

Divide-and-Conquer Algorithms
Part Four

Announcements

● Problem Set 2 due right now.
● Can submit by Monday at 2:15PM using one

late period.

● Problem Set 3 out, due July 22.
● Play around with divide-and-conquer

algorithms and recurrence relations!
● Covers material up through and including

today's lecture.

Outline for Today

● The Selection Problem
● A problem halfway between searching and

sorting.

● A Linear-Time Selection Algorithm
● A nonobvious algorithm with a nontrivial

runtime.

● The Substitution Method
● Solving recurrences the Master Theorem can't

handle.

Order Statistics

● Given a collection of data, the kth order
statistic is the kth smallest value in the data
set.

● For the purposes of this course, we'll use
zero-indexing, so the smallest element would be
given by the 0th order statistic.

● To give a robust definition: the kth order statistic
is the element that would appear at position k if
the data were sorted.

1 6 1 8 0 3 3 9

The Selection Problem

● The selection problem is the following: Given
a data set S (typically represented as an array)
and a number k, return the kth order statistic
of that set.

● Has elements of searching and sorting: Want to
search for the kth-smallest element, but this is
defined relative to a sorted ordering.

● For today, we'll assume all values are distinct.

32 17 41 18 52 98 24 65

An Initial Solution

● Any ideas how to solve this?
● Here is one simple solution:

● Sort the array.
● Return the element at the kth position.

● Unless we know something special about
the array, this will run in time O(n log n).

● Can we do better?

A Useful Subroutine: Partition

● Given an input array, a partition algorithm
chooses some element p (called the pivot),
then rearranges the array so that
● All elements less than or equal to p are before p.
● All elements greater p are after p.
● p is in the position it would occupy if the array

were sorted.
● The algorithm then returns the index of p.

● We'll talk about how to choose which element
should be the pivot later; right now, assume the
algorithm chooses one arbitrarily.

Partitioning an Array

32 17 41 18 52 98 24 65

Partitioning an Array

32 17 41 18 52 98 24 65

Partitioning an Array

32 17 41 18 52 98 24 65

3217 4118 52 9824 65

Partitioning an Array

32 17 41 18 52 98 24 65

Partitioning an Array

32 17 41 18 52 98 24 65

32 1741 18 52 982465

Partitioning and Selection

● There is a close connection between
partitioning and the selection problem.

Let k be the desired index and p be the
pivot index after a partition step. Then:

If p = k, return A[k].

If p < k, recursively select element k from the
elements before the pivot.

If p > k, recursively select element (k – p – 1)
from the elements after the pivot.

32 17 4118 529824 65

Partitioning and Selection

● There is a close connection between
partitioning and the selection problem.

Let k be the desired index and p be the
pivot index after a partition step. Then:

If p = k, return A[k].

If p < k, recursively select element k from the
elements before the pivot.

If p > k, recursively select element (k – p – 1)
from the elements after the pivot.

32 17 41 529824 6518

Partitioning and Selection

● There is a close connection between
partitioning and the selection problem.

Let k be the desired index and p be the
pivot index after a partition step. Then:

If p = k, return A[k].

If p < k, recursively select element k from the
elements before the pivot.

If p > k, recursively select element (k – p – 1)
from the elements after the pivot.

32 17 41 529824 6518

Partitioning and Selection

● There is a close connection between
partitioning and the selection problem.

Let k be the desired index and p be the
pivot index after a partition step. Then:

If p = k, return A[k].

If p < k, recursively select element k from the
elements before the pivot.

If p > k, recursively select element (k – p – 1)
from the elements after the pivot.

3217 4118 52 9824 65

Partitioning and Selection

● There is a close connection between
partitioning and the selection problem.

● Let k be the desired index and p be the
pivot index after a partition step. Then:
● If p = k, return A[k].

If p < k, recursively select element k from the
elements before the pivot.

If p > k, recursively select element (k – p – 1)
from the elements after the pivot.

3217 4118 52 9824 65

Partitioning and Selection

● There is a close connection between
partitioning and the selection problem.

● Let k be the desired index and p be the
pivot index after a partition step. Then:
● If p = k, return A[k].

If p < k, recursively select element k from the
elements before the pivot.

If p > k, recursively select element (k – p – 1)
from the elements after the pivot.

32 17 4118 529824 65

Partitioning and Selection

● There is a close connection between
partitioning and the selection problem.

● Let k be the desired index and p be the
pivot index after a partition step. Then:
● If p = k, return A[k].

If p < k, recursively select element k from the
elements before the pivot.

If p > k, recursively select element (k – p – 1)
from the elements after the pivot.

32 17 4118 529824 65

Partitioning and Selection

● There is a close connection between
partitioning and the selection problem.

● Let k be the desired index and p be the
pivot index after a partition step. Then:
● If p = k, return A[k].

If p < k, recursively select element k from the
elements before the pivot.

If p > k, recursively select element (k – p – 1)
from the elements after the pivot.

321741 18 52 9824 65

Partitioning and Selection

● There is a close connection between
partitioning and the selection problem.

● Let k be the desired index and p be the
pivot index after a partition step. Then:
● If p = k, return A[k].

If p < k, recursively select element k from the
elements before the pivot.

If p > k, recursively select element (k – p – 1)
from the elements after the pivot.

321741 18 52 9824 65

Partitioning and Selection

● There is a close connection between
partitioning and the selection problem.

● Let k be the desired index and p be the
pivot index after a partition step. Then:
● If p = k, return A[k].
● If p > k, recursively select element k from the

elements before the pivot.

If p > k, recursively select element (k – p – 1)
from the elements after the pivot.

321741 18 52 9824 65

Partitioning and Selection

● There is a close connection between
partitioning and the selection problem.

● Let k be the desired index and p be the
pivot index after a partition step. Then:
● If p = k, return A[k].
● If p > k, recursively select element k from the

elements before the pivot.

If p > k, recursively select element (k – p – 1)
from the elements after the pivot.

32 17 4118 529824 65

Partitioning and Selection

● There is a close connection between
partitioning and the selection problem.

● Let k be the desired index and p be the
pivot index after a partition step. Then:
● If p = k, return A[k].
● If p > k, recursively select element k from the

elements before the pivot.

If p > k, recursively select element (k – p – 1)
from the elements after the pivot.

32 17 4118 529824 65

Partitioning and Selection

● There is a close connection between
partitioning and the selection problem.

● Let k be the desired index and p be the
pivot index after a partition step. Then:
● If p = k, return A[k].
● If p > k, recursively select element k from the

elements before the pivot.

If p > k, recursively select element (k – p – 1)
from the elements after the pivot.

3217 4118 5298 2465

Partitioning and Selection

● There is a close connection between
partitioning and the selection problem.

● Let k be the desired index and p be the
pivot index after a partition step. Then:
● If p = k, return A[k].
● If p > k, recursively select element k from the

elements before the pivot.

If p > k, recursively select element (k – p – 1)
from the elements after the pivot.

3217 4118 5298 2465

Partitioning and Selection

● There is a close connection between
partitioning and the selection problem.

● Let k be the desired index and p be the
pivot index after a partition step. Then:
● If p = k, return A[k].
● If p > k, recursively select element k from the

elements before the pivot.
● If p < k, recursively select element (k – p – 1)

from the elements after the pivot.

3217 4118 5298 2465

procedure select(array A, int k):
 let p = partition(A)
 if p = k:
 return A[p]
 else if p > k:
 return select(A[0 … p–1], k)
 else (if p < k):
 return select(A[p+1 … length(A)–1], k – p – 1)

procedure select(array A, int k):
 let p = partition(A)
 if p = k:
 return A[p]
 else if p > k:
 return select(A[0 … p–1], k)
 else (if p < k):
 return select(A[p+1 … length(A)–1], k – p – 1)

Some Facts

● The partitioning algorithm on an array of
length n can be made to run in time Θ(n).
● Check the Problem Set Advice handout for

an outline of an algorithm to do this.

● Partitioning algorithms give no
guarantee about which element is
selected as the pivot.

● Each recursive call does Θ(n) work, then
makes a recursive call on a smaller array.

Analyzing the Runtime

● The runtime of our algorithm depends on
our choice of pivot.

● In the best-case, if we pick a pivot that ends
up at position k, the runtime is Θ(n).

● In the worst case, we pick always pick pivot
that is the minimum or maximum value in
the array. The runtime is given by this
recurrence:

T(1) = Θ(1)
T(n) = T(n – 1) + Θ(n)
T(1) = Θ(1)
T(n) = T(n – 1) + Θ(n)

Analyzing the Runtime

● Our runtime is given by this recurrence:

● Can we apply the Master Theorem?
● This recurrence solves to Θ(n2).

● First call does roughly n work, second does
roughly n – 1, third does roughly n – 2, etc.

● Total work is n + (n – 1) + (n – 2) + … + 1.
● This is Θ(n2).

T(1) = Θ(1)
T(n) = T(n – 1) + Θ(n)
T(1) = Θ(1)
T(n) = T(n – 1) + Θ(n)

The Story So Far

● If we have no control over the pivot in
the partition step, our algorithm has
runtime Ω(n) and O(n2).

● Using heapsort, we could guarantee
O(n log n) behavior.

● Can we improve our worst-case bounds?

Finding a Good Pivot

● Recall: We recurse on one of the two
pieces of the array if we don't
immediately find the element we want.

● A good pivot should split the array so
that each piece is some constant fraction
of the size of the array.
● (Those sizes don't have to be the same,

though.)

Finding a Good Pivot

● Recall: We recurse on one of the two
pieces of the array if we don't
immediately find the element we want.

● A good pivot should split the array so
that each piece is some constant fraction
of the size of the array.
● (Those sizes don't have to be the same,

though.)

1 / 2 1 / 2

Finding a Good Pivot

● Recall: We recurse on one of the two
pieces of the array if we don't
immediately find the element we want.

● A good pivot should split the array so
that each piece is some constant fraction
of the size of the array.
● (Those sizes don't have to be the same,

though.)

2 / 3 1 / 3

Finding a Good Pivot

● Recall: We recurse on one of the two
pieces of the array if we don't
immediately find the element we want.

● A good pivot should split the array so
that each piece is some constant fraction
of the size of the array.
● (Those sizes don't have to be the same,

though.)

7 / 10 3 / 10

An Initial Insight

● Here's an idea we can use to find a good pivot:
● Recursively find the median of the first two-thirds of

the array.
● Use that median as a pivot in the partition step.

● Claim: guarantees a two-thirds / one-third split in
the partition step.

The median of the first two thirds of the array is
smaller than one third of the array elements and
greater than one third of the array elements.

An Initial Insight

● Here's an idea we can use to find a good pivot:
● Recursively find the median of the first two-thirds of

the array.
● Use that median as a pivot in the partition step.

● Claim: guarantees a two-thirds / one-third split in
the partition step.

The median of the first two thirds of the array is
smaller than one third of the array elements and
greater than one third of the array elements.

2 / 3 1 / 3

An Initial Insight

● Here's an idea we can use to find a good pivot:
● Recursively find the median of the first two-thirds of

the array.
● Use that median as a pivot in the partition step.

● Claim: guarantees a two-thirds / one-third split in
the partition step.

The median of the first two thirds of the array is
smaller than one third of the array elements and
greater than one third of the array elements.

1 / 3 1 / 31 / 3

An Initial Insight

● Here's an idea we can use to find a good pivot:
● Recursively find the median of the first two-thirds of

the array.
● Use that median as a pivot in the partition step.

● Claim: guarantees a two-thirds / one-third split in
the partition step.

● The median of the first two thirds of the array is
smaller than one third of the array elements and
greater than one third of the array elements.

1 / 3 1 / 31 / 3

Analyzing the Runtime

● Our algorithm
● Recursively calls itself on the first 2/3 of the

array.
● Runs a partition step.
● Then, either immediately terminates, or

recurses in a piece of size n / 3 or a piece of
size 2n / 3.

● This gives the following recurrence:

T(1) = Θ(1)
T(n) ≤ 2T(2n / 3) + Θ(n)
T(1) = Θ(1)
T(n) ≤ 2T(2n / 3) + Θ(n)

Analyzing the Runtime

● We have the following recurrence:

● Can we apply the Master Theorem?

What are a, b, and d?

a = 2, b = 3 / 2, and d = 1.

Since log3 / 2 2 > 1, the runtime is

T(1) = Θ(1)
T(n) ≤ 2T(2n / 3) + Θ(n)
T(1) = Θ(1)
T(n) ≤ 2T(2n / 3) + Θ(n)

Analyzing the Runtime

● We have the following recurrence:

● Can we apply the Master Theorem?
● What are a, b, and d?

a = 2, b = 3 / 2, and d = 1.

Since log3 / 2 2 > 1, the runtime is

T(1) = Θ(1)
T(n) ≤ 2T(2n / 3) + Θ(n)
T(1) = Θ(1)
T(n) ≤ 2T(2n / 3) + Θ(n)

Analyzing the Runtime

● We have the following recurrence:

● Can we apply the Master Theorem?
● What are a, b, and d?

● a = 2, b = 3 / 2, and d = 1.

Since log3 / 2 2 > 1, the runtime is

T(1) = Θ(1)
T(n) ≤ 2T(2n / 3) + Θ(n)
T(1) = Θ(1)
T(n) ≤ 2T(2n / 3) + Θ(n)

Analyzing the Runtime

● We have the following recurrence:

● Can we apply the Master Theorem?
● What are a, b, and d?

● a = 2, b = 3 / 2, and d = 1.

● Since log3 / 2 2 > 1, the runtime is

T(1) = Θ(1)
T(n) ≤ 2T(2n / 3) + Θ(n)
T(1) = Θ(1)
T(n) ≤ 2T(2n / 3) + Θ(n)

O(n
log3 /22

) ≈ O(n1.26)

A Better Idea

● The following algorithm for picking a
good pivot is due to these computer
scientists:
● Manuel Blum (Turing Award Winner)
● Robert Floyd (Turing Award Winner)
● Vaughan Pratt (Stanford Professor Emeritus)
● Ron Rivest (Turing Award Winner)
● Robert Tarjan (Turing Award Winner)

● If what follows does not seem at all
obvious, don't worry!

The Algorithm

● Break the input apart into block of five
elements each, putting leftover elements into
their own block.

● Determine the median of each of these
blocks. (Note that each median can be found
in time O(1), since the block size is a
constant).

● Recursively determine the median of these
medians.

● Use that median as a pivot.

Why This Works

b₁ b₂ b₃ b₄ b₅ b₆ b₇ b₈ b₉

Why This Works

b₁ b₂ b₃ b₄ b₅ b₆ b₇ b₈ b₉

Why This Works

★

b₁ b₂ b₃ b₄ b₅ b₆ b₇ b₈ b₉

Why This Works

< > ★ < > < > > <

b₁ b₂ b₃ b₄ b₅ b₆ b₇ b₈ b₉

Why This Works

< >★< >< > ><

b₁ b₂b₃b₄ b₅b₆ b₇ b₈b₉

Why This Works

< >★
<

< >< > ><

<
b₁ b₂b₃b₄ b₅b₆ b₇ b₈b₉

Why This Works

<
<

>★
<

<
<

><
<

> ><
<

< <<< <
b₁ b₂b₃b₄ b₅b₆ b₇ b₈b₉

Why This Works

<
<

>

>
>
★
<

<
<

><
<

> ><
<

< <<< <
b₁ b₂b₃b₄ b₅b₆ b₇ b₈b₉

Why This Works

<
<

>
>
>

>
>
★
<

<
<

>
>
><

<

>
>
>

>
>
><

<
< <<< <
b₁ b₂b₃b₄ b₅b₆ b₇ b₈b₉

Why This Works

● The median-of-medians () is larger than 3/5 of the ★
elements from (roughly) the first half of the blocks.

● ★ larger than about 3/10 of the total elements.

● ★ is smaller than about 3/10 of the total elements.

● Guarantees a 30% / 70% split.

<
<
<

<
<
<

<
<
<

<
<
<

>
>
★
<
<

>
>
>

>
>
>

>
>
>

>
>
>

b₁ b₂b₃b₄ b₅b₆ b₇ b₈b₉

The New Recurrence

● The median-of-medians algorithm does the
following:

● Split the input into blocks of size 5 in time Θ(n).
● Compute the median of each block non-recursively.

Takes time Θ(n), since there are about n / 5 blocks.
● Recursively invoke the algorithm on this list of n / 5

blocks to get a pivot.
● Partition using that pivot in time Θ(n).
● Make up to one recursive call on an input of size at

most 7n / 10.

T(1) = Θ(1)
T(n) ≤ T(⌊n / 5⌋) + T(⌊7n / 10⌋) + Θ(n)
T(1) = Θ(1)
T(n) ≤ T(⌊n / 5⌋) + T(⌊7n / 10⌋) + Θ(n)

The New Recurrence

● The median-of-medians algorithm does the
following:

● Split the input into blocks of size 5 in time Θ(n).
● Compute the median of each block non-recursively.

Takes time Θ(n), since there are about n / 5 blocks.
● Recursively invoke the algorithm on this list of n / 5

blocks to get a pivot.
● Partition using that pivot in time Θ(n).
● Make up to one recursive call on an input of size at

most 7n / 10.

T(1) = Θ(1)
T(n) ≤ T(⌊n / 5⌋) + T(⌊7n / 10⌋) + Θ(n)
T(1) = Θ(1)
T(n) ≤ T(⌊n / 5⌋) + T(⌊7n / 10⌋) + Θ(n)

This recurrence has
some small errors.
We'll address them

in a while.

This recurrence has
some small errors.
We'll address them

in a while.

The New Recurrence

● Our new recurrence is

● Can we apply the Master Theorem here?
● Is the work increasing, decreasing, or the same

across all levels?

● What do you expect the recurrence to solve to?

T(1) = Θ(1)
T(n) ≤ T(⌊n / 5⌋) + T(⌊7n / 10⌋) + Θ(n)

T(1) = Θ(1)
T(n) ≤ T(⌊n / 5⌋) + T(⌊7n / 10⌋) + Θ(n)

A Problem

● What is the value of this recurrence
when n = 4?

● It's undefined!
● Why haven't we seen this before?

T(1) = Θ(1)
T(n) ≤ T(⌊n / 5⌋) + T(⌊7n / 10⌋) + Θ(n)

T(1) = Θ(1)
T(n) ≤ T(⌊n / 5⌋) + T(⌊7n / 10⌋) + Θ(n)

A Problem

● What is the value of this recurrence
when n = 4?

● It's undefined!
● Why haven't we seen this before?

T(1) = Θ(1)
T(n) ≤ T(⌊n / 5⌋) + T(⌊7n / 10⌋) + Θ(n)

T(1) = Θ(1)
T(n) ≤ T(⌊n / 5⌋) + T(⌊7n / 10⌋) + Θ(n)

Fixing the Recurrence

● For very small values of n, this
recurrence will try to evaluate T(0), even
though that's not defined.

● To fix this, we will use the “fat base case”
approach and redefine the recurrence as
follows:

● (There are still some small errors we'll
correct later.)

T(n) = Θ(1) if n ≤ 100
T(n) ≤ T(⌊n / 5⌋) + T(⌊7n / 10⌋) + Θ(n) otherwise

T(n) = Θ(1) if n ≤ 100
T(n) ≤ T(⌊n / 5⌋) + T(⌊7n / 10⌋) + Θ(n) otherwise

Setting up the Recurrence

● We will show that the following recurrence is O(n):

● Making our standard simplifying assumptions
about the values hidden in the Θ terms:

T(n) = Θ(1) if n ≤ 100
T(n) ≤ T(⌊n / 5⌋) + T(⌊7n / 10⌋) + Θ(n) otherwise

T(n) = Θ(1) if n ≤ 100
T(n) ≤ T(⌊n / 5⌋) + T(⌊7n / 10⌋) + Θ(n) otherwise

T(n) ≤ c if n ≤ 100
T(n) ≤ T(⌊n / 5⌋) + T(⌊7n / 10⌋) + cn otherwise

T(n) ≤ c if n ≤ 100
T(n) ≤ T(⌊n / 5⌋) + T(⌊7n / 10⌋) + cn otherwise

Proving the O(n) Bound

● We cannot easily use the iteration method
because of the floors and ceilings.

● The recursion-tree method is unlikely to be
helpful because the tree shape is lopsided.

● Instead, we will use a technique called the
substitution method.

● We will guess that T(n) ≤ kn for some constant
k we will determine later.

● We will then use a proof by induction to show
that for the right constants, T(n) ≤ kn is true.

Theorem: T(n) = O(n).

Proof: We guess that for all n ≥ 1, T(n) ≤ kn for some k that
we will determine later; this means T(n) = O(n).

We proceed by induction. As a base case, if 1 ≤ n ≤ 100,
then T(n) ≤ c ≤ kn will be true as long as we pick k ≥ c.
For the inductive step, assume for some n ≥ 100 that the
claim holds for all 1 ≤ n' < n. Note that 1 ≤ ⌊n / 5⌋ < n and
1 ≤ ⌊7n / 10⌋ < n. Then

 T(n) ≤ T(⌊n / 5⌋) + T(⌊7n / 10⌋) + cn
 ≤ k⌊n / 5⌋ + k⌊7n / 10⌋ + cn
 ≤ k(n / 5) + k(7n / 10) + cn
 = k(9n / 10) + cn
 = n(9k / 10 + c)

If we pick k so 9k / 10 + c ≤ k, then T(n) ≤ kn holds. This is
true when c ≤ k / 10, which happens when 10c ≤ k. If we
pick k = 10c, then T(n) ≤ kn, completing the induction. ■

T(n) ≤ c if n ≤ 100
T(n) ≤ T(⌊n / 5⌋) + T(⌊7n / 10⌋) + cn otherwise

T(n) ≤ c if n ≤ 100
T(n) ≤ T(⌊n / 5⌋) + T(⌊7n / 10⌋) + cn otherwise

Theorem: T(n) = O(n).

Proof: We guess that for all n ≥ 1, T(n) ≤ kn for some k that
we will determine later; this means T(n) = O(n).

We proceed by induction. As a base case, if 1 ≤ n ≤ 100,
then T(n) ≤ c ≤ kn will be true as long as we pick k ≥ c.
For the inductive step, assume for some n ≥ 100 that the
claim holds for all 1 ≤ n' < n. Note that 1 ≤ ⌊n / 5⌋ < n and
1 ≤ ⌊7n / 10⌋ < n. Then

 T(n) ≤ T(⌊n / 5⌋) + T(⌊7n / 10⌋) + cn
 ≤ k⌊n / 5⌋ + k⌊7n / 10⌋ + cn
 ≤ k(n / 5) + k(7n / 10) + cn
 = k(9n / 10) + cn
 = n(9k / 10 + c)

If we pick k so 9k / 10 + c ≤ k, then T(n) ≤ kn holds. This is
true when c ≤ k / 10, which happens when 10c ≤ k. If we
pick k = 10c, then T(n) ≤ kn, completing the induction. ■

T(n) ≤ c if n ≤ 100
T(n) ≤ T(⌊n / 5⌋) + T(⌊7n / 10⌋) + cn otherwise

T(n) ≤ c if n ≤ 100
T(n) ≤ T(⌊n / 5⌋) + T(⌊7n / 10⌋) + cn otherwise

Theorem: T(n) = O(n).

Proof: We guess that for all n ≥ 1, T(n) ≤ kn for some k that
we will determine later; this means T(n) = O(n).

We proceed by induction. As a base case, if 1 ≤ n ≤ 100,
then T(n) ≤ c ≤ kn will be true as long as we pick k ≥ c.
For the inductive step, assume for some n ≥ 100 that the
claim holds for all 1 ≤ n' < n. Note that 1 ≤ ⌊n / 5⌋ < n and
1 ≤ ⌊7n / 10⌋ < n. Then

 T(n) ≤ T(⌊n / 5⌋) + T(⌊7n / 10⌋) + cn
 ≤ k⌊n / 5⌋ + k⌊7n / 10⌋ + cn
 ≤ k(n / 5) + k(7n / 10) + cn
 = k(9n / 10) + cn
 = n(9k / 10 + c)

If we pick k so 9k / 10 + c ≤ k, then T(n) ≤ kn holds. This is
true when c ≤ k / 10, which happens when 10c ≤ k. If we
pick k = 10c, then T(n) ≤ kn, completing the induction. ■

T(n) ≤ c if n ≤ 100
T(n) ≤ T(⌊n / 5⌋) + T(⌊7n / 10⌋) + cn otherwise

T(n) ≤ c if n ≤ 100
T(n) ≤ T(⌊n / 5⌋) + T(⌊7n / 10⌋) + cn otherwise

Theorem: T(n) = O(n).

Proof: We guess that for all n ≥ 1, T(n) ≤ kn for some k that
we will determine later; this means T(n) = O(n).

We proceed by induction. As a base case, if 1 ≤ n ≤ 100,
then T(n) ≤ c ≤ kn will be true as long as we pick k ≥ c.
For the inductive step, assume for some n ≥ 100 that the
claim holds for all 1 ≤ n' < n. Note that 1 ≤ ⌊n / 5⌋ < n and
1 ≤ ⌊7n / 10⌋ < n. Then

 T(n) ≤ T(⌊n / 5⌋) + T(⌊7n / 10⌋) + cn
 ≤ k⌊n / 5⌋ + k⌊7n / 10⌋ + cn
 ≤ k(n / 5) + k(7n / 10) + cn
 = k(9n / 10) + cn
 = n(9k / 10 + c)

If we pick k so 9k / 10 + c ≤ k, then T(n) ≤ kn holds. This is
true when c ≤ k / 10, which happens when 10c ≤ k. If we
pick k = 10c, then T(n) ≤ kn, completing the induction. ■

T(n) ≤ c if n ≤ 100
T(n) ≤ T(⌊n / 5⌋) + T(⌊7n / 10⌋) + cn otherwise

T(n) ≤ c if n ≤ 100
T(n) ≤ T(⌊n / 5⌋) + T(⌊7n / 10⌋) + cn otherwise

Theorem: T(n) = O(n).

Proof: We guess that for all n ≥ 1, T(n) ≤ kn for some k that
we will determine later; this means T(n) = O(n).

We proceed by induction. As a base case, if 1 ≤ n ≤ 100,
then T(n) ≤ c ≤ kn will be true as long as we pick k ≥ c.
For the inductive step, assume for some n ≥ 100 that the
claim holds for all 1 ≤ n' < n. Note that 1 ≤ ⌊n / 5⌋ < n and
1 ≤ ⌊7n / 10⌋ < n. Then

 T(n) ≤ T(⌊n / 5⌋) + T(⌊7n / 10⌋) + cn
 ≤ k⌊n / 5⌋ + k⌊7n / 10⌋ + cn
 ≤ k(n / 5) + k(7n / 10) + cn
 = k(9n / 10) + cn
 = n(9k / 10 + c)

If we pick k so 9k / 10 + c ≤ k, then T(n) ≤ kn holds. This is
true when c ≤ k / 10, which happens when 10c ≤ k. If we
pick k = 10c, then T(n) ≤ kn, completing the induction. ■

T(n) ≤ c if n ≤ 100
T(n) ≤ T(⌊n / 5⌋) + T(⌊7n / 10⌋) + cn otherwise

T(n) ≤ c if n ≤ 100
T(n) ≤ T(⌊n / 5⌋) + T(⌊7n / 10⌋) + cn otherwise

Theorem: T(n) = O(n).

Proof: We guess that for all n ≥ 1, T(n) ≤ kn for some k that
we will determine later; this means T(n) = O(n).

We proceed by induction. As a base case, if 1 ≤ n ≤ 100,
then T(n) ≤ c ≤ kn will be true as long as we pick k ≥ c.
For the inductive step, assume for some n ≥ 100 that the
claim holds for all 1 ≤ n' < n. Note that 1 ≤ ⌊n / 5⌋ < n and
1 ≤ ⌊7n / 10⌋ < n. Then

 T(n) ≤ T(⌊n / 5⌋) + T(⌊7n / 10⌋) + cn
 ≤ k⌊n / 5⌋ + k⌊7n / 10⌋ + cn
 ≤ k(n / 5) + k(7n / 10) + cn
 = k(9n / 10) + cn
 = n(9k / 10 + c)

If we pick k so 9k / 10 + c ≤ k, then T(n) ≤ kn holds. This is
true when c ≤ k / 10, which happens when 10c ≤ k. If we
pick k = 10c, then T(n) ≤ kn, completing the induction. ■

T(n) ≤ c if n ≤ 100
T(n) ≤ T(⌊n / 5⌋) + T(⌊7n / 10⌋) + cn otherwise

T(n) ≤ c if n ≤ 100
T(n) ≤ T(⌊n / 5⌋) + T(⌊7n / 10⌋) + cn otherwise

Theorem: T(n) = O(n).

Proof: We guess that for all n ≥ 1, T(n) ≤ kn for some k that
we will determine later; this means T(n) = O(n).

We proceed by induction. As a base case, if 1 ≤ n ≤ 100,
then T(n) ≤ c ≤ kn will be true as long as we pick k ≥ c.
For the inductive step, assume for some n ≥ 100 that the
claim holds for all 1 ≤ n' < n. Note that 1 ≤ ⌊n / 5⌋ < n and
1 ≤ ⌊7n / 10⌋ < n. Then

 T(n) ≤ T(⌊n / 5⌋) + T(⌊7n / 10⌋) + cn
 ≤ k⌊n / 5⌋ + k⌊7n / 10⌋ + cn
 ≤ k(n / 5) + k(7n / 10) + cn
 = k(9n / 10) + cn
 = n(9k / 10 + c)

If we pick k so 9k / 10 + c ≤ k, then T(n) ≤ kn holds. This is
true when c ≤ k / 10, which happens when 10c ≤ k. If we
pick k = 10c, then T(n) ≤ kn, completing the induction. ■

T(n) ≤ c if n ≤ 100
T(n) ≤ T(⌊n / 5⌋) + T(⌊7n / 10⌋) + cn otherwise

T(n) ≤ c if n ≤ 100
T(n) ≤ T(⌊n / 5⌋) + T(⌊7n / 10⌋) + cn otherwise

Theorem: T(n) = O(n).

Proof: We guess that for all n ≥ 1, T(n) ≤ kn for some k that
we will determine later; this means T(n) = O(n).

We proceed by induction. As a base case, if 1 ≤ n ≤ 100,
then T(n) ≤ c ≤ kn will be true as long as we pick k ≥ c.
For the inductive step, assume for some n ≥ 100 that the
claim holds for all 1 ≤ n' < n. Note that 1 ≤ ⌊n / 5⌋ < n and
1 ≤ ⌊7n / 10⌋ < n. Then

 T(n) ≤ T(⌊n / 5⌋) + T(⌊7n / 10⌋) + cn
 ≤ k⌊n / 5⌋ + k⌊7n / 10⌋ + cn
 ≤ k(n / 5) + k(7n / 10) + cn
 = k(9n / 10) + cn
 = n(9k / 10 + c)

If we pick k so 9k / 10 + c ≤ k, then T(n) ≤ kn holds. This is
true when c ≤ k / 10, which happens when 10c ≤ k. If we
pick k = 10c, then T(n) ≤ kn, completing the induction. ■

T(n) ≤ c if n ≤ 100
T(n) ≤ T(⌊n / 5⌋) + T(⌊7n / 10⌋) + cn otherwise

T(n) ≤ c if n ≤ 100
T(n) ≤ T(⌊n / 5⌋) + T(⌊7n / 10⌋) + cn otherwise

Theorem: T(n) = O(n).

Proof: We guess that for all n ≥ 1, T(n) ≤ kn for some k that
we will determine later; this means T(n) = O(n).

We proceed by induction. As a base case, if 1 ≤ n ≤ 100,
then T(n) ≤ c ≤ kn will be true as long as we pick k ≥ c.
For the inductive step, assume for some n ≥ 100 that the
claim holds for all 1 ≤ n' < n. Note that 1 ≤ ⌊n / 5⌋ < n and
1 ≤ ⌊7n / 10⌋ < n. Then

 T(n) ≤ T(⌊n / 5⌋) + T(⌊7n / 10⌋) + cn
 ≤ k⌊n / 5⌋ + k⌊7n / 10⌋ + cn
 ≤ k(n / 5) + k(7n / 10) + cn
 = k(9n / 10) + cn
 = n(9k / 10 + c)

If we pick k so 9k / 10 + c ≤ k, then T(n) ≤ kn holds. This is
true when c ≤ k / 10, which happens when 10c ≤ k. If we
pick k = 10c, then T(n) ≤ kn, completing the induction. ■

T(n) ≤ c if n ≤ 100
T(n) ≤ T(⌊n / 5⌋) + T(⌊7n / 10⌋) + cn otherwise

T(n) ≤ c if n ≤ 100
T(n) ≤ T(⌊n / 5⌋) + T(⌊7n / 10⌋) + cn otherwise

Theorem: T(n) = O(n).

Proof: We guess that for all n ≥ 1, T(n) ≤ kn for some k that
we will determine later; this means T(n) = O(n).

We proceed by induction. As a base case, if 1 ≤ n ≤ 100,
then T(n) ≤ c ≤ kn will be true as long as we pick k ≥ c.
For the inductive step, assume for some n ≥ 100 that the
claim holds for all 1 ≤ n' < n. Note that 1 ≤ ⌊n / 5⌋ < n and
1 ≤ ⌊7n / 10⌋ < n. Then

 T(n) ≤ T(⌊n / 5⌋) + T(⌊7n / 10⌋) + cn
 ≤ k⌊n / 5⌋ + k⌊7n / 10⌋ + cn
 ≤ k(n / 5) + k(7n / 10) + cn
 = k(9n / 10) + cn
 = n(9k / 10 + c)

If we pick k so 9k / 10 + c ≤ k, then T(n) ≤ kn holds. This is
true when c ≤ k / 10, which happens when 10c ≤ k. If we
pick k = 10c, then T(n) ≤ kn, completing the induction. ■

T(n) ≤ c if n ≤ 100
T(n) ≤ T(⌊n / 5⌋) + T(⌊7n / 10⌋) + cn otherwise

T(n) ≤ c if n ≤ 100
T(n) ≤ T(⌊n / 5⌋) + T(⌊7n / 10⌋) + cn otherwise

Theorem: T(n) = O(n).

Proof: We guess that for all n ≥ 1, T(n) ≤ kn for some k that
we will determine later; this means T(n) = O(n).

We proceed by induction. As a base case, if 1 ≤ n ≤ 100,
then T(n) ≤ c ≤ kn will be true as long as we pick k ≥ c.
For the inductive step, assume for some n ≥ 100 that the
claim holds for all 1 ≤ n' < n. Note that 1 ≤ ⌊n / 5⌋ < n and
1 ≤ ⌊7n / 10⌋ < n. Then

 T(n) ≤ T(⌊n / 5⌋) + T(⌊7n / 10⌋) + cn
 ≤ k⌊n / 5⌋ + k⌊7n / 10⌋ + cn
 ≤ k(n / 5) + k(7n / 10) + cn
 = k(9n / 10) + cn
 = n(9k / 10 + c)

If we pick k so 9k / 10 + c ≤ k, then T(n) ≤ kn holds. This is
true when c ≤ k / 10, which happens when 10c ≤ k. If we
pick k = 10c, then T(n) ≤ kn, completing the induction. ■

T(n) ≤ c if n ≤ 100
T(n) ≤ T(⌊n / 5⌋) + T(⌊7n / 10⌋) + cn otherwise

T(n) ≤ c if n ≤ 100
T(n) ≤ T(⌊n / 5⌋) + T(⌊7n / 10⌋) + cn otherwise

Theorem: T(n) = O(n).

Proof: We guess that for all n ≥ 1, T(n) ≤ kn for some k that
we will determine later; this means T(n) = O(n).

We proceed by induction. As a base case, if 1 ≤ n ≤ 100,
then T(n) ≤ c ≤ kn will be true as long as we pick k ≥ c.
For the inductive step, assume for some n ≥ 100 that the
claim holds for all 1 ≤ n' < n. Note that 1 ≤ ⌊n / 5⌋ < n and
1 ≤ ⌊7n / 10⌋ < n. Then

 T(n) ≤ T(⌊n / 5⌋) + T(⌊7n / 10⌋) + cn
 ≤ k⌊n / 5⌋ + k⌊7n / 10⌋ + cn
 ≤ k(n / 5) + k(7n / 10) + cn
 = k(9n / 10) + cn
 = n(9k / 10 + c)

If we pick k so 9k / 10 + c ≤ k, then T(n) ≤ kn holds. This is
true when c ≤ k / 10, which happens when 10c ≤ k. If we
pick k = 10c, then T(n) ≤ kn, completing the induction. ■

T(n) ≤ c if n ≤ 100
T(n) ≤ T(⌊n / 5⌋) + T(⌊7n / 10⌋) + cn otherwise

T(n) ≤ c if n ≤ 100
T(n) ≤ T(⌊n / 5⌋) + T(⌊7n / 10⌋) + cn otherwise

Theorem: T(n) = O(n).

Proof: We guess that for all n ≥ 1, T(n) ≤ kn for some k that
we will determine later; this means T(n) = O(n).

We proceed by induction. As a base case, if 1 ≤ n ≤ 100,
then T(n) ≤ c ≤ kn will be true as long as we pick k ≥ c.
For the inductive step, assume for some n ≥ 100 that the
claim holds for all 1 ≤ n' < n. Note that 1 ≤ ⌊n / 5⌋ < n and
1 ≤ ⌊7n / 10⌋ < n. Then

 T(n) ≤ T(⌊n / 5⌋) + T(⌊7n / 10⌋) + cn
 ≤ k⌊n / 5⌋ + k⌊7n / 10⌋ + cn
 ≤ k(n / 5) + k(7n / 10) + cn
 = k(9n / 10) + cn
 = n(9k / 10 + c)

If we pick k so 9k / 10 + c ≤ k, then T(n) ≤ kn holds. This is
true when c ≤ k / 10, which happens when 10c ≤ k. If we
pick k = 10c, then T(n) ≤ kn, completing the induction. ■

T(n) ≤ c if n ≤ 100
T(n) ≤ T(⌊n / 5⌋) + T(⌊7n / 10⌋) + cn otherwise

T(n) ≤ c if n ≤ 100
T(n) ≤ T(⌊n / 5⌋) + T(⌊7n / 10⌋) + cn otherwise

Theorem: T(n) = O(n).

Proof: We guess that for all n ≥ 1, T(n) ≤ kn for some k that
we will determine later; this means T(n) = O(n).

We proceed by induction. As a base case, if 1 ≤ n ≤ 100,
then T(n) ≤ c ≤ kn will be true as long as we pick k ≥ c.
For the inductive step, assume for some n ≥ 100 that the
claim holds for all 1 ≤ n' < n. Note that 1 ≤ ⌊n / 5⌋ < n and
1 ≤ ⌊7n / 10⌋ < n. Then

 T(n) ≤ T(⌊n / 5⌋) + T(⌊7n / 10⌋) + cn
 ≤ k⌊n / 5⌋ + k⌊7n / 10⌋ + cn
 ≤ k(n / 5) + k(7n / 10) + cn
 = k(9n / 10) + cn
 = n(9k / 10 + c)

If we pick k so 9k / 10 + c ≤ k, then T(n) ≤ kn holds. This is
true when c ≤ k / 10, which happens when 10c ≤ k. If we
pick k = 10c, then T(n) ≤ kn, completing the induction. ■

T(n) ≤ c if n ≤ 100
T(n) ≤ T(⌊n / 5⌋) + T(⌊7n / 10⌋) + cn otherwise

T(n) ≤ c if n ≤ 100
T(n) ≤ T(⌊n / 5⌋) + T(⌊7n / 10⌋) + cn otherwise

Theorem: T(n) = O(n).

Proof: We guess that for all n ≥ 1, T(n) ≤ kn for some k that
we will determine later; this means T(n) = O(n).

We proceed by induction. As a base case, if 1 ≤ n ≤ 100,
then T(n) ≤ c ≤ kn will be true as long as we pick k ≥ c.
For the inductive step, assume for some n ≥ 100 that the
claim holds for all 1 ≤ n' < n. Note that 1 ≤ ⌊n / 5⌋ < n and
1 ≤ ⌊7n / 10⌋ < n. Then

 T(n) ≤ T(⌊n / 5⌋) + T(⌊7n / 10⌋) + cn
 ≤ k⌊n / 5⌋ + k⌊7n / 10⌋ + cn
 ≤ k(n / 5) + k(7n / 10) + cn
 = k(9n / 10) + cn
 = n(9k / 10 + c)

If we pick k so 9k / 10 + c ≤ k, then T(n) ≤ kn holds. This is
true when c ≤ k / 10, which happens when 10c ≤ k. If we
pick k = 10c, then T(n) ≤ kn, completing the induction. ■

T(n) ≤ c if n ≤ 100
T(n) ≤ T(⌊n / 5⌋) + T(⌊7n / 10⌋) + cn otherwise

T(n) ≤ c if n ≤ 100
T(n) ≤ T(⌊n / 5⌋) + T(⌊7n / 10⌋) + cn otherwise

The Substitution Method

● To use the substitution method, proceed as
follows:
● Make a guess of the form of your answer (for

example, kn or k₁ n logk₂n.

● Proceed by induction to prove the bound holds,
noting what constraints arise on the values of
your undetermined constants.

● If the induction succeeds, you will have values
for your undetermined constants and are done.

● If the induction fails, you either need to
strengthen your assumption about the function
or relax your bound.

Nitty-Gritty Details

● The recurrence we just analyzed was
close to the real recurrence, but is
slightly inaccurate due to some rough
assumptions about the split size.

● Let's try to get a tighter bound on the
split size.

Cases to Consider

<
<
<

<
<
<

<
<
<

<
<
<

>
>
★
<
<

>
>
>

>
>
>

>
>
>

>
>
>

b₁ b₂b₃b₄ b₅b₆ b₇ b₈b₉

Cases to Consider

<
<
<

<
<
<

<
<
<

<
<
<

>
>
★
<
<

>
>
>

>
>
>

>
>
> >

b₁ b₂b₃b₄ b₅b₆ b₇ b₈b₉

Cases to Consider

<
<
<

<
<
<

<
<
<

<
<
<

>
>
★
<
<

>
>
>

>
>
> >

b₁ b₂b₃b₄ b₅b₆ b₇b₉

Cases to Consider

>
>
★
<
<
b₁

Cases to Consider

>
★
<
<
b₁

A Better Analysis

● There are ⌈n / 5⌉ blocks, including the leftover
elements.

● ⌈⌈n / 5⌉ / 2⌉ blocks have elements greater than
or equal to the median-of-medians .★

● The block containing ★ and the very last block
are special cases. If we ignore them, there are
at least ⌈⌈n / 5⌉ / 2⌉ – 2 “normal” blocks greater
than the median block.

A Better Analysis
● Each of the ⌈⌈n / 5⌉ / 2⌉ – 2 “normal” blocks

contributes three elements greater than .★
● If we let X denote the number of elements

greater than , we get★

 X ≥ 3(⌈⌈n / 5⌉ / 2⌉ – 2)

 ≥ 3(n / 10 – 2)

 = 3n / 10 – 6
● Our recursive call can be on a subarray of size

 n – X ≤ n – (3n / 10 – 6)

 ≤ 7n / 10 + 6

The Real Recurrence Relation

● The most accurate recurrence relation
for our algorithm is the following:

● Let's see if we can prove this is O(n).

T(n) ≤ c if n ≤ 100
T(n) ≤ T(⌈n / 5⌉) + T(⌈7n / 10 + 6⌉) + cn otherwise

T(n) ≤ c if n ≤ 100
T(n) ≤ T(⌈n / 5⌉) + T(⌈7n / 10 + 6⌉) + cn otherwise

Theorem: T(n) = O(n).

Proof: We will prove that for some constant k to be chosen
later, T(n) ≤ kn for all n ≥ 1; T(n) = O(n) follows. We
proceed by induction. As our base case, if 1 ≤ n ≤ 100,
then T(n) ≤ c ≤ kn if we choose k ≥ c.

For the inductive step, assume that for some n ≥ 100, the
claim holds for all 1 ≤ n' < n. Note that if n ≥ 100 that
⌈n / 5⌉ < n and ⌈7n / 10 + 6⌉ < n. Therefore:

 T(n) ≤ T(⌈n / 5⌉) + T(⌈7n / 10 + 6⌉) + cn
 ≤ k⌈n / 5⌉ + k(⌈7n / 10 + 6⌉) + cn
 ≤ k(n / 5 + 1) + k(7n / 10 + 6 + 1) + cn
 = 9kn / 10 + 8k + cn
 = kn + (8k + cn – kn / 10)

If (8k + cn – kn / 10) ≤ 0, then T(n) ≤ kn. It's left as an
exercise to the reader to check that this is true if we pick
k = 11c. Thus T(n) ≤ kn, completing the induction. ■

T(n) ≤ c if n ≤ 100
T(n) ≤ T(⌈n / 5⌉) + T(⌈7n / 10 + 6⌉) + cn otherwise

T(n) ≤ c if n ≤ 100
T(n) ≤ T(⌈n / 5⌉) + T(⌈7n / 10 + 6⌉) + cn otherwise

Theorem: T(n) = O(n).

Proof: We will prove that for some constant k to be chosen
later, T(n) ≤ kn for all n ≥ 1; T(n) = O(n) follows. We
proceed by induction. As our base case, if 1 ≤ n ≤ 100,
then T(n) ≤ c ≤ kn if we choose k ≥ c.

For the inductive step, assume that for some n ≥ 100, the
claim holds for all 1 ≤ n' < n. Note that if n ≥ 100 that
⌈n / 5⌉ < n and ⌈7n / 10 + 6⌉ < n. Therefore:

 T(n) ≤ T(⌈n / 5⌉) + T(⌈7n / 10 + 6⌉) + cn
 ≤ k⌈n / 5⌉ + k(⌈7n / 10 + 6⌉) + cn
 ≤ k(n / 5 + 1) + k(7n / 10 + 6 + 1) + cn
 = 9kn / 10 + 8k + cn
 = kn + (8k + cn – kn / 10)

If (8k + cn – kn / 10) ≤ 0, then T(n) ≤ kn. It's left as an
exercise to the reader to check that this is true if we pick
k = 11c. Thus T(n) ≤ kn, completing the induction. ■

T(n) ≤ c if n ≤ 100
T(n) ≤ T(⌈n / 5⌉) + T(⌈7n / 10 + 6⌉) + cn otherwise

T(n) ≤ c if n ≤ 100
T(n) ≤ T(⌈n / 5⌉) + T(⌈7n / 10 + 6⌉) + cn otherwise

Theorem: T(n) = O(n).

Proof: We will prove that for some constant k to be chosen
later, T(n) ≤ kn for all n ≥ 1; T(n) = O(n) follows. We
proceed by induction. As our base case, if 1 ≤ n ≤ 100,
then T(n) ≤ c ≤ kn if we choose k ≥ c.

For the inductive step, assume that for some n ≥ 100, the
claim holds for all 1 ≤ n' < n. Note that if n ≥ 100 that
⌈n / 5⌉ < n and ⌈7n / 10 + 6⌉ < n. Therefore:

 T(n) ≤ T(⌈n / 5⌉) + T(⌈7n / 10 + 6⌉) + cn
 ≤ k⌈n / 5⌉ + k(⌈7n / 10 + 6⌉) + cn
 ≤ k(n / 5 + 1) + k(7n / 10 + 6 + 1) + cn
 = 9kn / 10 + 8k + cn
 = kn + (8k + cn – kn / 10)

If (8k + cn – kn / 10) ≤ 0, then T(n) ≤ kn. It's left as an
exercise to the reader to check that this is true if we pick
k = 11c. Thus T(n) ≤ kn, completing the induction. ■

T(n) ≤ c if n ≤ 100
T(n) ≤ T(⌈n / 5⌉) + T(⌈7n / 10 + 6⌉) + cn otherwise

T(n) ≤ c if n ≤ 100
T(n) ≤ T(⌈n / 5⌉) + T(⌈7n / 10 + 6⌉) + cn otherwise

Theorem: T(n) = O(n).

Proof: We will prove that for some constant k to be chosen
later, T(n) ≤ kn for all n ≥ 1; T(n) = O(n) follows. We
proceed by induction. As our base case, if 1 ≤ n ≤ 100,
then T(n) ≤ c ≤ kn if we choose k ≥ c.

For the inductive step, assume that for some n ≥ 100, the
claim holds for all 1 ≤ n' < n. Note that if n ≥ 100 that
⌈n / 5⌉ < n and ⌈7n / 10 + 6⌉ < n. Therefore:

 T(n) ≤ T(⌈n / 5⌉) + T(⌈7n / 10 + 6⌉) + cn
 ≤ k⌈n / 5⌉ + k(⌈7n / 10 + 6⌉) + cn
 ≤ k(n / 5 + 1) + k(7n / 10 + 6 + 1) + cn
 = 9kn / 10 + 8k + cn
 = kn + (8k + cn – kn / 10)

If (8k + cn – kn / 10) ≤ 0, then T(n) ≤ kn. It's left as an
exercise to the reader to check that this is true if we pick
k = 11c. Thus T(n) ≤ kn, completing the induction. ■

T(n) ≤ c if n ≤ 100
T(n) ≤ T(⌈n / 5⌉) + T(⌈7n / 10 + 6⌉) + cn otherwise

T(n) ≤ c if n ≤ 100
T(n) ≤ T(⌈n / 5⌉) + T(⌈7n / 10 + 6⌉) + cn otherwise

Theorem: T(n) = O(n).

Proof: We will prove that for some constant k to be chosen
later, T(n) ≤ kn for all n ≥ 1; T(n) = O(n) follows. We
proceed by induction. As our base case, if 1 ≤ n ≤ 100,
then T(n) ≤ c ≤ kn if we choose k ≥ c.

For the inductive step, assume that for some n ≥ 100, the
claim holds for all 1 ≤ n' < n. Note that if n ≥ 100 that
⌈n / 5⌉ < n and ⌈7n / 10 + 6⌉ < n. Therefore:

 T(n) ≤ T(⌈n / 5⌉) + T(⌈7n / 10 + 6⌉) + cn
 ≤ k⌈n / 5⌉ + k(⌈7n / 10 + 6⌉) + cn
 ≤ k(n / 5 + 1) + k(7n / 10 + 6 + 1) + cn
 = 9kn / 10 + 8k + cn
 = kn + (8k + cn – kn / 10)

If (8k + cn – kn / 10) ≤ 0, then T(n) ≤ kn. It's left as an
exercise to the reader to check that this is true if we pick
k = 11c. Thus T(n) ≤ kn, completing the induction. ■

T(n) ≤ c if n ≤ 100
T(n) ≤ T(⌈n / 5⌉) + T(⌈7n / 10 + 6⌉) + cn otherwise

T(n) ≤ c if n ≤ 100
T(n) ≤ T(⌈n / 5⌉) + T(⌈7n / 10 + 6⌉) + cn otherwise

Theorem: T(n) = O(n).

Proof: We will prove that for some constant k to be chosen
later, T(n) ≤ kn for all n ≥ 1; T(n) = O(n) follows. We
proceed by induction. As our base case, if 1 ≤ n ≤ 100,
then T(n) ≤ c ≤ kn if we choose k ≥ c.

For the inductive step, assume that for some n ≥ 100, the
claim holds for all 1 ≤ n' < n. Note that if n ≥ 100 that
⌈n / 5⌉ < n and ⌈7n / 10 + 6⌉ < n. Therefore:

 T(n) ≤ T(⌈n / 5⌉) + T(⌈7n / 10 + 6⌉) + cn
 ≤ k⌈n / 5⌉ + k(⌈7n / 10 + 6⌉) + cn
 ≤ k(n / 5 + 1) + k(7n / 10 + 6 + 1) + cn
 = 9kn / 10 + 8k + cn
 = kn + (8k + cn – kn / 10)

If (8k + cn – kn / 10) ≤ 0, then T(n) ≤ kn. It's left as an
exercise to the reader to check that this is true if we pick
k = 11c. Thus T(n) ≤ kn, completing the induction. ■

T(n) ≤ c if n ≤ 100
T(n) ≤ T(⌈n / 5⌉) + T(⌈7n / 10 + 6⌉) + cn otherwise

T(n) ≤ c if n ≤ 100
T(n) ≤ T(⌈n / 5⌉) + T(⌈7n / 10 + 6⌉) + cn otherwise

Theorem: T(n) = O(n).

Proof: We will prove that for some constant k to be chosen
later, T(n) ≤ kn for all n ≥ 1; T(n) = O(n) follows. We
proceed by induction. As our base case, if 1 ≤ n ≤ 100,
then T(n) ≤ c ≤ kn if we choose k ≥ c.

For the inductive step, assume that for some n ≥ 100, the
claim holds for all 1 ≤ n' < n. Note that if n ≥ 100 that
⌈n / 5⌉ < n and ⌈7n / 10 + 6⌉ < n. Therefore:

 T(n) ≤ T(⌈n / 5⌉) + T(⌈7n / 10 + 6⌉) + cn
 ≤ k⌈n / 5⌉ + k(⌈7n / 10 + 6⌉) + cn
 ≤ k(n / 5 + 1) + k(7n / 10 + 6 + 1) + cn
 = 9kn / 10 + 8k + cn
 = kn + (8k + cn – kn / 10)

If (8k + cn – kn / 10) ≤ 0, then T(n) ≤ kn. It's left as an
exercise to the reader to check that this is true if we pick
k = 11c. Thus T(n) ≤ kn, completing the induction. ■

T(n) ≤ c if n ≤ 100
T(n) ≤ T(⌈n / 5⌉) + T(⌈7n / 10 + 6⌉) + cn otherwise

T(n) ≤ c if n ≤ 100
T(n) ≤ T(⌈n / 5⌉) + T(⌈7n / 10 + 6⌉) + cn otherwise

Theorem: T(n) = O(n).

Proof: We will prove that for some constant k to be chosen
later, T(n) ≤ kn for all n ≥ 1; T(n) = O(n) follows. We
proceed by induction. As our base case, if 1 ≤ n ≤ 100,
then T(n) ≤ c ≤ kn if we choose k ≥ c.

For the inductive step, assume that for some n ≥ 100, the
claim holds for all 1 ≤ n' < n. Note that if n ≥ 100 that
⌈n / 5⌉ < n and ⌈7n / 10 + 6⌉ < n. Therefore:

 T(n) ≤ T(⌈n / 5⌉) + T(⌈7n / 10 + 6⌉) + cn
 ≤ k⌈n / 5⌉ + k(⌈7n / 10 + 6⌉) + cn
 ≤ k(n / 5 + 1) + k(7n / 10 + 6 + 1) + cn
 = 9kn / 10 + 8k + cn
 = kn + (8k + cn – kn / 10)

If (8k + cn – kn / 10) ≤ 0, then T(n) ≤ kn. It's left as an
exercise to the reader to check that this is true if we pick
k = 11c. Thus T(n) ≤ kn, completing the induction. ■

T(n) ≤ c if n ≤ 100
T(n) ≤ T(⌈n / 5⌉) + T(⌈7n / 10 + 6⌉) + cn otherwise

T(n) ≤ c if n ≤ 100
T(n) ≤ T(⌈n / 5⌉) + T(⌈7n / 10 + 6⌉) + cn otherwise

Theorem: T(n) = O(n).

Proof: We will prove that for some constant k to be chosen
later, T(n) ≤ kn for all n ≥ 1; T(n) = O(n) follows. We
proceed by induction. As our base case, if 1 ≤ n ≤ 100,
then T(n) ≤ c ≤ kn if we choose k ≥ c.

For the inductive step, assume that for some n ≥ 100, the
claim holds for all 1 ≤ n' < n. Note that if n ≥ 100 that
⌈n / 5⌉ < n and ⌈7n / 10 + 6⌉ < n. Therefore:

 T(n) ≤ T(⌈n / 5⌉) + T(⌈7n / 10 + 6⌉) + cn
 ≤ k⌈n / 5⌉ + k(⌈7n / 10 + 6⌉) + cn
 ≤ k(n / 5 + 1) + k(7n / 10 + 6 + 1) + cn
 = 9kn / 10 + 8k + cn
 = kn + (8k + cn – kn / 10)

If (8k + cn – kn / 10) ≤ 0, then T(n) ≤ kn. It's left as an
exercise to the reader to check that this is true if we pick
k = 11c. Thus T(n) ≤ kn, completing the induction. ■

T(n) ≤ c if n ≤ 100
T(n) ≤ T(⌈n / 5⌉) + T(⌈7n / 10 + 6⌉) + cn otherwise

T(n) ≤ c if n ≤ 100
T(n) ≤ T(⌈n / 5⌉) + T(⌈7n / 10 + 6⌉) + cn otherwise

Theorem: T(n) = O(n).

Proof: We will prove that for some constant k to be chosen
later, T(n) ≤ kn for all n ≥ 1; T(n) = O(n) follows. We
proceed by induction. As our base case, if 1 ≤ n ≤ 100,
then T(n) ≤ c ≤ kn if we choose k ≥ c.

For the inductive step, assume that for some n ≥ 100, the
claim holds for all 1 ≤ n' < n. Note that if n ≥ 100 that
⌈n / 5⌉ < n and ⌈7n / 10 + 6⌉ < n. Therefore:

 T(n) ≤ T(⌈n / 5⌉) + T(⌈7n / 10 + 6⌉) + cn
 ≤ k⌈n / 5⌉ + k(⌈7n / 10 + 6⌉) + cn
 ≤ k(n / 5 + 1) + k(7n / 10 + 6 + 1) + cn
 = 9kn / 10 + 8k + cn
 = kn + (8k + cn – kn / 10)

If (8k + cn – kn / 10) ≤ 0, then T(n) ≤ kn. It's left as an
exercise to the reader to check that this is true if we pick
k = 11c. Thus T(n) ≤ kn, completing the induction. ■

T(n) ≤ c if n ≤ 100
T(n) ≤ T(⌈n / 5⌉) + T(⌈7n / 10 + 6⌉) + cn otherwise

T(n) ≤ c if n ≤ 100
T(n) ≤ T(⌈n / 5⌉) + T(⌈7n / 10 + 6⌉) + cn otherwise

This uses the identity

⌈x⌉ < x + 1

This uses the identity

⌈x⌉ < x + 1

Theorem: T(n) = O(n).

Proof: We will prove that for some constant k to be chosen
later, T(n) ≤ kn for all n ≥ 1; T(n) = O(n) follows. We
proceed by induction. As our base case, if 1 ≤ n ≤ 100,
then T(n) ≤ c ≤ kn if we choose k ≥ c.

For the inductive step, assume that for some n ≥ 100, the
claim holds for all 1 ≤ n' < n. Note that if n ≥ 100 that
⌈n / 5⌉ < n and ⌈7n / 10 + 6⌉ < n. Therefore:

 T(n) ≤ T(⌈n / 5⌉) + T(⌈7n / 10 + 6⌉) + cn
 ≤ k⌈n / 5⌉ + k(⌈7n / 10 + 6⌉) + cn
 ≤ k(n / 5 + 1) + k(7n / 10 + 6 + 1) + cn
 = 9kn / 10 + 8k + cn
 = kn + (8k + cn – kn / 10)

If (8k + cn – kn / 10) ≤ 0, then T(n) ≤ kn. It's left as an
exercise to the reader to check that this is true if we pick
k = 11c. Thus T(n) ≤ kn, completing the induction. ■

T(n) ≤ c if n ≤ 100
T(n) ≤ T(⌈n / 5⌉) + T(⌈7n / 10 + 6⌉) + cn otherwise

T(n) ≤ c if n ≤ 100
T(n) ≤ T(⌈n / 5⌉) + T(⌈7n / 10 + 6⌉) + cn otherwise

Theorem: T(n) = O(n).

Proof: We will prove that for some constant k to be chosen
later, T(n) ≤ kn for all n ≥ 1; T(n) = O(n) follows. We
proceed by induction. As our base case, if 1 ≤ n ≤ 100,
then T(n) ≤ c ≤ kn if we choose k ≥ c.

For the inductive step, assume that for some n ≥ 100, the
claim holds for all 1 ≤ n' < n. Note that if n ≥ 100 that
⌈n / 5⌉ < n and ⌈7n / 10 + 6⌉ < n. Therefore:

 T(n) ≤ T(⌈n / 5⌉) + T(⌈7n / 10 + 6⌉) + cn
 ≤ k⌈n / 5⌉ + k(⌈7n / 10 + 6⌉) + cn
 ≤ k(n / 5 + 1) + k(7n / 10 + 6 + 1) + cn
 = 9kn / 10 + 8k + cn
 = kn + (8k + cn – kn / 10)

If (8k + cn – kn / 10) ≤ 0, then T(n) ≤ kn. It's left as an
exercise to the reader to check that this is true if we pick
k = 11c. Thus T(n) ≤ kn, completing the induction. ■

T(n) ≤ c if n ≤ 100
T(n) ≤ T(⌈n / 5⌉) + T(⌈7n / 10 + 6⌉) + cn otherwise

T(n) ≤ c if n ≤ 100
T(n) ≤ T(⌈n / 5⌉) + T(⌈7n / 10 + 6⌉) + cn otherwise

Theorem: T(n) = O(n).

Proof: We will prove that for some constant k to be chosen
later, T(n) ≤ kn for all n ≥ 1; T(n) = O(n) follows. We
proceed by induction. As our base case, if 1 ≤ n ≤ 100,
then T(n) ≤ c ≤ kn if we choose k ≥ c.

For the inductive step, assume that for some n ≥ 100, the
claim holds for all 1 ≤ n' < n. Note that if n ≥ 100 that
⌈n / 5⌉ < n and ⌈7n / 10 + 6⌉ < n. Therefore:

 T(n) ≤ T(⌈n / 5⌉) + T(⌈7n / 10 + 6⌉) + cn
 ≤ k⌈n / 5⌉ + k(⌈7n / 10 + 6⌉) + cn
 ≤ k(n / 5 + 1) + k(7n / 10 + 6 + 1) + cn
 = 9kn / 10 + 8k + cn
 = kn + (8k + cn – kn / 10)

If (8k + cn – kn / 10) ≤ 0, then T(n) ≤ kn. It's left as an
exercise to the reader to check that this is true if we pick
k = 11c. Thus T(n) ≤ kn, completing the induction. ■

T(n) ≤ c if n ≤ 100
T(n) ≤ T(⌈n / 5⌉) + T(⌈7n / 10 + 6⌉) + cn otherwise

T(n) ≤ c if n ≤ 100
T(n) ≤ T(⌈n / 5⌉) + T(⌈7n / 10 + 6⌉) + cn otherwise

Theorem: T(n) = O(n).

Proof: We will prove that for some constant k to be chosen
later, T(n) ≤ kn for all n ≥ 1; T(n) = O(n) follows. We
proceed by induction. As our base case, if 1 ≤ n ≤ 100,
then T(n) ≤ c ≤ kn if we choose k ≥ c.

For the inductive step, assume that for some n ≥ 100, the
claim holds for all 1 ≤ n' < n. Note that if n ≥ 100 that
⌈n / 5⌉ < n and ⌈7n / 10 + 6⌉ < n. Therefore:

 T(n) ≤ T(⌈n / 5⌉) + T(⌈7n / 10 + 6⌉) + cn
 ≤ k⌈n / 5⌉ + k(⌈7n / 10 + 6⌉) + cn
 ≤ k(n / 5 + 1) + k(7n / 10 + 6 + 1) + cn
 = 9kn / 10 + 8k + cn
 = kn + (8k + cn – kn / 10)

If (8k + cn – kn / 10) ≤ 0, then T(n) ≤ kn. It's left as an
exercise to the reader to check that this is true if we pick
k = 11c. Thus T(n) ≤ kn, completing the induction. ■

T(n) ≤ c if n ≤ 100
T(n) ≤ T(⌈n / 5⌉) + T(⌈7n / 10 + 6⌉) + cn otherwise

T(n) ≤ c if n ≤ 100
T(n) ≤ T(⌈n / 5⌉) + T(⌈7n / 10 + 6⌉) + cn otherwise

Theorem: T(n) = O(n).

Proof: We will prove that for some constant k to be chosen
later, T(n) ≤ kn for all n ≥ 1; T(n) = O(n) follows. We
proceed by induction. As our base case, if 1 ≤ n ≤ 100,
then T(n) ≤ c ≤ kn if we choose k ≥ c.

For the inductive step, assume that for some n ≥ 100, the
claim holds for all 1 ≤ n' < n. Note that if n ≥ 100 that
⌈n / 5⌉ < n and ⌈7n / 10 + 6⌉ < n. Therefore:

 T(n) ≤ T(⌈n / 5⌉) + T(⌈7n / 10 + 6⌉) + cn
 ≤ k⌈n / 5⌉ + k(⌈7n / 10 + 6⌉) + cn
 ≤ k(n / 5 + 1) + k(7n / 10 + 6 + 1) + cn
 = 9kn / 10 + 8k + cn
 = kn + (8k + cn – kn / 10)

If (8k + cn – kn / 10) ≤ 0, then T(n) ≤ kn. It's left as an
exercise to the reader to check that this is true if we pick
k = 50c. Thus T(n) ≤ kn, completing the induction. ■

T(n) ≤ c if n ≤ 100
T(n) ≤ T(⌈n / 5⌉) + T(⌈7n / 10 + 6⌉) + cn otherwise

T(n) ≤ c if n ≤ 100
T(n) ≤ T(⌈n / 5⌉) + T(⌈7n / 10 + 6⌉) + cn otherwise

Theorem: T(n) = O(n).

Proof: We will prove that for some constant k to be chosen
later, T(n) ≤ kn for all n ≥ 1; T(n) = O(n) follows. We
proceed by induction. As our base case, if 1 ≤ n ≤ 100,
then T(n) ≤ c ≤ kn if we choose k ≥ c.

For the inductive step, assume that for some n ≥ 100, the
claim holds for all 1 ≤ n' < n. Note that if n ≥ 100 that
⌈n / 5⌉ < n and ⌈7n / 10 + 6⌉ < n. Therefore:

 T(n) ≤ T(⌈n / 5⌉) + T(⌈7n / 10 + 6⌉) + cn
 ≤ k⌈n / 5⌉ + k(⌈7n / 10 + 6⌉) + cn
 ≤ k(n / 5 + 1) + k(7n / 10 + 6 + 1) + cn
 = 9kn / 10 + 8k + cn
 = kn + (8k + cn – kn / 10)

If (8k + cn – kn / 10) ≤ 0, then T(n) ≤ kn. It's left as an
exercise to the reader to check that this is true if we pick
k = 50c. Thus T(n) ≤ kn, completing the induction. ■

T(n) ≤ c if n ≤ 100
T(n) ≤ T(⌈n / 5⌉) + T(⌈7n / 10 + 6⌉) + cn otherwise

T(n) ≤ c if n ≤ 100
T(n) ≤ T(⌈n / 5⌉) + T(⌈7n / 10 + 6⌉) + cn otherwise

Theorem: T(n) = O(n).

Proof: We will prove that for some constant k to be chosen
later, T(n) ≤ kn for all n ≥ 1; T(n) = O(n) follows. We
proceed by induction. As our base case, if 1 ≤ n ≤ 100,
then T(n) ≤ c ≤ kn if we choose k ≥ c.

For the inductive step, assume that for some n ≥ 100, the
claim holds for all 1 ≤ n' < n. Note that if n ≥ 100 that
⌈n / 5⌉ < n and ⌈7n / 10 + 6⌉ < n. Therefore:

 T(n) ≤ T(⌈n / 5⌉) + T(⌈7n / 10 + 6⌉) + cn
 ≤ k⌈n / 5⌉ + k(⌈7n / 10 + 6⌉) + cn
 ≤ k(n / 5 + 1) + k(7n / 10 + 6 + 1) + cn
 = 9kn / 10 + 8k + cn
 = kn + (8k + cn – kn / 10)

If (8k + cn – kn / 10) ≤ 0, then T(n) ≤ kn. It's left as an
exercise to the reader to check that this is true if we pick
k = 50c. Thus T(n) ≤ kn, completing the induction. ■

T(n) ≤ c if n ≤ 100
T(n) ≤ T(⌈n / 5⌉) + T(⌈7n / 10 + 6⌉) + cn otherwise

T(n) ≤ c if n ≤ 100
T(n) ≤ T(⌈n / 5⌉) + T(⌈7n / 10 + 6⌉) + cn otherwise

A Note on O(n)

● This linear-time selection algorithm does run
in time O(n), but there is a huge constant
factor hidden here.

● Two reasons:
● Work done by each call is large; finding the median

of each block requires nontrivial work.
● Problem size decays slowly across levels; each

layer is roughly 10% smaller than its predecessor.

● Is there a way to get O(n) behavior without
such a huge constant factor?

Next Time

● Randomized Algorithms
● A Faster Selection Algorithm
● Linearity of Expectation

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110

