    if n ≤ 100
T(n) ≤ T(⌈n / 5⌉) + T(⌈7n / 10 + 6⌉) + cn  otherwise



  

Theorem: T(n) = O(n).

Proof: We will prove that for some constant k to be chosen
later, T(n) ≤ kn for all n ≥ 1; T(n) = O(n) follows.  We
proceed by induction.  As our base case, if 1 ≤ n ≤ 100,
then T(n) ≤ c ≤ kn if we choose k ≥ c.

For the inductive step, assume that for some n ≥ 100, the 
claim holds for all 1 ≤ n' < n.  Note that if n ≥ 100 that 
⌈n / 5⌉ < n and ⌈7n / 10 + 6⌉ < n.  Therefore:

  T(n) ≤ T(⌈n / 5⌉) + T(⌈7n / 10 + 6⌉) + cn
  ≤ k⌈n / 5⌉ + k(⌈7n / 10 + 6⌉) + cn
  ≤ k(n / 5 + 1) + k(7n / 10 + 6 + 1) + cn
  = 9kn / 10 + 8k + cn
  = kn + (8k + cn – kn / 10)

If (8k + cn – kn / 10) ≤ 0, then T(n) ≤ kn.  It's left as an 
exercise to the reader to check that this is true if we pick 
k = 11c.  Thus T(n) ≤ kn, completing the induction. ■

T(n) ≤ c                                                    if n ≤ 100
T(n) ≤ T(⌈n / 5⌉) + T(⌈7n / 10 + 6⌉) + cn  otherwise

T(n) ≤ c                                                    if n ≤ 100
T(n) ≤ T(⌈n / 5⌉) + T(⌈7n / 10 + 6⌉) + cn  otherwise



  

Theorem: T(n) = O(n).

Proof: We will prove that for some constant k to be chosen
later, T(n) ≤ kn for all n ≥ 1; T(n) = O(n) follows.  We
proceed by induction.  As our base case, if 1 ≤ n ≤ 100,
then T(n) ≤ c ≤ kn if we choose k ≥ c.

For the inductive step, assume that for some n ≥ 100, the 
claim holds for all 1 ≤ n' < n.  Note that if n ≥ 100 that 
⌈n / 5⌉ < n and ⌈7n / 10 + 6⌉ < n.  Therefore:

  T(n) ≤ T(⌈n / 5⌉) + T(⌈7n / 10 + 6⌉) + cn
  ≤ k⌈n / 5⌉ + k(⌈7n / 10 + 6⌉) + cn
  ≤ k(n / 5 + 1) + k(7n / 10 + 6 + 1) + cn
  = 9kn / 10 + 8k + cn
  = kn + (8k + cn – kn / 10)

If (8k + cn – kn / 10) ≤ 0, then T(n) ≤ kn.  It's left as an 
exercise to the reader to check that this is true if we pick 
k = 11c.  Thus T(n) ≤ kn, completing the induction. ■

T(n) ≤ c                                                    if n ≤ 100
T(n) ≤ T(⌈n / 5⌉) + T(⌈7n / 10 + 6⌉) + cn  otherwise

T(n) ≤ c                                                    if n ≤ 100
T(n) ≤ T(⌈n / 5⌉) + T(⌈7n / 10 + 6⌉) + cn  otherwise



  

Theorem: T(n) = O(n).

Proof: We will prove that for some constant k to be chosen
later, T(n) ≤ kn for all n ≥ 1; T(n) = O(n) follows.  We
proceed by induction.  As our base case, if 1 ≤ n ≤ 100,
then T(n) ≤ c ≤ kn if we choose k ≥ c.

For the inductive step, assume that for some n ≥ 100, the 
claim holds for all 1 ≤ n' < n.  Note that if n ≥ 100 that 
⌈n / 5⌉ < n and ⌈7n / 10 + 6⌉ < n.  Therefore:

  T(n) ≤ T(⌈n / 5⌉) + T(⌈7n / 10 + 6⌉) + cn
  ≤ k⌈n / 5⌉ + k(⌈7n / 10 + 6⌉) + cn
  ≤ k(n / 5 + 1) + k(7n / 10 + 6 + 1) + cn
  = 9kn / 10 + 8k + cn
  = kn + (8k + cn – kn / 10)

If (8k + cn – kn / 10) ≤ 0, then T(n) ≤ kn.  It's left as an 
exercise to the reader to check that this is true if we pick 
k = 11c.  Thus T(n) ≤ kn, completing the induction. ■

T(n) ≤ c                                                    if n ≤ 100
T(n) ≤ T(⌈n / 5⌉) + T(⌈7n / 10 + 6⌉) + cn  otherwise

T(n) ≤ c                                                    if n ≤ 100
T(n) ≤ T(⌈n / 5⌉) + T(⌈7n / 10 + 6⌉) + cn  otherwise



  

Theorem: T(n) = O(n).

Proof: We will prove that for some constant k to be chosen
later, T(n) ≤ kn for all n ≥ 1; T(n) = O(n) follows.  We
proceed by induction.  As our base case, if 1 ≤ n ≤ 100,
then T(n) ≤ c ≤ kn if we choose k ≥ c.

For the inductive step, assume that for some n ≥ 100, the 
claim holds for all 1 ≤ n' < n.  Note that if n ≥ 100 that 
⌈n / 5⌉ < n and ⌈7n / 10 + 6⌉ < n.  Therefore:

  T(n) ≤ T(⌈n / 5⌉) + T(⌈7n / 10 + 6⌉) + cn
  ≤ k⌈n / 5⌉ + k(⌈7n / 10 + 6⌉) + cn
  ≤ k(n / 5 + 1) + k(7n / 10 + 6 + 1) + cn
  = 9kn / 10 + 8k + cn
  = kn + (8k + cn – kn / 10)

If (8k + cn – kn / 10) ≤ 0, then T(n) ≤ kn.  It's left as an 
exercise to the reader to check that this is true if we pick 
k = 11c.  Thus T(n) ≤ kn, completing the induction. ■

T(n) ≤ c                                                    if n ≤ 100
T(n) ≤ T(⌈n / 5⌉) + T(⌈7n / 10 + 6⌉) + cn  otherwise

T(n) ≤ c                                                    if n ≤ 100
T(n) ≤ T(⌈n / 5⌉) + T(⌈7n / 10 + 6⌉) + cn  otherwise



  

Theorem: T(n) = O(n).

Proof: We will prove that for some constant k to be chosen
later, T(n) ≤ kn for all n ≥ 1; T(n) = O(n) follows.  We
proceed by induction.  As our base case, if 1 ≤ n ≤ 100,
then T(n) ≤ c ≤ kn if we choose k ≥ c.

For the inductive step, assume that for some n ≥ 100, the 
claim holds for all 1 ≤ n' < n.  Note that if n ≥ 100 that 
⌈n / 5⌉ < n and ⌈7n / 10 + 6⌉ < n.  Therefore:

  T(n) ≤ T(⌈n / 5⌉) + T(⌈7n / 10 + 6⌉) + cn
  ≤ k⌈n / 5⌉ + k(⌈7n / 10 + 6⌉) + cn
  ≤ k(n / 5 + 1) + k(7n / 10 + 6 + 1) + cn
  = 9kn / 10 + 8k + cn
  = kn + (8k + cn – kn / 10)

If (8k + cn – kn / 10) ≤ 0, then T(n) ≤ kn.  It's left as an 
exercise to the reader to check that this is true if we pick 
k = 11c.  Thus T(n) ≤ kn, completing the induction. ■

T(n) ≤ c                                                    if n ≤ 100
T(n) ≤ T(⌈n / 5⌉) + T(⌈7n / 10 + 6⌉) + cn  otherwise

T(n) ≤ c                                                    if n ≤ 100
T(n) ≤ T(⌈n / 5⌉) + T(⌈7n / 10 + 6⌉) + cn  otherwise



  

Theorem: T(n) = O(n).

Proof: We will prove that for some constant k to be chosen
later, T(n) ≤ kn for all n ≥ 1; T(n) = O(n) follows.  We
proceed by induction.  As our base case, if 1 ≤ n ≤ 100,
then T(n) ≤ c ≤ kn if we choose k ≥ c.

For the inductive step, assume that for some n ≥ 100, the 
claim holds for all 1 ≤ n' < n.  Note that if n ≥ 100 that 
⌈n / 5⌉ < n and ⌈7n / 10 + 6⌉ < n.  Therefore:

  T(n) ≤ T(⌈n / 5⌉) + T(⌈7n / 10 + 6⌉) + cn
  ≤ k⌈n / 5⌉ + k(⌈7n / 10 + 6⌉) + cn
  ≤ k(n / 5 + 1) + k(7n / 10 + 6 + 1) + cn
  = 9kn / 10 + 8k + cn
  = kn + (8k + cn – kn / 10)

If (8k + cn – kn / 10) ≤ 0, then T(n) ≤ kn.  It's left as an 
exercise to the reader to check that this is true if we pick 
k = 11c.  Thus T(n) ≤ kn, completing the induction. ■

T(n) ≤ c                                                    if n ≤ 100
T(n) ≤ T(⌈n / 5⌉) + T(⌈7n / 10 + 6⌉) + cn  otherwise

T(n) ≤ c                                                    if n ≤ 100
T(n) ≤ T(⌈n / 5⌉) + T(⌈7n / 10 + 6⌉) + cn  otherwise



  

Theorem: T(n) = O(n).

Proof: We will prove that for some constant k to be chosen
later, T(n) ≤ kn for all n ≥ 1; T(n) = O(n) follows.  We
proceed by induction.  As our base case, if 1 ≤ n ≤ 100,
then T(n) ≤ c ≤ kn if we choose k ≥ c.

For the inductive step, assume that for some n ≥ 100, the 
claim holds for all 1 ≤ n' < n.  Note that if n ≥ 100 that 
⌈n / 5⌉ < n and ⌈7n / 10 + 6⌉ < n.  Therefore:

  T(n) ≤ T(⌈n / 5⌉) + T(⌈7n / 10 + 6⌉) + cn
  ≤ k⌈n / 5⌉ + k(⌈7n / 10 + 6⌉) + cn
  ≤ k(n / 5 + 1) + k(7n / 10 + 6 + 1) + cn
  = 9kn / 10 + 8k + cn
  = kn + (8k + cn – kn / 10)

If (8k + cn – kn / 10) ≤ 0, then T(n) ≤ kn.  It's left as an 
exercise to the reader to check that this is true if we pick 
k = 11c.  Thus T(n) ≤ kn, completing the induction. ■

T(n) ≤ c                                                    if n ≤ 100
T(n) ≤ T(⌈n / 5⌉) + T(⌈7n / 10 + 6⌉) + cn  otherwise

T(n) ≤ c                                                    if n ≤ 100
T(n) ≤ T(⌈n / 5⌉) + T(⌈7n / 10 + 6⌉) + cn  otherwise



  

Theorem: T(n) = O(n).

Proof: We will prove that for some constant k to be chosen
later, T(n) ≤ kn for all n ≥ 1; T(n) = O(n) follows.  We
proceed by induction.  As our base case, if 1 ≤ n ≤ 100,
then T(n) ≤ c ≤ kn if we choose k ≥ c.

For the inductive step, assume that for some n ≥ 100, the 
claim holds for all 1 ≤ n' < n.  Note that if n ≥ 100 that 
⌈n / 5⌉ < n and ⌈7n / 10 + 6⌉ < n.  Therefore:

  T(n) ≤ T(⌈n / 5⌉) + T(⌈7n / 10 + 6⌉) + cn
  ≤ k⌈n / 5⌉ + k(⌈7n / 10 + 6⌉) + cn
  ≤ k(n / 5 + 1) + k(7n / 10 + 6 + 1) + cn
  = 9kn / 10 + 8k + cn
  = kn + (8k + cn – kn / 10)

If (8k + cn – kn / 10) ≤ 0, then T(n) ≤ kn.  It's left as an 
exercise to the reader to check that this is true if we pick 
k = 11c.  Thus T(n) ≤ kn, completing the induction. ■

T(n) ≤ c                                                    if n ≤ 100
T(n) ≤ T(⌈n / 5⌉) + T(⌈7n / 10 + 6⌉) + cn  otherwise

T(n) ≤ c                                                    if n ≤ 100
T(n) ≤ T(⌈n / 5⌉) + T(⌈7n / 10 + 6⌉) + cn  otherwise

This uses the identity

⌈x⌉ < x + 1

This uses the identity

⌈x⌉ < x + 1



  

Theorem: T(n) = O(n).

Proof: We will prove that for some constant k to be chosen
later, T(n) ≤ kn for all n ≥ 1; T(n) = O(n) follows.  We
proceed by induction.  As our base case, if 1 ≤ n ≤ 100,
then T(n) ≤ c ≤ kn if we choose k ≥ c.

For the inductive step, assume that for some n ≥ 100, the 
claim holds for all 1 ≤ n' < n.  Note that if n ≥ 100 that 
⌈n / 5⌉ < n and ⌈7n / 10 + 6⌉ < n.  Therefore:

  T(n) ≤ T(⌈n / 5⌉) + T(⌈7n / 10 + 6⌉) + cn
  ≤ k⌈n / 5⌉ + k(⌈7n / 10 + 6⌉) + cn
  ≤ k(n / 5 + 1) + k(7n / 10 + 6 + 1) + cn
  = 9kn / 10 + 8k + cn
  = kn + (8k + cn – kn / 10)

If (8k + cn – kn / 10) ≤ 0, then T(n) ≤ kn.  It's left as an 
exercise to the reader to check that this is true if we pick 
k = 11c.  Thus T(n) ≤ kn, completing the induction. ■

T(n) ≤ c                                                    if n ≤ 100
T(n) ≤ T(⌈n / 5⌉) + T(⌈7n / 10 + 6⌉) + cn  otherwise

T(n) ≤ c                                                    if n ≤ 100
T(n) ≤ T(⌈n / 5⌉) + T(⌈7n / 10 + 6⌉) + cn  otherwise



  

Theorem: T(n) = O(n).

Proof: We will prove that for some constant k to be chosen
later, T(n) ≤ kn for all n ≥ 1; T(n) = O(n) follows.  We
proceed by induction.  As our base case, if 1 ≤ n ≤ 100,
then T(n) ≤ c ≤ kn if we choose k ≥ c.

For the inductive step, assume that for some n ≥ 100, the 
claim holds for all 1 ≤ n' < n.  Note that if n ≥ 100 that 
⌈n / 5⌉ < n and ⌈7n / 10 + 6⌉ < n.  Therefore:

  T(n) ≤ T(⌈n / 5⌉) + T(⌈7n / 10 + 6⌉) + cn
  ≤ k⌈n / 5⌉ + k(⌈7n / 10 + 6⌉) + cn
  ≤ k(n / 5 + 1) + k(7n / 10 + 6 + 1) + cn
  = 9kn / 10 + 8k + cn
  = kn + (8k + cn – kn / 10)

If (8k + cn – kn / 10) ≤ 0, then T(n) ≤ kn.  It's left as an 
exercise to the reader to check that this is true if we pick 
k = 11c.  Thus T(n) ≤ kn, completing the induction. ■

T(n) ≤ c                                                    if n ≤ 100
T(n) ≤ T(⌈n / 5⌉) + T(⌈7n / 10 + 6⌉) + cn  otherwise

T(n) ≤ c                                                    if n ≤ 100
T(n) ≤ T(⌈n / 5⌉) + T(⌈7n / 10 + 6⌉) + cn  otherwise



  

Theorem: T(n) = O(n).

Proof: We will prove that for some constant k to be chosen
later, T(n) ≤ kn for all n ≥ 1; T(n) = O(n) follows.  We
proceed by induction.  As our base case, if 1 ≤ n ≤ 100,
then T(n) ≤ c ≤ kn if we choose k ≥ c.

For the inductive step, assume that for some n ≥ 100, the 
claim holds for all 1 ≤ n' < n.  Note that if n ≥ 100 that 
⌈n / 5⌉ < n and ⌈7n / 10 + 6⌉ < n.  Therefore:

  T(n) ≤ T(⌈n / 5⌉) + T(⌈7n / 10 + 6⌉) + cn
  ≤ k⌈n / 5⌉ + k(⌈7n / 10 + 6⌉) + cn
  ≤ k(n / 5 + 1) + k(7n / 10 + 6 + 1) + cn
  = 9kn / 10 + 8k + cn
  = kn + (8k + cn – kn / 10)

If (8k + cn – kn / 10) ≤ 0, then T(n) ≤ kn.  It's left as an 
exercise to the reader to check that this is true if we pick 
k = 11c.  Thus T(n) ≤ kn, completing the induction. ■

T(n) ≤ c                                                    if n ≤ 100
T(n) ≤ T(⌈n / 5⌉) + T(⌈7n / 10 + 6⌉) + cn  otherwise

T(n) ≤ c                                                    if n ≤ 100
T(n) ≤ T(⌈n / 5⌉) + T(⌈7n / 10 + 6⌉) + cn  otherwise



  

Theorem: T(n) = O(n).

Proof: We will prove that for some constant k to be chosen
later, T(n) ≤ kn for all n ≥ 1; T(n) = O(n) follows.  We
proceed by induction.  As our base case, if 1 ≤ n ≤ 100,
then T(n) ≤ c ≤ kn if we choose k ≥ c.

For the inductive step, assume that for some n ≥ 100, the 
claim holds for all 1 ≤ n' < n.  Note that if n ≥ 100 that 
⌈n / 5⌉ < n and ⌈7n / 10 + 6⌉ < n.  Therefore:

  T(n) ≤ T(⌈n / 5⌉) + T(⌈7n / 10 + 6⌉) + cn
  ≤ k⌈n / 5⌉ + k(⌈7n / 10 + 6⌉) + cn
  ≤ k(n / 5 + 1) + k(7n / 10 + 6 + 1) + cn
  = 9kn / 10 + 8k + cn
  = kn + (8k + cn – kn / 10)

If (8k + cn – kn / 10) ≤ 0, then T(n) ≤ kn.  It's left as an 
exercise to the reader to check that this is true if we pick 
k = 11c.  Thus T(n) ≤ kn, completing the induction. ■

T(n) ≤ c                                                    if n ≤ 100
T(n) ≤ T(⌈n / 5⌉) + T(⌈7n / 10 + 6⌉) + cn  otherwise

T(n) ≤ c                                                    if n ≤ 100
T(n) ≤ T(⌈n / 5⌉) + T(⌈7n / 10 + 6⌉) + cn  otherwise



  

Theorem: T(n) = O(n).

Proof: We will prove that for some constant k to be chosen
later, T(n) ≤ kn for all n ≥ 1; T(n) = O(n) follows.  We
proceed by induction.  As our base case, if 1 ≤ n ≤ 100,
then T(n) ≤ c ≤ kn if we choose k ≥ c.

For the inductive step, assume that for some n ≥ 100, the 
claim holds for all 1 ≤ n' < n.  Note that if n ≥ 100 that 
⌈n / 5⌉ < n and ⌈7n / 10 + 6⌉ < n.  Therefore:

  T(n) ≤ T(⌈n / 5⌉) + T(⌈7n / 10 + 6⌉) + cn
  ≤ k⌈n / 5⌉ + k(⌈7n / 10 + 6⌉) + cn
  ≤ k(n / 5 + 1) + k(7n / 10 + 6 + 1) + cn
  = 9kn / 10 + 8k + cn
  = kn + (8k + cn – kn / 10)

If (8k + cn – kn / 10) ≤ 0, then T(n) ≤ kn.  It's left as an 
exercise to the reader to check that this is true if we pick 
k = 50c.  Thus T(n) ≤ kn, completing the induction. ■

T(n) ≤ c                                                    if n ≤ 100
T(n) ≤ T(⌈n / 5⌉) + T(⌈7n / 10 + 6⌉) + cn  otherwise

T(n) ≤ c                                                    if n ≤ 100
T(n) ≤ T(⌈n / 5⌉) + T(⌈7n / 10 + 6⌉) + cn  otherwise



  

Theorem: T(n) = O(n).

Proof: We will prove that for some constant k to be chosen
later, T(n) ≤ kn for all n ≥ 1; T(n) = O(n) follows.  We
proceed by induction.  As our base case, if 1 ≤ n ≤ 100,
then T(n) ≤ c ≤ kn if we choose k ≥ c.

For the inductive step, assume that for some n ≥ 100, the 
claim holds for all 1 ≤ n' < n.  Note that if n ≥ 100 that 
⌈n / 5⌉ < n and ⌈7n / 10 + 6⌉ < n.  Therefore:

  T(n) ≤ T(⌈n / 5⌉) + T(⌈7n / 10 + 6⌉) + cn
  ≤ k⌈n / 5⌉ + k(⌈7n / 10 + 6⌉) + cn
  ≤ k(n / 5 + 1) + k(7n / 10 + 6 + 1) + cn
  = 9kn / 10 + 8k + cn
  = kn + (8k + cn – kn / 10)

If (8k + cn – kn / 10) ≤ 0, then T(n) ≤ kn.  It's left as an 
exercise to the reader to check that this is true if we pick 
k = 50c.  Thus T(n) ≤ kn, completing the induction. ■

T(n) ≤ c                                                    if n ≤ 100
T(n) ≤ T(⌈n / 5⌉) + T(⌈7n / 10 + 6⌉) + cn  otherwise

T(n) ≤ c                                                    if n ≤ 100
T(n) ≤ T(⌈n / 5⌉) + T(⌈7n / 10 + 6⌉) + cn  otherwise



  

Theorem: T(n) = O(n).

Proof: We will prove that for some constant k to be chosen
later, T(n) ≤ kn for all n ≥ 1; T(n) = O(n) follows.  We
proceed by induction.  As our base case, if 1 ≤ n ≤ 100,
then T(n) ≤ c ≤ kn if we choose k ≥ c.

For the inductive step, assume that for some n ≥ 100, the 
claim holds for all 1 ≤ n' < n.  Note that if n ≥ 100 that 
⌈n / 5⌉ < n and ⌈7n / 10 + 6⌉ < n.  Therefore:

  T(n) ≤ T(⌈n / 5⌉) + T(⌈7n / 10 + 6⌉) + cn
  ≤ k⌈n / 5⌉ + k(⌈7n / 10 + 6⌉) + cn
  ≤ k(n / 5 + 1) + k(7n / 10 + 6 + 1) + cn
  = 9kn / 10 + 8k + cn
  = kn + (8k + cn – kn / 10)

If (8k + cn – kn / 10) ≤ 0, then T(n) ≤ kn.  It's left as an 
exercise to the reader to check that this is true if we pick 
k = 50c.  Thus T(n) ≤ kn, completing the induction. ■

T(n) ≤ c                                                    if n ≤ 100
T(n) ≤ T(⌈n / 5⌉) + T(⌈7n / 10 + 6⌉) + cn  otherwise

T(n) ≤ c                                                    if n ≤ 100
T(n) ≤ T(⌈n / 5⌉) + T(⌈7n / 10 + 6⌉) + cn  otherwise



  

A Note on O(n)

● This linear-time selection algorithm does run 
in time O(n), but there is a huge constant 
factor hidden here.

● Two reasons:
● Work done by each call is large; finding the median 

of each block requires nontrivial work.
● Problem size decays slowly across levels; each 

layer is roughly 10% smaller than its predecessor.

● Is there a way to get O(n) behavior without 
such a huge constant factor?



  

Next Time

● Randomized Algorithms
● A Faster Selection Algorithm
● Linearity of Expectation
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