

Divide-and-Conquer Algorithms
Part Two

Recap from Last Time

Divide-and-Conquer Algorithms

● A divide-and-conquer algorithm is one
that works as follows:
● (Divide) Split the input apart into multiple

smaller pieces, then recursively invoke the
algorithm on those pieces.

● (Conquer) Combine those solutions back
together to form the overall answer.

● Can be analyzed using recurrence
relations.

Two Important Recurrences

T(0) = Θ(1)
T(1) = Θ(1)
T(n) = T(⌈n / 2⌉) + T(⌊n / 2⌋) + Θ(n)

T(0) = Θ(1)
T(1) = Θ(1)
T(n) = T(⌈n / 2⌉) + T(⌊n / 2⌋) + Θ(n)

T(0) = Θ(1)
T(1) = Θ(1)
T(n) ≤ T(⌊n / 2⌋) + Θ(1)

T(0) = Θ(1)
T(1) = Θ(1)
T(n) ≤ T(⌊n / 2⌋) + Θ(1)

Solves to O(n log n)

Solves to O(log n)

Outline for Today

● More Recurrences
● Other divide-and-conquer relations.

● Algorithmic Lower Bounds
● Showing that certain problems cannot be

solved within certain limits.

● Binary Heaps
● A fast data structure for retrieving elements

in sorted order.

Another Algorithm:
Maximizing Unimodal Arrays

Unimodality

1 3 4 5 7 8 10 12 10 9 6 213 14

Unimodality

1 3 4 5 7 8 10 12 10 9 6 213 14

Unimodality

1 3 4 5 7 8 10 12 10 9 6 213 14

An array is called unimodal
iff it can be split into an

increasing sequence followed
by a decreasing sequence.

An array is called unimodal
iff it can be split into an

increasing sequence followed
by a decreasing sequence.

Unimodality

1 3 4 5 7 8 10 12 10 9 6 213 14

An array is called unimodal
iff it can be split into an

increasing sequence followed
by a decreasing sequence.

An array is called unimodal
iff it can be split into an

increasing sequence followed
by a decreasing sequence.

Unimodality

1 3 4 5 7 8 10 12 10 9 6 213 14

Unimodality

1 3 4 5 7 8 10 12 10 9 6 213 14

Unimodality

1 3 4 5 7 8 10 12 10 9 6 213 14

Unimodality

1 3 4 5 7 8 10 12 10 9 6 213 14

Unimodality

1 3 4 5 7 8 10 12 10 9 6 213 14

Unimodality

1 3 4 5 7 8 10 12 10 9 6 213 14

Unimodality

1 3 4 5 7 8 10 12 10 9 6 213 14

Unimodality

1 3 4 5 7 8 10 12 10 9 6 213 14

Unimodality

1 3 4 5 7 8 10 12 10 9 6 213 14

Unimodality

1 3 4 5 7 8 10 12 10 9 6 213 14

Unimodality

1 3 4 5 7 8 10 12 10 9 6 213 14

procedure unimodalMax(list A, int low, int high):
 if low = high - 1:
 return A[low]

 let mid = (high + low) / 2⌊ ⌋
 if A[mid] < A[mid + 1]
 return unimodalMax(A, mid + 1, high)
 else:
 return unimodalMax(A, low, mid + 1)

procedure unimodalMax(list A, int low, int high):
 if low = high - 1:
 return A[low]

 let mid = (high + low) / 2⌊ ⌋
 if A[mid] < A[mid + 1]
 return unimodalMax(A, mid + 1, high)
 else:
 return unimodalMax(A, low, mid + 1)

procedure unimodalMax(list A, int low, int high):
 if low = high - 1:
 return A[low]

 let mid = (high + low) / 2⌊ ⌋
 if A[mid] < A[mid + 1]
 return unimodalMax(A, mid + 1, high)
 else:
 return unimodalMax(A, low, mid + 1)

procedure unimodalMax(list A, int low, int high):
 if low = high - 1:
 return A[low]

 let mid = (high + low) / 2⌊ ⌋
 if A[mid] < A[mid + 1]
 return unimodalMax(A, mid + 1, high)
 else:
 return unimodalMax(A, low, mid + 1)

T(1) = Θ(1)
T(n) ≤ T(⌈n / 2⌉) + Θ(1)

T(1) = Θ(1)
T(n) ≤ T(⌈n / 2⌉) + Θ(1)

procedure unimodalMax(list A, int low, int high):
 if low = high - 1:
 return A[low]

 let mid = (high + low) / 2⌊ ⌋
 if A[mid] < A[mid + 1]
 return unimodalMax(A, mid + 1, high)
 else:
 return unimodalMax(A, low, mid + 1)

procedure unimodalMax(list A, int low, int high):
 if low = high - 1:
 return A[low]

 let mid = (high + low) / 2⌊ ⌋
 if A[mid] < A[mid + 1]
 return unimodalMax(A, mid + 1, high)
 else:
 return unimodalMax(A, low, mid + 1)

T(1) = Θ(1)
T(n) ≤ T(⌈n / 2⌉) + Θ(1)

T(1) = Θ(1)
T(n) ≤ T(⌈n / 2⌉) + Θ(1)

procedure unimodalMax(list A, int low, int high):
 if low = high - 1:
 return A[low]

 let mid = (high + low) / 2⌊ ⌋
 if A[mid] < A[mid + 1]
 return unimodalMax(A, mid + 1, high)
 else:
 return unimodalMax(A, low, mid + 1)

procedure unimodalMax(list A, int low, int high):
 if low = high - 1:
 return A[low]

 let mid = (high + low) / 2⌊ ⌋
 if A[mid] < A[mid + 1]
 return unimodalMax(A, mid + 1, high)
 else:
 return unimodalMax(A, low, mid + 1)

T(1) = Θ(1)
T(n) ≤ T(⌈n / 2⌉) + Θ(1)

T(1) = Θ(1)
T(n) ≤ T(⌈n / 2⌉) + Θ(1)

O(log n)

Unimodality II

1 3 4 5 7 8 10 12 10 9 6 213 14

Unimodality II

1 3 4 5 7 8 10 10 10 9 6 213 14

Unimodality II

1 3 4 5 7 8 10 10 10 9 6 213 14

Unimodality II

1 3 4 5 7 8 10 10 10 9 6 213 14

A weakly unimodal array is
one that can be split into a
nondecreasing sequence

followed by a nonincreasing
sequence.

A weakly unimodal array is
one that can be split into a
nondecreasing sequence

followed by a nonincreasing
sequence.

Unimodality II

1 3 4 5 7 8 10 10 10 9 6 213 14

A weakly unimodal array is
one that can be split into a
nondecreasing sequence

followed by a nonincreasing
sequence.

A weakly unimodal array is
one that can be split into a
nondecreasing sequence

followed by a nonincreasing
sequence.

Unimodality II

1 3 4 5 7 8 10 10 10 9 6 213 14

Unimodality II

1 3 4 5 7 8 10 10 10 9 6 213 14

Unimodality II

1 3 4 5 7 8 10 10 10 9 6 213 14

Unimodality II

1 3 4 5 7 8 10 10 10 9 6 213 14

Unimodality II

1 3 4 5 7 8 10 10 10 9 6 213 14

Unimodality II

1 3 4 5 7 8 10 10 10 9 6 213 14

procedure weakUnimodalMax(list A, int low, int high):
 if low = high - 1:
 return A[low]

 let mid = (high + low) / 2⌊ ⌋
 if A[mid] < A[mid + 1]
 return weakUnimodalMax(A, mid + 1, high)
 else if A[mid] > A[mid + 1]
 return weakUnimodalMax(A, low, mid + 1)
 else
 return max(weakUnimodalMax(A, low, mid + 1)
 weakUnimodalMax(A, mid + 1, high))

procedure weakUnimodalMax(list A, int low, int high):
 if low = high - 1:
 return A[low]

 let mid = (high + low) / 2⌊ ⌋
 if A[mid] < A[mid + 1]
 return weakUnimodalMax(A, mid + 1, high)
 else if A[mid] > A[mid + 1]
 return weakUnimodalMax(A, low, mid + 1)
 else
 return max(weakUnimodalMax(A, low, mid + 1)
 weakUnimodalMax(A, mid + 1, high))

T(1) = Θ(1)
T(n) ≤ T(⌈n / 2⌉) + T(⌊n / 2⌋) + Θ(1)

T(1) = Θ(1)
T(n) ≤ T(⌈n / 2⌉) + T(⌊n / 2⌋) + Θ(1)

procedure weakUnimodalMax(list A, int low, int high):
 if low = high - 1:
 return A[low]

 let mid = (high + low) / 2⌊ ⌋
 if A[mid] < A[mid + 1]
 return weakUnimodalMax(A, mid + 1, high)
 else if A[mid] > A[mid + 1]
 return weakUnimodalMax(A, low, mid + 1)
 else
 return max(weakUnimodalMax(A, low, mid + 1)
 weakUnimodalMax(A, mid + 1, high))

procedure weakUnimodalMax(list A, int low, int high):
 if low = high - 1:
 return A[low]

 let mid = (high + low) / 2⌊ ⌋
 if A[mid] < A[mid + 1]
 return weakUnimodalMax(A, mid + 1, high)
 else if A[mid] > A[mid + 1]
 return weakUnimodalMax(A, low, mid + 1)
 else
 return max(weakUnimodalMax(A, low, mid + 1)
 weakUnimodalMax(A, mid + 1, high))

T(1) = Θ(1)
T(n) ≤ T(⌈n / 2⌉) + T(⌊n / 2⌋) + Θ(1)

T(1) = Θ(1)
T(n) ≤ T(⌈n / 2⌉) + T(⌊n / 2⌋) + Θ(1)

procedure weakUnimodalMax(list A, int low, int high):
 if low = high - 1:
 return A[low]

 let mid = (high + low) / 2⌊ ⌋
 if A[mid] < A[mid + 1]
 return weakUnimodalMax(A, mid + 1, high)
 else if A[mid] > A[mid + 1]
 return weakUnimodalMax(A, low, mid + 1)
 else
 return max(weakUnimodalMax(A, low, mid + 1)
 weakUnimodalMax(A, mid + 1, high))

procedure weakUnimodalMax(list A, int low, int high):
 if low = high - 1:
 return A[low]

 let mid = (high + low) / 2⌊ ⌋
 if A[mid] < A[mid + 1]
 return weakUnimodalMax(A, mid + 1, high)
 else if A[mid] > A[mid + 1]
 return weakUnimodalMax(A, low, mid + 1)
 else
 return max(weakUnimodalMax(A, low, mid + 1)
 weakUnimodalMax(A, mid + 1, high))

T(1) ≤ c
T(n) ≤ T(⌈n / 2⌉) + T(⌊n / 2⌋) + c

T(1) ≤ c
T(n) ≤ T(⌈n / 2⌉) + T(⌊n / 2⌋) + c

procedure weakUnimodalMax(list A, int low, int high):
 if low = high - 1:
 return A[low]

 let mid = (high + low) / 2⌊ ⌋
 if A[mid] < A[mid + 1]
 return weakUnimodalMax(A, mid + 1, high)
 else if A[mid] > A[mid + 1]
 return weakUnimodalMax(A, low, mid + 1)
 else
 return max(weakUnimodalMax(A, low, mid + 1)
 weakUnimodalMax(A, mid + 1, high))

procedure weakUnimodalMax(list A, int low, int high):
 if low = high - 1:
 return A[low]

 let mid = (high + low) / 2⌊ ⌋
 if A[mid] < A[mid + 1]
 return weakUnimodalMax(A, mid + 1, high)
 else if A[mid] > A[mid + 1]
 return weakUnimodalMax(A, low, mid + 1)
 else
 return max(weakUnimodalMax(A, low, mid + 1)
 weakUnimodalMax(A, mid + 1, high))

T(1) ≤ c
T(n) ≤ T(n / 2) + T(n / 2) + c

T(1) ≤ c
T(n) ≤ T(n / 2) + T(n / 2) + c

procedure weakUnimodalMax(list A, int low, int high):
 if low = high - 1:
 return A[low]

 let mid = (high + low) / 2⌊ ⌋
 if A[mid] < A[mid + 1]
 return weakUnimodalMax(A, mid + 1, high)
 else if A[mid] > A[mid + 1]
 return weakUnimodalMax(A, low, mid + 1)
 else
 return max(weakUnimodalMax(A, low, mid + 1)
 weakUnimodalMax(A, mid + 1, high))

procedure weakUnimodalMax(list A, int low, int high):
 if low = high - 1:
 return A[low]

 let mid = (high + low) / 2⌊ ⌋
 if A[mid] < A[mid + 1]
 return weakUnimodalMax(A, mid + 1, high)
 else if A[mid] > A[mid + 1]
 return weakUnimodalMax(A, low, mid + 1)
 else
 return max(weakUnimodalMax(A, low, mid + 1)
 weakUnimodalMax(A, mid + 1, high))

T(1) ≤ c
T(n) ≤ 2T(n / 2) + c

T(1) ≤ c
T(n) ≤ 2T(n / 2) + c

procedure weakUnimodalMax(list A, int low, int high):
 if low = high - 1:
 return A[low]

 let mid = (high + low) / 2⌊ ⌋
 if A[mid] < A[mid + 1]
 return weakUnimodalMax(A, mid + 1, high)
 else if A[mid] > A[mid + 1]
 return weakUnimodalMax(A, low, mid + 1)
 else
 return max(weakUnimodalMax(A, low, mid + 1)
 weakUnimodalMax(A, mid + 1, high))

procedure weakUnimodalMax(list A, int low, int high):
 if low = high - 1:
 return A[low]

 let mid = (high + low) / 2⌊ ⌋
 if A[mid] < A[mid + 1]
 return weakUnimodalMax(A, mid + 1, high)
 else if A[mid] > A[mid + 1]
 return weakUnimodalMax(A, low, mid + 1)
 else
 return max(weakUnimodalMax(A, low, mid + 1)
 weakUnimodalMax(A, mid + 1, high))

T(1) ≤ c
T(n) ≤ 2T(n / 2) + c

T(1) ≤ c
T(n) ≤ 2T(n / 2) + c

T (n) ≤ 2T (n2)+c
≤ 2(2T (n4)+c)+c
≤ 4 T(n4)+2 c+c

= 4 T(n4)+3c

≤ 4(2T(n8)+c)+3c

= 8 T (n8)+4 c+3c

= 8 T (n8)+7c

...

≤ 2kT (n2k)+(2k−1)c

T(1) ≤ c
T(n) ≤ 2T(n / 2) + c

T(1) ≤ c
T(n) ≤ 2T(n / 2) + c

T (n) ≤ 2T (n2)+c
≤ 2(2T (n4)+c)+c
≤ 4 T(n4)+2 c+c

= 4 T(n4)+3c

≤ 4(2T(n8)+c)+3c

= 8 T (n8)+4 c+3c

= 8 T (n8)+7c

...

≤ 2kT (n2k)+(2k−1)c

T(1) ≤ c
T(n) ≤ 2T(n / 2) + c

T(1) ≤ c
T(n) ≤ 2T(n / 2) + c

T (n) ≤ 2T (n2)+c
≤ 2(2T (n4)+c)+c
≤ 4 T(n4)+2 c+c

= 4 T(n4)+3c

≤ 4(2T(n8)+c)+3c

= 8 T (n8)+4 c+3c

= 8 T (n8)+7c

...

≤ 2kT (n2k)+(2k−1)c

T(1) ≤ c
T(n) ≤ 2T(n / 2) + c

T(1) ≤ c
T(n) ≤ 2T(n / 2) + c

T (n) ≤ 2T (n2)+c
≤ 2(2T (n4)+c)+c
≤ 4 T(n4)+2 c+c

= 4 T(n4)+3c

≤ 4(2T(n8)+c)+3c

= 8 T (n8)+4 c+3c

= 8 T (n8)+7c

...

≤ 2kT (n2k)+(2k−1)c

T(1) ≤ c
T(n) ≤ 2T(n / 2) + c

T(1) ≤ c
T(n) ≤ 2T(n / 2) + c

T (n) ≤ 2T (n2)+c
≤ 2(2T (n4)+c)+c
≤ 4 T(n4)+2 c+c

= 4 T(n4)+3c

≤ 4(2T(n8)+c)+3c

= 8 T (n8)+4 c+3c

= 8 T (n8)+7c

...

≤ 2kT (n2k)+(2k−1)c

T(1) ≤ c
T(n) ≤ 2T(n / 2) + c

T(1) ≤ c
T(n) ≤ 2T(n / 2) + c

T (n) ≤ 2T (n2)+c
≤ 2(2T (n4)+c)+c
≤ 4 T(n4)+2 c+c

= 4 T(n4)+3c

≤ 4(2T(n8)+c)+3c

= 8 T (n8)+4 c+3c

= 8 T (n8)+7c

...

≤ 2kT (n2k)+(2k−1)c

T(1) ≤ c
T(n) ≤ 2T(n / 2) + c

T(1) ≤ c
T(n) ≤ 2T(n / 2) + c

T (n) ≤ 2T (n2)+c
≤ 2(2T (n4)+c)+c
≤ 4 T(n4)+2 c+c

= 4 T(n4)+3c

≤ 4(2T(n8)+c)+3c

= 8 T (n8)+4 c+3c

= 8 T (n8)+7c

...

≤ 2kT (n2k)+(2k−1)c

T(1) ≤ c
T(n) ≤ 2T(n / 2) + c

T(1) ≤ c
T(n) ≤ 2T(n / 2) + c

T (n) ≤ 2T (n2)+c
≤ 2(2T (n4)+c)+c
≤ 4 T(n4)+2 c+c

= 4 T(n4)+3c

≤ 4(2T(n8)+c)+3c

= 8 T (n8)+4 c+3c

= 8 T (n8)+7c

...

≤ 2kT (n2k)+(2k−1)c

T(1) ≤ c
T(n) ≤ 2T(n / 2) + c

T(1) ≤ c
T(n) ≤ 2T(n / 2) + c

T (n) ≤ 2k T(n2k)+(2k−1)c

≤ 2
log2 nT (1)+(2

log2n−1)c
= nT (1)+c(n−1)

≤ c n+c(n−1)

= 2 c n−c

T(1) ≤ c
T(n) ≤ 2T(n / 2) + c

T(1) ≤ c
T(n) ≤ 2T(n / 2) + c

T (n) ≤ 2k T(n2k)+(2k−1)c

≤ 2
log2 nT (1)+(2

log2n−1)c
= nT (1)+c(n−1)

≤ c n+c(n−1)

= 2 c n−c

T(1) ≤ c
T(n) ≤ 2T(n / 2) + c

T(1) ≤ c
T(n) ≤ 2T(n / 2) + c

T (n) ≤ 2k T(n2k)+(2k−1)c

≤ 2
log2 nT (1)+(2

log2n−1)c
= nT (1)+c(n−1)

≤ c n+c(n−1)

= 2 c n−c

T(1) ≤ c
T(n) ≤ 2T(n / 2) + c

T(1) ≤ c
T(n) ≤ 2T(n / 2) + c

T (n) ≤ 2k T(n2k)+(2k−1)c

≤ 2
log2 nT (1)+(2

log2n−1)c
= nT (1)+c(n−1)

≤ c n+c(n−1)

= 2 c n−c

T(1) ≤ c
T(n) ≤ 2T(n / 2) + c

T(1) ≤ c
T(n) ≤ 2T(n / 2) + c

T (n) ≤ 2k T(n2k)+(2k−1)c

≤ 2
log2 nT (1)+(2

log2n−1)c
= nT (1)+c(n−1)

≤ c n+c(n−1)

= 2 c n−c

T(1) ≤ c
T(n) ≤ 2T(n / 2) + c

T(1) ≤ c
T(n) ≤ 2T(n / 2) + c

T (n) ≤ 2k T(n2k)+(2k−1)c

≤ 2
log2 nT (1)+(2

log2 n−1)c
= nT (1)+c (n−1)

≤ c n+c (n−1)

= 2c n−c
= O (n)

T(1) ≤ c
T(n) ≤ 2T(n / 2) + c

T(1) ≤ c
T(n) ≤ 2T(n / 2) + c

T(1) ≤ c
T(n) ≤ 2T(n / 2) + c

T(1) ≤ c
T(n) ≤ 2T(n / 2) + c

T(1) ≤ c
T(n) ≤ 2T(n / 2) + c

T(1) ≤ c
T(n) ≤ 2T(n / 2) + c

c

T(1) ≤ c
T(n) ≤ 2T(n / 2) + c

T(1) ≤ c
T(n) ≤ 2T(n / 2) + c

c c

T(1) ≤ c
T(n) ≤ 2T(n / 2) + c

T(1) ≤ c
T(n) ≤ 2T(n / 2) + c

c

c c

c

T(1) ≤ c
T(n) ≤ 2T(n / 2) + c

T(1) ≤ c
T(n) ≤ 2T(n / 2) + c

c

c c

c

2c

T(1) ≤ c
T(n) ≤ 2T(n / 2) + c

T(1) ≤ c
T(n) ≤ 2T(n / 2) + c

c

c c

c c c c

c

2c

T(1) ≤ c
T(n) ≤ 2T(n / 2) + c

T(1) ≤ c
T(n) ≤ 2T(n / 2) + c

c

c c

c c c c

c

2c

4c

T(1) ≤ c
T(n) ≤ 2T(n / 2) + c

T(1) ≤ c
T(n) ≤ 2T(n / 2) + c

c

c c

c c c c
…

c

2c

4c

T(1) ≤ c
T(n) ≤ 2T(n / 2) + c

T(1) ≤ c
T(n) ≤ 2T(n / 2) + c

c

c c

c c c c

c c c c c c

…

…

c

2c

4c

T(1) ≤ c
T(n) ≤ 2T(n / 2) + c

T(1) ≤ c
T(n) ≤ 2T(n / 2) + c

c

c c

c c c c

c c c c c c

…

…

c

2c

4c

cn

T(1) ≤ c
T(n) ≤ 2T(n / 2) + c

T(1) ≤ c
T(n) ≤ 2T(n / 2) + c

c

c c

c c c c

c c c c c c

…

…

c

2c

4c

cn

(1 + 2 + 4 + … + n / 2)c +cn

T(1) ≤ c
T(n) ≤ 2T(n / 2) + c

T(1) ≤ c
T(n) ≤ 2T(n / 2) + c

c

c c

c c c c

c c c c c c

…

…

c

2c

4c

cn

(n – 1)c +cn

T(1) ≤ c
T(n) ≤ 2T(n / 2) + c

T(1) ≤ c
T(n) ≤ 2T(n / 2) + c

c

c c

c c c c

c c c c c c

…

…

c

2c

4c

cn

cn – c + cn

T(1) ≤ c
T(n) ≤ 2T(n / 2) + c

T(1) ≤ c
T(n) ≤ 2T(n / 2) + c

c

c c

c c c c

c c c c c c

…

…

c

2c

4c

cn

2cn – c

Another Recurrence Relation

● The recurrence relation

solves to T(n) = O(n)
● Intuitively, the recursion tree is

“bottomheavy:” the bottom of the tree
accounts for almost all of the work.

T(1) = Θ(1)
T(n) ≤ T(⌈n / 2⌉) + T(⌊n / 2⌋) + Θ(1)

T(1) = Θ(1)
T(n) ≤ T(⌈n / 2⌉) + T(⌊n / 2⌋) + Θ(1)

Unimodal Arrays

● Our recurrence shows that the work
done is O(n), but this might not be a tight
bound.

● Does our algorithm ever do Ω(n) work?
● Yes: What happens if all array values are

equal to one another?
● Can we do better?

A Lower Bound

● Claim: Every correct algorithm for
finding the maximum value in a unimodal
array must do Ω(n) work in the
worst-case.

● Note that this claim is over all possible
algorithms, so the argument had better
be watertight!

A Lower Bound

● We will prove that any algorithm for
finding the maximum value of a unimodal
array must, on at least one input, inspect
all n locations.

● Proof idea: Suppose that the algorithm
didn't do this.

? ? ? ? ? ? ? ? ? ? ? ?? ?

A Lower Bound

● We will prove that any algorithm for
finding the maximum value of a unimodal
array must, on at least one input, inspect
all n locations.

● Proof idea: Suppose that the algorithm
didn't do this.

? ? ? ? ? ? ? ? ? ? ? ?? ?

A Lower Bound

● We will prove that any algorithm for
finding the maximum value of a unimodal
array must, on at least one input, inspect
all n locations.

● Proof idea: Suppose that the algorithm
didn't do this.

0 0 0 0 0 0 ? 0 0 0 0 00 0

A Lower Bound

● We will prove that any algorithm for
finding the maximum value of a unimodal
array must, on at least one input, inspect
all n locations.

● Proof idea: Suppose that the algorithm
didn't do this.

0 0 0 0 0 0 10 0 0 0 0 00 0

A Lower Bound

● We will prove that any algorithm for
finding the maximum value of a unimodal
array must, on at least one input, inspect
all n locations.

● Proof idea: Suppose that the algorithm
didn't do this.

0 0 0 0 0 0 0 0 0 0 0 00 0

Algorithmic Lower Bounds

● The argument we just saw is called an
adversarial argument and is often used
to establish algorithmic lower bounds.

● Idea: Show that if an algorithm doesn't
do enough work, then it cannot
distinguish two different inputs that
require different outputs.

● Therefore, the algorithm cannot always
be correct.

o Notation

● Let f, g : ℕ → ℕ.

● We say that f(n) = o(g(n)) (f is little-o of g) iff

● In other words, f grows strictly slower than g.

● Often used to describe impossibility results.
● For example: There is no o(n)-time algorithm

for finding the maximum element of a weakly
unimodal array.

lim
n→∞

f (n)

g(n)
=0

What Does This Mean?

● In the worst-case, our algorithm must do
Ω(n) work.

● That's the same as a linear scan over the
input array!

● Is our algorithm even worth it?
● Yes: In most cases, the runtime is

Θ(log n) or close to it.

Binary Heaps

Data Structures Matter

● We have seen two instances where a better
choice of data structure improved the runtime
of an algorithm:
● Using adjacency lists instead of adjacency matrices

in graph algorithms.
● Using a double-ended queue in 0/1 Dijkstra's

algorithm.

● Today, we'll explore a data structure that is
useful for improving algorithmic efficiency.

● We'll come back to this structure in a few weeks
when talking about Prim's algorithm and
Kruskal's algorithm.

Priority Queues

● A priority queue is a data structure for storing
elements associated with priorities (often called keys).

● Optimized to find the element that currently has the
smallest key.

● Supports the following operations:

● enqueue(k, v) which adds element v to the queue with
key k.

● is-empty, which returns whether the queue is empty.

● dequeue-min, which removes the element with the least
priority from the queue.

● Many implementations are possible with varying
tradeoffs.

A Naive Implementation

● One simple way to implement a priority queue is with
an unsorted array key/value pairs.

● To enqueue v with key k, append (k, v) to the array in
time O(1).

● To check whether the priority queue is empty, check
whether the underlying array is empty in time O(1).

● To dequeue-min, scan across the array to find an
element with minimum key, then remove it in time
O(n).

● Doing n enqueues and n dequeues takes time O(n2).

A Better Implementation

1

3 8

4 5 9

A Better Implementation

1

3 8

4 5 9 This tree obeys the
heap property: each

node's key is less
than or equal to all its

descendants' keys.

This tree obeys the
heap property: each

node's key is less
than or equal to all its

descendants' keys.

A Better Implementation

1

3 8

4 5 9 This tree obeys the
heap property: each

node's key is less
than or equal to all its

descendants' keys.

This tree obeys the
heap property: each

node's key is less
than or equal to all its

descendants' keys.

A Better Implementation

1

3 8

4 5 9

A Better Implementation

1

3 8

4 5 9 This is a complete
binary tree: every
level except the last

one is filled in
completely.

This is a complete
binary tree: every
level except the last

one is filled in
completely.

A Better Implementation

1

3 8

4 5 9

A Better Implementation

1

3 8

4 5 9

2

A Better Implementation

1

3 8

4 5 9 2

A Better Implementation

1

3 2

4 5 9 8

A Better Implementation

1

3 2

4 5 9 8

A Better Implementation

1

3 2

4 5 9 8

0

A Better Implementation

1

3 2

4 5 9 8

0

A Better Implementation

1

3 2

0 5 9 8

4

A Better Implementation

1

0 2

3 5 9 8

4

A Better Implementation

0

1 2

3 5 9 8

4

A Better Implementation

0

1 2

3 5 9 8

4

A Better Implementation

0

1 2

3 5 9 8

4 2

A Better Implementation

0

1 2

3 5 9 8

4 2

A Better Implementation

0

1 2

2 5 9 8

4 3

A Better Implementation

0

1 2

2 5 9 8

4 3

A Better Implementation

0

1 2

2 5 9 8

4 3

A Better Implementation

1 2

2 5 9 8

4 3

A Better Implementation

1 2

2 5 9 8

4 3

Yo.

'Sup.

A Better Implementation

1 2

2 5 9 8

4 3

A Better Implementation

1 2

2 5 9 8

4 3

A Better Implementation

1 2

2 5 9 8

4 3

A Better Implementation

1 2

2 5 9 8

4

3

A Better Implementation

3 2

2 5 9 8

4

1

A Better Implementation

2 2

3 5 9 8

4

1

A Better Implementation

2 2

3 5 9 8

4

1

Binary Heap Efficiency

● The enqueue and dequeue operations on a
binary heap all run O(h), where h is the height
of the tree.

● In a perfect binary tree of height h, there are
1 + 2 + 4 + 8 + … + 2h = 2h+1 – 1 nodes.

● If there are n nodes, the maximum height
would be found by setting n = 2h+1 – 1.

● Solving, we get that h = log₂ (n + 1) – 1

● Thus h = Θ(log n), so enqueue and dequeue
take time O(log n).

Implementing Binary Heaps

● It is extremely rare to actually implement a binary
heap as a tree structure.

● Can encode the heap as an array:

1

3 8

4 5 9

Implementing Binary Heaps

● It is extremely rare to actually implement a binary
heap as a tree structure.

● Can encode the heap as an array:

1

3 8

4 5 9

Implementing Binary Heaps

● It is extremely rare to actually implement a binary
heap as a tree structure.

● Can encode the heap as an array:

1

3 8

4 5 9

1 3 8 4 5 9

Implementing Binary Heaps

● It is extremely rare to actually implement a binary
heap as a tree structure.

● Can encode the heap as an array:

1

3 8

4 5 9

1 3 8 4 5 9

Assuming one-indexing:

Node n has children at
positions 2n and 2n + 1.

Node n has its parent at
position ⌊n / 2⌋

Assuming one-indexing:

Node n has children at
positions 2n and 2n + 1.

Node n has its parent at
position ⌊n / 2⌋

Application: Heapsort

Sorting with Binary Heaps

3 1 4 0 5 9 2

Sorting with Binary Heaps

3 1 4 0 5 9 2

33

Sorting with Binary Heaps

3 1 4 0 5 9 2

33

Sorting with Binary Heaps

1 4 0 5 9 2

33

31

3

Sorting with Binary Heaps

1 4 0 5 9 2

33

31

3

Sorting with Binary Heaps

1 4 0 5 9 2

33

31

3

This is a max-heap
(where larger values are
on top), as opposed to a

min-heap (where smaller
values are on top). We'll

see why in a minute.

This is a max-heap
(where larger values are
on top), as opposed to a

min-heap (where smaller
values are on top). We'll

see why in a minute.

Sorting with Binary Heaps

1 4 0 5 9 2

33

31

3

Sorting with Binary Heaps

4 0 5 9 2

33

31 4

13

Sorting with Binary Heaps

4 0 5 9 2

34

31 3

13

Sorting with Binary Heaps

4 0 5 9 2

34

31 3

13

Sorting with Binary Heaps

4 0 5 9 2

4

31 3

13

0

Sorting with Binary Heaps

4 0 5 9 2

4

31 3

13

0

Sorting with Binary Heaps

4 0 5 9 2

4

31 3

13

0 5

Sorting with Binary Heaps

4 0 5 9 2

4

35 3

13

0 1

Sorting with Binary Heaps

4 0 5 9 2

5

34 3

13

0 1

Sorting with Binary Heaps

4 0 5 9 2

5

34 3

13

0 1

Sorting with Binary Heaps

4 0 5 9 2

5

34 3

13

0 1 9

Sorting with Binary Heaps

4 0 5 9 2

5

34

3

13

0 1

9

Sorting with Binary Heaps

4 0 5 9 2

9

34

3

13

0 1

5

Sorting with Binary Heaps

4 0 5 9 2

9

34

3

13

0 1

5

Sorting with Binary Heaps

4 0 5 9 2

9

34

3

13

0 1

5

2

Sorting with Binary Heaps

4 0 5 9 2

9

34

3

13

0 1

5

2

Sorting with Binary Heaps

4 0 5 9 9

34

3

13

0 1

5

2

Sorting with Binary Heaps

4 0 5 9 9

34

3

13

0 1

5

2

Oh no!

Sorting with Binary Heaps

4 0 5 9 9

34

3

13

0 1

5

2

Sorting with Binary Heaps

4 0 5 9 9

34

3

13

0 1

5

2

Sorting with Binary Heaps

4 0 5 9 9

34

3

13

0 1

5

2

Sorting with Binary Heaps

4 0 5 9 9

34

3

13

0 1

5

2

Sorting with Binary Heaps

4 0 5 9 9

34

3

13

0 1

2

5

Sorting with Binary Heaps

4 0 5 9 9

34

2

13

0 1

3

5

Sorting with Binary Heaps

4 0 5 9 9

34

2

13

0 1

3

5

Sorting with Binary Heaps

4 0 5 5 9

34

2

13

0 1

3

Sorting with Binary Heaps

4 0 5 5 9

34

13

0 1

3

2

Sorting with Binary Heaps

4 0 5 5 9

32

13

0 1

3

4

Sorting with Binary Heaps

4 0 5 5 9

32

13

0 1

3

4

Sorting with Binary Heaps

4 0 4 5 9

32

13

0 1

3

Sorting with Binary Heaps

4 0 4 5 9

32

13

0

3

1

Sorting with Binary Heaps

4 0 4 5 9

32

13

0

1

3

Sorting with Binary Heaps

4 0 4 5 9

32

13

0

1

3

Sorting with Binary Heaps

4 3 4 5 9

32

13

0

1

Sorting with Binary Heaps

4 3 4 5 9

32

13

1

0

Sorting with Binary Heaps

4 3 4 5 9

30

13

1

2

Sorting with Binary Heaps

4 3 4 5 9

30

13

1

2

Sorting with Binary Heaps

2 3 4 5 9

30

13

1

Sorting with Binary Heaps

2 3 4 5 9

30

13

1

Sorting with Binary Heaps

2 3 4 5 9

30

13

1

Sorting with Binary Heaps

2 3 4 5 9

30

13

Sorting with Binary Heaps

2 3 4 5 9

0

13

Sorting with Binary Heaps

2 3 4 5 9

0

13

Sorting with Binary Heaps

2 3 4 5 910

A Better Idea

3 1 4 0 5 9 2

A Better Idea

3 1 4 0 5 9 2

33

A Better Idea

3 1 4 0 5 9 2

33

A Better Idea

1 4 0 5 9 2

33

31

3

A Better Idea

1 4 0 5 9 2

33

31

3

A Better Idea

4 0 5 9 2

33

31 4

13

A Better Idea

4 0 5 9 2

34

31 3

1 3

A Better Idea

4 0 5 9 2

34

31 3

1 3

A Better Idea

0 5 9 2

4

31 3

0

4 1 34 1 3

A Better Idea

0 5 9 2

4

31 3

0

4 1 34 01 3

A Better Idea

0 5 9 2

4

31 3

0 5

4 1 34 01 3

A Better Idea

05 9 2

4

35 3

0 1

4 3 1

A Better Idea

9 2

5

34 3

0 1

05 4 3 1

A Better Idea

9 2

5

34 3

0 1

05 4 3 1

A Better Idea

9 2

5

34 3

0 1 9

05 4 3 1

A Better Idea

9 2

5

34

30 1

9

05 4 31

A Better Idea

2

9

34

30 1

5

9 054 31

A Better Idea

9 2

9

34

30 1

5

054 31

A Better Idea

2

9

34

30 1

5

2

9 054 31

A Better Idea
9

34

30 1

5

2

29 054 31

A Better Idea

34

30 1

5

2

29 054 31

A Better Idea

9

34

30 1

5

2

2 054 31

A Better Idea

9

34

30 1

2

5

2 05 4 31

A Better Idea

34

20 1

3

5

9205 4 3 1

A Better Idea

34

20 1

3

5

9205 4 3 1

A Better Idea

34

20 1

3

9205 4 3 1

A Better Idea

34

0 1

3

2

92 0 54 3 1

A Better Idea

32

0 1

3

4

92 0 54 3 1

A Better Idea

32

0 1

3

4

92 0 54 3 1

A Better Idea

32

0 1

3

92 0 54 3 1

A Better Idea

32

0

3

1

92 0 5431

A Better Idea

32

0

1

3

92 0 543 1

A Better Idea

32

0

1

3

92 0 543 1

A Better Idea

32

0

1

92 0 543 1

A Better Idea

32 1

0

920 5431

A Better Idea

30 1

2

92 0 5431

A Better Idea

30 1

2

92 0 5431

A Better Idea

30 1

92 0 5431

A Better Idea

30

1

920 5431

A Better Idea

30

1

920 5431

A Better Idea

30

920 5431

A Better Idea
0

920 5431

A Better Idea

2 3 4 5 9

0

10

A Better Idea

2 3 4 5 910

Heapsort

● The heapsort algorithm is as follows:
● Build a max-heap from the array elements,

using the array itself to represent the heap.
● Repeatedly dequeue from the heap until all

elements are placed in sorted order.

● This algorithm runs in time O(n log n),
since it does n enqueues and n dequeues.

● Only requires O(1) auxiliary storage
space, compared with O(n) space required
in mergesort.

An Optimization: Heapify

Making a Binary Heap

● Suppose that you have n elements and
want to build a binary heap from them.

● One way to do this is to enqueue all of
them, one after another, into the binary
heap.

● We can upper-bound the runtime as n
calls to an O(log n) operation, giving a
total runtime of O(n log n).

● Is that a tight bound?

Making a Binary Heap

Making a Binary Heap

Making a Binary Heap

 log₂ (n/2 + 1)

Making a Binary Heap

 log₂ (n/2 + 1)

Total Runtime: Θ(n log n)

Quickly Making a Binary Heap

● Here is a slightly different algorithm for
building a binary heap out of a set of
data:
● Put the nodes, in any order, into a complete

binary tree of the right size. (Shape
property holds, but heap property might
not.)

● For each node, starting at the bottom layer
and going upward, run a bubble-down step
on that node.

Quickly Making a Binary Heap

7

10 11

1 8 4 12

9 2 6 3 5

9

7

10 11

1 8 4 12

9 2 6 3 5

Quickly Making a Binary Heap

7

10 11

1 8 4 12

2 6 3 5

9 29

7

10 11

1 8 4 12

2 6 3 5

Quickly Making a Binary Heap

7

10 11

1 8 4 12

6 3 5

2 69 29

7

10 11

1 8 4 12

6 3 5

Quickly Making a Binary Heap

7

10 11

1 8 4 12

3 5

6 32 69 29

7

10 11

1 8 4 12

3 5

Quickly Making a Binary Heap

7

10 11

1 8 4 12

5

3 56 32 69 29

7

10 11

1 8 4 12

5

Quickly Making a Binary Heap

7

10 11

1 8 4 12

5

1

3 56 32 69 29

7

10 11

1 8 4 12

Quickly Making a Binary Heap

7

10 11

8 4 12

1 8

5

1

3 56 32 69 29

7

10 11

8 4 12

Quickly Making a Binary Heap

7

10 11

4 12

3

8

1 3

5

1

562 69 29

7

10 11

8

4 12

Quickly Making a Binary Heap

7

10 11

4 12

3

8

3

8

1

5

1

562 69 29

7

10 11

4 12

Quickly Making a Binary Heap

7

10 11

4 12

3 43

88

1

5

1

562 69 29

7

10 11

4 12

Quickly Making a Binary Heap

7

10 11

12

4 123 43

88

1

5

1

562 69 29

7

10 11

12

Quickly Making a Binary Heap

7

10 11

12

10

4 123 43

88

1

5

1

562 69 29

7

10 11

Quickly Making a Binary Heap

7

11

1

10 12

1

4 123 43

88 5562 69 29

7

10

11

Quickly Making a Binary Heap

7

11

2

10

1

2 12

1

4 123 43

88 55610 699

7

11

Quickly Making a Binary Heap

7

11

1

1010

10

1

2 124 123 43

88 556699

7

11

Quickly Making a Binary Heap

7

11

1 111

1010

102 124 123 43

88 556699

7

11

Quickly Making a Binary Heap

7

4

111 41

1010

102 1211 1233

88 556699

7

Quickly Making a Binary Heap

7

11

5

5

111 41

1010

102 121233

88 116699

7

Quickly Making a Binary Heap

7

4

11

11

11

5

411

1010

102 121233

886699

7

Quickly Making a Binary Heap

7

4

7

4

11

11

11

5

11

1010

102 121233

886699

7

Quickly Making a Binary Heap

1

7

4

1

4

11

11

11

5

7

1010

102 121233

886699

Quickly Making a Binary Heap

7

2

2

7

4

1

4

11

11

11

5

1010

7 121233

886699

Quickly Making a Binary Heap

1

7

7

7

2

1

44

11

11

11

5

1010

121233

886699

Quickly Making a Binary Heap

11

7

7

7

2 44

11

11

11

5

1010

121233

886699

Quickly Making a Binary Heap

11

7

7

7

2 44

11

11

11

5

1010

121233

886699

Quickly Making a Binary Heap

11

7

7

7

2 44

11

11

11

5

1010

121233

886699

Quickly Making a Binary Heap

11

7

7

7

2 44

11

11

11

5

1010

121233

886699

Quickly Making a Binary Heap

11

7

7

7

2 44

11

11

11

5

1010

121233

886699

Quickly Making a Binary Heap

Analyzing the Runtime

● At most half of the elements start one layer above
that and can move down at most once.

● At most a quarter of the elements start one layer
above that and can move down at most twice.

● At most an eighth of the elements start two layers
above that and can move down at most thrice.

● More generally: At most n / 2k of the elements can
move down k steps.

● Can upper-bound the runtime with the sum

T (n) ≤ ∑
i=0

⌈ log2n⌉
ni

2i
=n ∑

i=0

⌈ log2n⌉
i

2i

Simplifying the Summation

● We want to simplify the sum

● Let's introduce a new variable x, then evaluate the
sum when x = ½:

● If x < 1, each term is less than the previous, so

∑
i=0

⌈ log2n⌉
i

2i

∑
i=0

⌈ log2n⌉

i xi

∑
i=0

⌈ log2n⌉

i xi<∑
i=0

∞

i xi

Solving the Summation
∑
i=0

∞

i xi = x∑
i=0

∞

i xi−1

= x∑
i=0

∞ d
dx

xi

= x
d
dx (∑i=0

∞

xi)
= x

d
dx (1

1−x)
= x

x

(1−x)2

=
x2

(1−x)2

Solving the Summation
∑
i=0

∞

i xi = x∑
i=0

∞

i xi−1

= x∑
i=0

∞ d
dx

xi

= x
d
dx (∑i=0

∞

xi)
= x

d
dx (1

1−x)
= x

x

(1−x)2

=
x2

(1−x)2

Solving the Summation
∑
i=0

∞

i xi = x∑
i=0

∞

i xi−1

= x∑
i=0

∞ d
dx

xi

= x
d
dx (∑i=0

∞

xi)
= x

d
dx (1

1−x)
= x

x

(1−x)2

=
x2

(1−x)2

Solving the Summation
∑
i=0

∞

i xi = x∑
i=0

∞

i xi−1

= x∑
i=0

∞ d
dx

xi

= x
d
dx (∑i=0

∞

xi)
= x

d
dx (1

1−x)
= x

x

(1−x)2

=
x2

(1−x)2

Solving the Summation
∑
i=0

∞

i xi = x∑
i=0

∞

i xi−1

= x∑
i=0

∞ d
dx

xi

= x
d
dx (∑i=0

∞

xi)
= x

d
dx (1

1−x)
= x

x

(1−x)2

=
x2

(1−x)2

Solving the Summation
∑
i=0

∞

i xi = x∑
i=0

∞

i xi−1

= x∑
i=0

∞ d
dx

xi

= x
d
dx (∑i=0

∞

xi)
= x

d
dx (1

1−x)
= x

1

(1−x)2

=
x2

(1−x)2

Solving the Summation
∑
i=0

∞

i xi = x∑
i=0

∞

i xi−1

= x∑
i=0

∞ d
dx

xi

= x
d
dx (∑i=0

∞

xi)
= x

d
dx (1

1−x)
= x

1

(1−x)2

=
x

(1−x)2

The Finishing Touches

● We know know that

● Evaluating at x = ½, we get

● So at most 2n swaps are performed!
● We visit each node once and do at most

O(n) swaps, so the runtime is Θ(n).

T (n) ≤ n ∑
i=0

⌈ log2n ⌉

i xi < n∑
i=0

∞

i xi =
nx

(1−x)2

T (n)≤
n(1 /2)

(1−(1/2))2
=

n(1 /2)

(1 /2)2
=2n

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158
	Slide 159
	Slide 160
	Slide 161
	Slide 162
	Slide 163
	Slide 164
	Slide 165
	Slide 166
	Slide 167
	Slide 168
	Slide 169
	Slide 170
	Slide 171
	Slide 172
	Slide 173
	Slide 174
	Slide 175
	Slide 176
	Slide 177
	Slide 178
	Slide 179
	Slide 180
	Slide 181
	Slide 182
	Slide 183
	Slide 184
	Slide 185
	Slide 186
	Slide 187
	Slide 188
	Slide 189
	Slide 190
	Slide 191
	Slide 192
	Slide 193
	Slide 194
	Slide 195
	Slide 196
	Slide 197
	Slide 198
	Slide 199
	Slide 200
	Slide 201
	Slide 202
	Slide 203
	Slide 204
	Slide 205
	Slide 206
	Slide 207
	Slide 208
	Slide 209
	Slide 210
	Slide 211
	Slide 212
	Slide 213
	Slide 214
	Slide 215
	Slide 216
	Slide 217
	Slide 218
	Slide 219
	Slide 220
	Slide 221
	Slide 222
	Slide 223
	Slide 224
	Slide 225
	Slide 226
	Slide 227
	Slide 228
	Slide 229
	Slide 230
	Slide 231
	Slide 232
	Slide 233
	Slide 234
	Slide 235
	Slide 236
	Slide 237
	Slide 238
	Slide 239
	Slide 240
	Slide 241
	Slide 242
	Slide 243
	Slide 244
	Slide 245
	Slide 246
	Slide 247
	Slide 248
	Slide 249
	Slide 250
	Slide 251
	Slide 252
	Slide 253
	Slide 254
	Slide 255
	Slide 256
	Slide 257
	Slide 258
	Slide 259
	Slide 260
	Slide 261
	Slide 262
	Slide 263

