

Fundamental Graph Algorithms
Part Four

Announcements

● Problem Set One due right now.
● Due Friday at 2:15PM using one late period.

● Problem Set Two out, due next Friday,
July 12 at 2:15PM.
● Play around with graphs and graph

algorithms!

Outline for Today

● Kosaraju's Algorithm, Part II
● Completing our algorithm for finding SCCs.

● Applying Graph Algorithms
● How to put these algorithms into practice.

Recap from Last Time

Strongly Connected Components

● Let G = (V, E) be a directed graph.
● Two nodes u, v ∈ V are called strongly

connected iff v is reachable from u and
u is reachable from v.

● A strongly connected component (or
SCC) of G is a set C ⊆ V such that
● C is not empty.
● For any u, v ∈ C: u and v are strongly

connected.
● For any u ∈ C and v ∈ V – C: u and v are not

strongly connected.

Condensation Graphs

● The condensation of a directed graph G
is the directed graph GSCC whose nodes
are the SCCs of G and whose edges are
defined as follows:

(C₁, C₂) is an edge in GSCC iff
∃u ∈ C₁, v ∈ C₂. (u, v) is an edge in G.

● In other words, if there is an edge in G
from any node in C₁ to any node in C₂,
there is an edge in GSCC from C₁ to C₂.

● Theorem: GSCC is a DAG for any graph G.

How do we find all the SCCs of a graph?

C D

A

F G

KJ

H I

E

B

C D

A

F G

KJ

H I

E

B

C D

A

F G

KJ

H I

E

B

C D

A

F G

KJ

H I

E

B

C D

A

F G

KJ

H I

E

B

C D

A

F G

KJ

H I

E

B

C D

A

F G

KJ

H I

E

B

C D

A

F G

KJ

H I

E

B

A

C D

A

F G

KJ

H I

E

B

A

C D

A

F G

KJ

H I

E

B

A

C D

A

F G

KJ

H I

E

B

A C

C D

A

F G

KJ

H I

E

B

A C

C D

A

F G

KJ

H I

E

B

A C

C D

A

F G

KJ

H I

E

B

A C

C D

A

F G

KJ

H I

E

B

A C

C D

A

F G

KJ

H I

E

B

A C

C D

A

F G

KJ

H I

E

B

A C

C D

A

F G

KJ

H I

E

B

A C K

C D

A

F G

KJ

H I

E

B

A C K

C D

A

F G

KJ

H I

E

B

A C K

C D

A

F G

KJ

H I

E

B

A C K J

C D

A

F G

KJ

H I

E

B

A C K J

C D

A

F G

KJ

H I

E

B

A C K J

C D

A

F G

KJ

H I

E

B

A C K J

C D

A

F G

KJ

H I

E

B

A C K J

C D

A

F G

KJ

H I

E

B

A C K J

C D

A

F G

KJ

H I

E

B

A C K J G

C D

A

F G

KJ

H I

E

B

A C K J G

C D

A

F G

KJ

H I

E

B

A C K J G

C D

A

F G

KJ

H I

E

B

A C K J G F

C D

A

F G

KJ

H I

E

B

A C K J G F

C D

A

F G

KJ

H I

E

B

A C K J G F

C D

A

F G

KJ

H I

E

B

A C K J G F D

C D

A

F G

KJ

H I

E

B

A C K J G F D

C D

A

F G

KJ

H I

E

B

A C K J G F D

C D

A

F G

KJ

H I

E

B

A C K J G F D

C D

A

F G

KJ

H I

E

B

A C K J G F D

C D

A

F G

KJ

H I

E

B

A C K J G F D B

C D

A

F G

KJ

H I

E

B

A C K J G F D B

C D

A

F G

KJ

H I

E

B

A C K J G F D B

C D

A

F G

KJ

H I

E

B

A C K J G F D B

C D

A

F G

KJ

H I

E

B

A C K J G F D B

C D

A

F G

KJ

H I

E

B

A C K J G F D B

C D

A

F G

KJ

H I

E

B

A C K J G F D B I

C D

A

F G

KJ

H I

E

B

A C K J G F D B I

C D

A

F G

KJ

H I

E

B

A C K J G F D B I

C D

A

F G

KJ

H I

E

B

A C K J G F D B I H

C D

A

F G

KJ

H I

E

B

A C K J G F D B I H

C D

A

F G

KJ

H I

E

B

A C K J G F D B I H

C D

A

F G

KJ

H I

E

B

A C K J G F D B I H E

C D

A

F G

KJ

H I

E

B

A C K J G F D B I H E

C D

A

F G

KJ

H I

E

B

A C K J G F D B I H E

C D

A

F G

KJ

H I

E

B

A C K J G F D B I H E

C D

A

F G

KJ

H I

E

B

A C K J G F D B I H E

A C K G B

C D

A

F G

KJ

H I

E

B

J F D I H E

A C K G B

C D

A

F G

KJ

H I

E

B

J F D I H E

A C K G B

C D

A

F G

KJ

H I

E

B

J F D I H E
E H I D F J

Topological Sort(ish)

● If we look purely at the last node from each SCC to
turn green, we get a topological sort of GSCC in
reverse.

● Here, each SCC is represented by a single node.
● We proved this result last time.

● There's still a problem – we still don't have a way
of identifying the last node of each SCC!

● We do have one foothold, though...

● Onward to new content!

C D

A

F G

KJ

H I

E

B

A C K J G F D B I H E

C D

A

F G

KJ

H I

E

B

A C K J G F D B I H E

C D

A

F G

KJ

H I

E

B

A C K J G F D B I H E

B E

C D

A

F G

KJ

H I

A C K J G F D I H

B E

C D

A

F G

KJ

H I

A C K J G F D I H

HB E

C D

A

F G

KJ

I

A C K J G F D I

HB E

C D

A

F G

KJ

I

A C K J G F D I

I HB E

C D

A

F G

KJ

A C K J G F D

I HB E

C D

A

F G

KJ

A C K J G F D

A C D I HB E

F G

KJ

K J G F

A C D I HB E

F G

KJ

K J G F

G FA C D I HB E

KJ

K J

G FA C D I HB E

KJ

K J

G FA C D I HB EK J

Making Progress!

● The last node colored green by DFS must
be the last node colored green in some
SCC.

● This gives a rough idea for an algorithm:
● Take the last node in the ordering that hasn't

already been put into an SCC.
● Find all nodes in the same SCC as that node.
● Repeat.

Making Progress!

The last node colored green by DFS must
be the last node colored green in some
SCC.

This gives a rough idea for an algorithm:

Take the last node in the ordering that hasn't
already been put into an SCC.

● Find all nodes in the same SCC as that node.

Repeat.

C D

A

F G

KJ

H I

E

B

A C K J G F D B I H E

C D

A

F G

KJ

H I

E

B

A C K J G F D B I H E

C D

A

F G

KJ

H I

E

B

A C K J G F D B I H E

Claim 1: This node
must belong to a source

SCC.

Claim 1: This node
must belong to a source

SCC.

C D

A

F G

KJ

H I

E

B

A C K J G F D B I H E

C D

A

F G

KJ

H I

E

B

A C K J G F D B I H E

C D

A

F G

KJ

H I

E

B

A C K J G F D B I H E

Claim 2: The SCCs of
this reversed graph are
the same as the SCCs of

the original graph.

Claim 2: The SCCs of
this reversed graph are
the same as the SCCs of

the original graph.

C D

A

F G

KJ

H I

E

B

A C K J G F D B I H E

Claim 3: Since E is in a
source SCC in the

original graph, E is in a
sink SCC in this graph.

Claim 3: Since E is in a
source SCC in the

original graph, E is in a
sink SCC in this graph.

C D

A

F G

KJ

H I

E

B

A C K J G F D B I H E

Claim 4: The only
nodes reachable from E

are the nodes in the
same SCC as E.

Claim 4: The only
nodes reachable from E

are the nodes in the
same SCC as E.

C D

A

F G

KJ

H I

E

B

A C K J G F D B I H E

C D

A

F G

KJ

H I

E

B

A C K J G F D B I H E

C D

A

F G

KJ

H I

E

B

A C K J G F D B I H E

C D

A

F G

KJ

H I

E

B

A C K J G F D B I H E

C D

A

F G

KJ

H I

E

B

A C K J G F D B I H E

Claim 5: The only
unvisited nodes reachable
from H are the nodes in

the same SCC as H.

Claim 5: The only
unvisited nodes reachable
from H are the nodes in

the same SCC as H.

C D

A

F G

KJ

H I

E

B

A C K J G F D B I H E

C D

A

F G

KJ

H I

E

B

A C K J G F D B I H E

C D

A

F G

KJ

H I

E

B

A C K J G F D B I H E

C D

A

F G

KJ

H I

E

B

A C K J G F D B I H E

C D

A

F G

KJ

H I

E

B

A C K J G F D B I H E

C D

A

F G

KJ

H I

E

B

A C K J G F D B I H E

C D

A

F G

KJ

H I

E

B

A C K J G F D B I H E

C D

A

F G

KJ

H I

E

B

A C K J G F D B I H E

C D

A

F G

KJ

H I

E

B

A C K J G F D B I H E

C D

A

F G

KJ

H I

E

B

A C K J G F D B I H E

C D

A

F G

KJ

H I

E

B

A C K J G F D B I H E

C D

A

F G

KJ

H I

E

B

A C K J G F D B I H E

C D

A

F G

KJ

H I

E

B

A C K J G F D B I H E

C D

A

F G

KJ

H I

E

B

A C K J G F D B I H E

C D

A

F G

KJ

H I

E

B

A C K J G F D B I H E

procedure kosarajuSCC(graph G):
 for each node v in G:
 color v gray.

 let L be an empty list.
 for each node v in G:
 if v is gray:
 run DFS starting at v, appending each
 node to list L when it is colored green.

 construct GR from G.
 for each node v in GR:
 color v gray.

 let scc be a new array of length n
 let index = 0
 for each node v in L, in reverse order:
 if v is gray:
 run DFS on v in GR, setting scc[u] = index
 for each node u colored green this way.
 index = index + 1

 return scc

procedure kosarajuSCC(graph G):
 for each node v in G:
 color v gray.

 let L be an empty list.
 for each node v in G:
 if v is gray:
 run DFS starting at v, appending each
 node to list L when it is colored green.

 construct GR from G.
 for each node v in GR:
 color v gray.

 let scc be a new array of length n
 let index = 0
 for each node v in L, in reverse order:
 if v is gray:
 run DFS on v in GR, setting scc[u] = index
 for each node u colored green this way.
 index = index + 1

 return scc

Proving Correctness

● Here's a quick sketch of the correctness
proof of Kosaraju's algorithm:
● As proven earlier, the last nodes in each SCC will

be returned in reverse topological order.
● Each time we do a DFS in the reverse graph

starting from some node, we only reach nodes in
the same SCC or in ancestor SCCs.

● Since we process the SCCs in topological order,
at each point the only unvisited nodes reachable
are nodes in the same SCC.

Kosaraju's Algorithm Runtime

● What is the runtime of the Kosaraju's
algorithm?
● Runtime for running DFS starting from each

node in the graph: Θ(m + n).
● Runtime for reversing the graph and

coloring all nodes gray: Θ(m + n).
● Runtime for running DFS in the reversed

graph: Θ(m + n).
● Total runtime: Θ(m + n).

● This is a linear-time algorithm!

Why All This Matters

● Depth-first search is an important building
block for many other algorithms, including
topological sorting, finding connected
components, and Kosaraju's algorithm.

● We can find CCs and SCCs in (asymptotically)
the same amount of time.

● Further reading: look up Tarjan's SCC
algorithm for a way to find SCCs with a single
DFS!

Applied Graph Algorithms

The Story So Far

● We have now seen many algorithms that
operate on graphs:
● BFS
● DFS
● Dijkstra's algorithm
● Topological sort (x2)
● Finding CCs
● Kosaraju's algorithm

● How do we apply these in practice?

Reusing Algorithms

● Developing new graph algorithms is hard!
● Often, it is easier to solve a problem on graphs by

reusing existing graph algorithms.
● Key idea: Use an existing graph algorithm as a

“black box” with known properties and a known
runtime.
● Makes algorithm easier to write: can just use an

off-the-shelf implementation.
● Makes correctness proof easier: can “piggyback” on top

of the existing correctness proof.
● Makes algorithm easier to analyze: runtime of key

subroutine is known.

Sample Problem: Minimizing Turns

★

■

★

■

★

■

★

■

★

■

★

■

Minimizing Turns

● You are given a (possibly directed) graph
G = (V, E) where each edge goes either
north, south, east, or west.

● You begin driving in some direction d.
● Goal: Find the path from s ∈ V to t ∈ V

that minimizes the total number of turns
made.

What This Looks Like

● This problem doesn't exactly match any
of the algorithms we've seen so far.

● Similar to a shortest path problem, but
we're charged whenever we make a turn,
rather than whenever we follow an edge.

● Could we relate this back to BFS or
Dijkstra's algorithm?

Shortest Paths as a Black Box

● Here's what we have now:

● Here are two options for solving our problem:
● Open up the black box and try to change how it

finds shortest paths. (Harder)
● Change which input we put into the black box to

trick it into solving our problem. (Easier)

The Magic Machine
of

Finding Shortest Paths

0
1

2
1

3

Reductions

● Goal: Take our given graph G = (V, E), starting
node s, and starting direction d, then build a new
graph G' = (V', E') such that the following holds:

Shortest paths in G' correspond
to minimum-turn paths in G.

● If we can build this graph G', our algorithm will be
the following:

● Build the graph G' out of G, s, and d.
● Use an existing algorithm for finding shortest paths

to find shortest paths in G'.
● Using the shortest paths found in G', determine the

minimum-turn path from s to t.

★

■

★

■

★

■

? ?

?

A Major Observation

● When computing shortest paths in a graph,
each node represents a possible “position”
we can be in.

● In our problem, though, “position” also
includes the direction you are currently
facing.

● Useful technique: What if we create one
node in the graph for each combination of a
position in the original graph and a current
direction?

★

■

? ?

?

? ?

?

A

D

B C
? ?

?

East

A

D

B C

East

A

D

B C

East

A

D

B C

East

A

D

B C
0 0

East

A

D

B C
0 0

South
D

East

A

D

B C
0 0

South
D

1

East

A

D

B C
0 0

South
D

1

North
B

1

East

A

D

B C
0 0

South
D

1

North
B

1

1

The Construction

● For each v ∈ V, construct four nodes:

 vN, vS, vE, vW

● For each edge (u, v) ∈ E that goes in
direction d, construct four edges:

(uN, vd), (uS, vd), (uE, vd), (uW, vd)

● Assign costs as follows:
● l(ud₁, vd₂) = 0 if d₁ = d₂

● l(ud₁, vd₂) = 1 if d₁ ≠ d₂

● New graph has 4n nodes and 4m edges.

procedure minTurnPath(graph G, node s,
 node t, direction d):
 construct G' from G as described earlier.

 run Dijkstra's algorithm to find shortest
 paths from s

d
 to each other node in G'.

 return the shortest of the following paths:
 the shortest path from s

d
 to t

N

 the shortest path from s
d
 to t

S

 the shortest path from s
d
 to t

E

 the shortest path from s
d
 to t

W

procedure minTurnPath(graph G, node s,
 node t, direction d):
 construct G' from G as described earlier.

 run Dijkstra's algorithm to find shortest
 paths from s

d
 to each other node in G'.

 return the shortest of the following paths:
 the shortest path from s

d
 to t

N

 the shortest path from s
d
 to t

S

 the shortest path from s
d
 to t

E

 the shortest path from s
d
 to t

W

Correctness Proof Sketch
● Suppose we start at node s facing direction d.

Our goal is to get to node t minimizing turns.

● Consider the length, in the new graph, of the
shortest path P from sd to tx for any direction x.

● l(P) is the sum of all the edge costs in path P.
Edges that continue in the same direction cost 0
and edges that change direction cost 1, so l(P) is
the number of turns in P.

● Since P is chosen to minimize l(P), P has the
fewest number of turns of any path from sd to tx.

● The minimum-turn path from s to t is then the
cheapest of the paths from sd to tN, tS, tE, tW.

Formalizing the Proof

● To be more formal, we should prove the
following results:

● Lemma 1: There is a path in G' from sd₁ to td₂ iff
there is a path in G from s to t that starts in
direction d₁ and ends in direction d₂.

● Lemma 2: There is a path in G' from sd₁ to td₂ of
cost k iff there is a path in G from s to t that
starts in direction d₁, ends in direction d₂, and
makes k turns.

● We will expect this level of detail in the
problem sets.

Analyzing the Runtime

● Time required to construct the new graph:
Θ(n + m), since there are 4n nodes and 4m
edges and each can be built in Θ(1) time.

● Time required to find the shortest paths in this
graph: O(n2), or better if we use a faster
Dijkstra's implementation.

● Overall runtime: O(n2).

Speeding Things Up

● The algorithm we've described is correct,
but it can be made more efficient.

● Observation: Every edge in the graph has
cost 0 or 1.

● Our algorithm uses Dijkstra's algorithm
in this graph.

● Can we speed up Dijkstra's algorithm if
all edges cost 0 or 1?

Some Observations

● Dijkstra's algorithm works by
● Choosing the lowest-cost node in the fringe.
● Updating costs to all adjacent nodes.

● Fact 1: Once Dijkstra's algorithm dequeues a
node at distance d, all further nodes dequeued
will be at distance ≥ d.

● Can prove this inductively: Initial distance is 0,
and all other distances are formed by adding
edge costs (which are nonnegative) to the
distance of the most recently-dequeued node.

Some Observations

● Fact 2: If all edge costs are 0 or 1, every
node in the queue will either be at
distance d or distance d + 1 for some d.

● Can prove this by induction:
● Initially, all nodes in the queue are at

distance 0.
● If all nodes are at distance d or d + 1, we

dequeue a node at distance d. All nodes
connected to it will then be reinserted at
distance either d or d + 1.

A Better Queue Structure

● Store the queue as a doubly-linked list. Elements
at the front are at distance d and elements at the
back are at distance d + 1.

● Enqueue: Compare distance to distance at front. If
equal, put at front. If greater, put at back.

● Dequeue: Remove first element.
● If a distance decreases from d + 1 to d, move that

element to the front.

● All operations can be done in O(1) time.

distance d distance d + 1

Optimized Dijkstra's Algorithm

Theorem: In a graph where all edge costs
are 0 or 1, Dijkstra's algorithm runs in
time O(m + n).

Proof Sketch: Use this new queue structure to
store the nodes. Dijkstra's algorithm takes
time O(m + n) plus the time required for
O(m + n) queue operations, which with the
new structure run in time O(1) each. Thus
the runtime is O(m + n). ■

Corollary: The minimum-turns path
problem can be solved in linear time.

Why All This Matters

● Look at the structure of our solution:
● Show how to solve the new problem (minimizing

turns) using a solver for an existing algorithm.
● Argue correctness using the fact that the

existing algorithm is correct.
● Argue runtime using the runtime of the existing

algorithm.
● (Optional) Speed up the algorithm by showing

how to faithfully simulate the original algorithm
in less time.

● Many problems can be solved this way.

Next Time

● Divide-and-Conquer Algorithms
● Mergesort
● Solving Recurrences

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157

