Fundamental Graph Algorithms Part Four

Announcements

- Problem Set One due right now.
- Due Friday at 2:15PM using one late period.
- Problem Set Two out, due next Friday, July 12 at 2:15PM.
- Play around with graphs and graph algorithms!

Outline for Today

- Kosaraju's Algorithm, Part II
- Completing our algorithm for finding SCCs.
- Applying Graph Algorithms
- How to put these algorithms into practice.

Recap from Last Time

Strongly Connected Components

- Let $G=(V, E)$ be a directed graph.
- Two nodes $u, v \in V$ are called strongly connected iff v is reachable from u and u is reachable from v.
- A strongly connected component (or SCC) of G is a set $C \subseteq V$ such that
- C is not empty.
- For any $u, v \in C: u$ and v are strongly connected.
- For any $u \in C$ and $v \in V-C: u$ and v are not strongly connected.

Condensation Graphs

- The condensation of a directed graph G is the directed graph $G^{S C C}$ whose nodes are the SCCs of G and whose edges are defined as follows:
$\left(C_{1}, C_{2}\right)$ is an edge in $G^{S C C}$ iff
$\exists u \in C_{1}, v \in C_{2} .(u, v)$ is an edge in G.
- In other words, if there is an edge in G from any node in C_{1} to any node in C_{2}, there is an edge in $G^{S C C}$ from C_{1} to C_{2}.
- Theorem: $G^{S C C}$ is a DAG for any graph G.

How do we find all the SCCs of a graph?

Topological Sort(ish)

- If we look purely at the last node from each SCC to turn green, we get a topological sort of $G^{S C C}$ in reverse.
- Here, each SCC is represented by a single node.
- We proved this result last time.
- There's still a problem - we still don't have a way of identifying the last node of each SCC!
- We do have one foothold, though...
- Onward to new content!

$$
\text { c. } \quad \dot{D}
$$

Making Progress!

- The last node colored green by DFS must be the last node colored green in some SCC.
- This gives a rough idea for an algorithm:
- Take the last node in the ordering that hasn't already been put into an SCC.
- Find all nodes in the same SCC as that node.
- Repeat.

A CKOGFDBIHE

Claim 2: The SCCs of this reversed graph are the same as the SCCs of the original graph.

Claim 3: Since \mathbf{E} is in a source SCC in the original graph, \mathbf{E} is in a sink SCC in this graph.

(A) $C J G F D B I H E$

(A) C $J G F D B I H E$

ACKJGFDBIHE
procedure kosarajuSCC(graph G):
for each node v in G:
color v gray.
let L be an empty list.
for each node v in G :
if v is gray:
run DFS starting at v, appending each node to list L when it is colored green.
construct G^{R} from G . for each node v in G^{R} :
color v gray.
let scc be a new array of length n
let index = 0
for each node v in L, in reverse order:
if v is gray:
run DFS on v in G^{R}, setting scc[u] = index for each node u colored green this way. index = index + 1
return scc

Proving Correctness

- Here's a quick sketch of the correctness proof of Kosaraju's algorithm:
- As proven earlier, the last nodes in each SCC will be returned in reverse topological order.
- Each time we do a DFS in the reverse graph starting from some node, we only reach nodes in the same SCC or in ancestor SCCs.
- Since we process the SCCs in topological order, at each point the only unvisited nodes reachable are nodes in the same SCC.

Kosaraju's Algorithm Runtime

- What is the runtime of the Kosaraju's algorithm?
- Runtime for running DFS starting from each node in the graph: $\Theta(m+n)$.
- Runtime for reversing the graph and coloring all nodes gray: $\Theta(m+n)$.
- Runtime for running DFS in the reversed graph: $\Theta(m+n)$.
- Total runtime: $\boldsymbol{\Theta}(\boldsymbol{m}+\boldsymbol{n})$.
- This is a linear-time algorithm!

Why All This Matters

- Depth-first search is an important building block for many other algorithms, including topological sorting, finding connected components, and Kosaraju's algorithm.
- We can find CCs and SCCs in (asymptotically) the same amount of time.
- Further reading: look up Tarjan's SCC algorithm for a way to find SCCs with a single DFS!

Applied Graph Algorithms

The Story So Far

- We have now seen many algorithms that operate on graphs:
- BFS
- DFS
- Dijkstra's algorithm
- Topological sort (x2)
- Finding CCs
- Kosaraju's algorithm
- How do we apply these in practice?

Reusing Algorithms

- Developing new graph algorithms is hard!
- Often, it is easier to solve a problem on graphs by reusing existing graph algorithms.
- Key idea: Use an existing graph algorithm as a "black box" with known properties and a known runtime.
- Makes algorithm easier to write: can just use an off-the-shelf implementation.
- Makes correctness proof easier: can "piggyback" on top of the existing correctness proof.
- Makes algorithm easier to analyze: runtime of key subroutine is known.

Sample Problem: Minimizing Turns

Minimizing Turns

- You are given a (possibly directed) graph $G=(V, E)$ where each edge goes either north, south, east, or west.
- You begin driving in some direction d.
- Goal: Find the path from $s \in V$ to $t \in V$ that minimizes the total number of turns made.

What This Looks Like

- This problem doesn't exactly match any of the algorithms we've seen so far.
- Similar to a shortest path problem, but we're charged whenever we make a turn, rather than whenever we follow an edge.
- Could we relate this back to BFS or Dijkstra's algorithm?

Shortest Paths as a Black Box

- Here's what we have now:

- Here are two options for solving our problem:
- Open up the black box and try to change how it finds shortest paths. (Harder)
- Change which input we put into the black box to trick it into solving our problem. (Easier)

Reductions

- Goal: Take our given graph $G=(V, E)$, starting node s, and starting direction d, then build a new graph $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ such that the following holds:

Shortest paths in G^{\prime} correspond to minimum-turn paths in \boldsymbol{G}.

- If we can build this graph G^{\prime}, our algorithm will be the following:
- Build the graph G^{\prime} out of G, s, and d.
- Use an existing algorithm for finding shortest paths to find shortest paths in G^{\prime}.
- Using the shortest paths found in G^{\prime}, determine the minimum-turn path from s to t.

A Major Observation

- When computing shortest paths in a graph, each node represents a possible "position" we can be in.
- In our problem, though, "position" also includes the direction you are currently facing.
- Useful technique: What if we create one node in the graph for each combination of a position in the original graph and a current direction?

The Construction

- For each $v \in V$, construct four nodes:

$$
v_{N^{\prime}}, v_{\mathbf{S}^{\prime}}, v_{\mathrm{E}^{\prime}}, v_{\mathrm{W}}
$$

- For each edge $(u, v) \in E$ that goes in direction d, construct four edges:

$$
\left(u_{\mathrm{N}}, v_{\mathrm{d}}\right),\left(u_{\mathrm{s}}, v_{\mathrm{d}}\right),\left(u_{\mathrm{E}^{\prime}}, v_{\mathrm{d}}\right),\left(u_{\mathrm{w}}, v_{\mathrm{d}}\right)
$$

- Assign costs as follows:
- $l\left(u_{\mathrm{d}_{1}}, v_{\mathrm{d}_{2}}\right)=0$ if $d_{1}=d_{2}$
- $l\left(u_{\mathrm{d}_{1}}, v_{\mathrm{d}_{2}}\right)=1$ if $d_{1} \neq d_{2}$
- New graph has $4 n$ nodes and $4 m$ edges.
procedure minTurnPath(graph G, node s, node t, direction d): construct G' from G as described earlier. run Dijkstra's algorithm to find shortest paths from s_{d} to each other node in G'.
return the shortest of the following paths:
the shortest path from s_{d} to t_{N} the shortest path from s_{d} to t_{s} the shortest path from s_{d} to t_{E} the shortest path from s_{d} to t_{w}

Correctness Proof Sketch

- Suppose we start at node s facing direction d. Our goal is to get to node t minimizing turns.
- Consider the length, in the new graph, of the shortest path P from s_{d} to t_{χ} for any direction x.
- $l(P)$ is the sum of all the edge costs in path P. Edges that continue in the same direction cost 0 and edges that change direction cost 1, so $l(P)$ is the number of turns in P.
- Since P is chosen to minimize $l(P), P$ has the fewest number of turns of any path from s_{d} to t_{x}.
- The minimum-turn path from s to t is then the cheapest of the paths from s_{d} to $t_{\mathrm{N}}, t_{\mathrm{S}^{\prime}}, t_{\mathrm{E}}, t_{\mathrm{W}}$.

Formalizing the Proof

- To be more formal, we should prove the following results:
- Lemma 1: There is a path in G^{\prime} from $s_{\mathrm{d}_{1}}$ to $t_{\mathrm{d}_{2}}$ iff there is a path in G from s to t that starts in direction d_{1} and ends in direction d_{2}.
- Lemma 2: There is a path in G^{\prime} from $s_{\mathrm{d} 1}$ to $t_{\mathrm{d} 2}$ of cost k iff there is a path in G from s to t that starts in direction d_{1}, ends in direction d_{2}, and makes k turns.
- We will expect this level of detail in the problem sets.

Analyzing the Runtime

- Time required to construct the new graph: $\Theta(n+m)$, since there are $4 n$ nodes and $4 m$ edges and each can be built in $\Theta(1)$ time.
- Time required to find the shortest paths in this graph: $\mathrm{O}\left(n^{2}\right)$, or better if we use a faster Dijkstra's implementation.
- Overall runtime: $\mathbf{O}\left(\boldsymbol{n}^{2}\right)$.

Speeding Things Up

- The algorithm we've described is correct, but it can be made more efficient.
- Observation: Every edge in the graph has cost 0 or 1.
- Our algorithm uses Dijkstra's algorithm in this graph.
- Can we speed up Dijkstra's algorithm if all edges cost 0 or 1?

Some Observations

- Dijkstra's algorithm works by
- Choosing the lowest-cost node in the fringe.
- Updating costs to all adjacent nodes.
- Fact 1: Once Dijkstra's algorithm dequeues a node at distance d, all further nodes dequeued will be at distance $\geq d$.
- Can prove this inductively: Initial distance is 0, and all other distances are formed by adding edge costs (which are nonnegative) to the distance of the most recently-dequeued node.

Some Observations

- Fact 2: If all edge costs are 0 or 1, every node in the queue will either be at distance d or distance $d+1$ for some d.
- Can prove this by induction:
- Initially, all nodes in the queue are at distance 0 .
- If all nodes are at distance d or $d+1$, we dequeue a node at distance d. All nodes connected to it will then be reinserted at distance either d or $d+1$.

A Better Queue Structure

- Store the queue as a doubly-linked list. Elements at the front are at distance d and elements at the back are at distance $d+1$.
- Enqueue: Compare distance to distance at front. If equal, put at front. If greater, put at back.
- Dequeue: Remove first element.
- If a distance decreases from $d+1$ to d, move that element to the front.
- All operations can be done in $\mathrm{O}(1)$ time.

$$
\text { distance } d \quad \text { distance } d+1
$$

Optimized Dijkstra's Algorithm

Theorem: In a graph where all edge costs are 0 or 1, Dijkstra's algorithm runs in time $\mathbf{O}(\boldsymbol{m}+\boldsymbol{n})$.
Proof Sketch: Use this new queue structure to store the nodes. Dijkstra's algorithm takes time $\mathrm{O}(m+n)$ plus the time required for $\mathrm{O}(m+n)$ queue operations, which with the new structure run in time $O(1)$ each. Thus the runtime is $\mathrm{O}(m+n)$.

Corollary: The minimum-turns path problem can be solved in linear time.

Why All This Matters

- Look at the structure of our solution:
- Show how to solve the new problem (minimizing turns) using a solver for an existing algorithm.
- Argue correctness using the fact that the existing algorithm is correct.
- Argue runtime using the runtime of the existing algorithm.
- (Optional) Speed up the algorithm by showing how to faithfully simulate the original algorithm in less time.
- Many problems can be solved this way.

Next Time

- Divide-and-Conquer Algorithms
- Mergesort
- Solving Recurrences

