
  

Fundamental Graph Algorithms
Part Four



  

Announcements

● Problem Set One due right now.
● Due Friday at 2:15PM using one late period.

● Problem Set Two out, due next Friday, 
July 12 at 2:15PM.
● Play around with graphs and graph 

algorithms!



  

Outline for Today

● Kosaraju's Algorithm, Part II
● Completing our algorithm for finding SCCs.

● Applying Graph Algorithms
● How to put these algorithms into practice.



  

Recap from Last Time



  

Strongly Connected Components

● Let G = (V, E) be a directed graph.
● Two nodes u, v ∈ V are called strongly 

connected iff v is reachable from u and 
u is reachable from v.

● A strongly connected component (or 
SCC) of G is a set C ⊆ V such that
● C is not empty.
● For any u, v ∈ C: u and v are strongly 

connected.
● For any u ∈ C and v ∈ V – C: u and v are not 

strongly connected.



  



  



  

Condensation Graphs

● The condensation of a directed graph G 
is the directed graph GSCC whose nodes 
are the SCCs of G and whose edges are 
defined as follows:

(C₁, C₂) is an edge in GSCC iff 
∃u ∈ C₁, v ∈ C₂. (u, v) is an edge in G.

● In other words, if there is an edge in G 
from any node in C₁ to any node in C₂, 
there is an edge in GSCC from C₁ to C₂.

● Theorem: GSCC is a DAG for any graph G.



  

How do we find all the SCCs of a graph?
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Topological Sort(ish)

● If we look purely at the last node from each SCC to 
turn green, we get a topological sort of GSCC in 
reverse.

● Here, each SCC is represented by a single node.
● We proved this result last time.

● There's still a problem – we still don't have a way 
of identifying the last node of each SCC!

● We do have one foothold, though...

● Onward to new content!
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Making Progress!

● The last node colored green by DFS must 
be the last node colored green in some 
SCC.

● This gives a rough idea for an algorithm:
● Take the last node in the ordering that hasn't 

already been put into an SCC.
● Find all nodes in the same SCC as that node.
● Repeat.



  

Making Progress!

The last node colored green by DFS must 
be the last node colored green in some 
SCC.

This gives a rough idea for an algorithm:

Take the last node in the ordering that hasn't 
already been put into an SCC.

● Find all nodes in the same SCC as that node.

Repeat.
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Claim 1: This node 
must belong to a source 

SCC.

Claim 1: This node 
must belong to a source 

SCC.
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Claim 2: The SCCs of 
this reversed graph are 
the same as the SCCs of 

the original graph.

Claim 2: The SCCs of 
this reversed graph are 
the same as the SCCs of 

the original graph.
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Claim 3: Since E is in a 
source SCC in the 

original graph, E is in a 
sink SCC in this graph.

Claim 3: Since E is in a 
source SCC in the 

original graph, E is in a 
sink SCC in this graph.
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Claim 4: The only 
nodes reachable from E 

are the nodes in the 
same SCC as E.

Claim 4: The only 
nodes reachable from E 

are the nodes in the 
same SCC as E.
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Claim 5: The only 
unvisited nodes reachable 
from H are the nodes in 

the same SCC as H.

Claim 5: The only 
unvisited nodes reachable 
from H are the nodes in 

the same SCC as H.
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procedure kosarajuSCC(graph G):
   for each node v in G:
      color v gray.
 

   let L be an empty list.
   for each node v in G:
      if v is gray:
         run DFS starting at v, appending each
         node to list L when it is colored green.
 

   construct GR from G.
   for each node v in GR:
      color v gray.
 

   let scc be a new array of length n
   let index = 0
   for each node v in L, in reverse order:
      if v is gray:
         run DFS on v in GR, setting scc[u] = index
         for each node u colored green this way.
      index = index + 1 

   return scc

procedure kosarajuSCC(graph G):
   for each node v in G:
      color v gray.
 

   let L be an empty list.
   for each node v in G:
      if v is gray:
         run DFS starting at v, appending each
         node to list L when it is colored green.
 

   construct GR from G.
   for each node v in GR:
      color v gray.
 

   let scc be a new array of length n
   let index = 0
   for each node v in L, in reverse order:
      if v is gray:
         run DFS on v in GR, setting scc[u] = index
         for each node u colored green this way.
      index = index + 1 

   return scc



  

Proving Correctness

● Here's a quick sketch of the correctness 
proof of Kosaraju's algorithm:
● As proven earlier, the last nodes in each SCC will 

be returned in reverse topological order.
● Each time we do a DFS in the reverse graph 

starting from some node, we only reach nodes in 
the same SCC or in ancestor SCCs.

● Since we process the SCCs in topological order, 
at each point the only unvisited nodes reachable 
are nodes in the same SCC.



  

Kosaraju's Algorithm Runtime

● What is the runtime of the Kosaraju's 
algorithm?
● Runtime for running DFS starting from each 

node in the graph: Θ(m + n).
● Runtime for reversing the graph and 

coloring all nodes gray: Θ(m + n).
● Runtime for running DFS in the reversed 

graph: Θ(m + n).
● Total runtime: Θ(m + n).

● This is a linear-time algorithm!



  

Why All This Matters

● Depth-first search is an important building 
block for many other algorithms, including 
topological sorting, finding connected 
components, and Kosaraju's algorithm.

● We can find CCs and SCCs in (asymptotically) 
the same amount of time.

● Further reading: look up Tarjan's SCC 
algorithm for a way to find SCCs with a single 
DFS!



  

Applied Graph Algorithms



  

The Story So Far

● We have now seen many algorithms that 
operate on graphs:
● BFS
● DFS
● Dijkstra's algorithm
● Topological sort (x2)
● Finding CCs
● Kosaraju's algorithm

● How do we apply these in practice?



  

Reusing Algorithms

● Developing new graph algorithms is hard!
● Often, it is easier to solve a problem on graphs by 

reusing existing graph algorithms.
● Key idea: Use an existing graph algorithm as a 

“black box” with known properties and a known 
runtime.
● Makes algorithm easier to write: can just use an 

off-the-shelf implementation.
● Makes correctness proof easier: can “piggyback” on top 

of the existing correctness proof.
● Makes algorithm easier to analyze: runtime of key 

subroutine is known.



  

Sample Problem: Minimizing Turns



  



  

★

■



  

★

■



  

★

■



  

★

■



  

★

■



  

★

■



  

Minimizing Turns

● You are given a (possibly directed) graph 
G = (V, E) where each edge goes either 
north, south, east, or west.

● You begin driving in some direction d.
● Goal: Find the path from s ∈ V to t ∈ V 

that minimizes the total number of turns 
made.



  

What This Looks Like

● This problem doesn't exactly match any 
of the algorithms we've seen so far.

● Similar to a shortest path problem, but 
we're charged whenever we make a turn, 
rather than whenever we follow an edge.

● Could we relate this back to BFS or 
Dijkstra's algorithm?



  

Shortest Paths as a Black Box

● Here's what we have now:

● Here are two options for solving our problem:
● Open up the black box and try to change how it 

finds shortest paths. (Harder)
● Change which input we put into the black box to 

trick it into solving our problem. (Easier)

The Magic Machine
of

Finding Shortest Paths

0
1

2
1

3



  

Reductions

● Goal: Take our given graph G = (V, E), starting 
node s, and starting direction d, then build a new 
graph G' = (V', E') such that the following holds:

Shortest paths in G' correspond
to minimum-turn paths in G. 

● If we can build this graph G', our algorithm will be 
the following:

● Build the graph G' out of G, s, and d.
● Use an existing algorithm for finding shortest paths 

to find shortest paths in G'.
● Using the shortest paths found in G', determine the 

minimum-turn path from s to t.
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A Major Observation

● When computing shortest paths in a graph, 
each node represents a possible “position” 
we can be in.

● In our problem, though, “position” also 
includes the direction you are currently 
facing.

● Useful technique: What if we create one 
node in the graph for each combination of a 
position in the original graph and a current 
direction?
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The Construction

● For each v ∈ V, construct four nodes:

 vN, vS, vE, vW  

● For each edge (u, v) ∈ E that goes in 
direction d, construct four edges:

(uN, vd), (uS, vd), (uE, vd), (uW, vd)  

● Assign costs as follows:
● l(ud₁, vd₂) = 0 if d₁ = d₂

● l(ud₁, vd₂) = 1 if d₁ ≠ d₂

● New graph has 4n nodes and 4m edges.



  

procedure minTurnPath(graph G, node s,
                      node t, direction d):
    construct G' from G as described earlier.

    run Dijkstra's algorithm to find shortest
    paths from s

d
 to each other node in G'.

    return the shortest of the following paths:
        the shortest path from s

d
 to t

N

        the shortest path from s
d
 to t

S

        the shortest path from s
d
 to t

E

        the shortest path from s
d
 to t

W

procedure minTurnPath(graph G, node s,
                      node t, direction d):
    construct G' from G as described earlier.

    run Dijkstra's algorithm to find shortest
    paths from s

d
 to each other node in G'.

    return the shortest of the following paths:
        the shortest path from s

d
 to t

N

        the shortest path from s
d
 to t

S

        the shortest path from s
d
 to t

E

        the shortest path from s
d
 to t

W



  

Correctness Proof Sketch
● Suppose we start at node s facing direction d.  

Our goal is to get to node t minimizing turns.

● Consider the length, in the new graph, of the 
shortest path P from sd to tx for any direction x.

● l(P) is the sum of all the edge costs in path P.  
Edges that continue in the same direction cost 0 
and edges that change direction cost 1, so l(P) is 
the number of turns in P.

● Since P is chosen to minimize l(P), P has the 
fewest number of turns of any path from sd to tx. 

● The minimum-turn path from s to t is then the 
cheapest of the paths from sd to tN, tS, tE, tW.



  

Formalizing the Proof

● To be more formal, we should prove the 
following results:

● Lemma 1: There is a path in G' from sd₁ to td₂ iff 
there is a path in G from s to t that starts in 
direction d₁ and ends in direction d₂.

● Lemma 2: There is a path in G' from sd₁ to td₂ of 
cost k iff there is a path in G from s to t that 
starts in direction d₁, ends in direction d₂, and 
makes k turns.

● We will expect this level of detail in the 
problem sets.



  

Analyzing the Runtime

● Time required to construct the new graph: 
Θ(n + m), since there are 4n nodes and 4m 
edges and each can be built in Θ(1) time.

● Time required to find the shortest paths in this 
graph: O(n2), or better if we use a faster 
Dijkstra's implementation.

● Overall runtime: O(n2).



  

Speeding Things Up

● The algorithm we've described is correct, 
but it can be made more efficient.

● Observation: Every edge in the graph has 
cost 0 or 1.

● Our algorithm uses Dijkstra's algorithm 
in this graph.

● Can we speed up Dijkstra's algorithm if 
all edges cost 0 or 1?



  

Some Observations

● Dijkstra's algorithm works by
● Choosing the lowest-cost node in the fringe.
● Updating costs to all adjacent nodes.

● Fact 1: Once Dijkstra's algorithm dequeues a 
node at distance d, all further nodes dequeued 
will be at distance ≥ d.

● Can prove this inductively: Initial distance is 0, 
and all other distances are formed by adding 
edge costs (which are nonnegative) to the 
distance of the most recently-dequeued node.



  

Some Observations

● Fact 2: If all edge costs are 0 or 1, every 
node in the queue will either be at 
distance d or distance d + 1 for some d.

● Can prove this by induction:
● Initially, all nodes in the queue are at 

distance 0.
● If all nodes are at distance d or d + 1, we 

dequeue a node at distance d.  All nodes 
connected to it will then be reinserted at 
distance either d or d + 1.



  

A Better Queue Structure

● Store the queue as a doubly-linked list.  Elements 
at the front are at distance d and elements at the 
back are at distance d + 1.

● Enqueue: Compare distance to distance at front. If 
equal, put at front.  If greater, put at back.

● Dequeue: Remove first element.
● If a distance decreases from d + 1 to d, move that 

element to the front.

● All operations can be done in O(1) time.

distance d distance d + 1



  

Optimized Dijkstra's Algorithm

Theorem: In a graph where all edge costs
are 0 or 1, Dijkstra's algorithm runs in
time O(m + n).

Proof Sketch: Use this new queue structure to
store the nodes.  Dijkstra's algorithm takes
time O(m + n) plus the time required for
O(m + n) queue operations, which with the
new structure run in time O(1) each.  Thus
the runtime is O(m + n). ■

Corollary: The minimum-turns path 
problem can be solved in linear time.



  

Why All This Matters

● Look at the structure of our solution:
● Show how to solve the new problem (minimizing 

turns) using a solver for an existing algorithm.
● Argue correctness using the fact that the 

existing algorithm is correct.
● Argue runtime using the runtime of the existing 

algorithm.
● (Optional) Speed up the algorithm by showing 

how to faithfully simulate the original algorithm 
in less time.

● Many problems can be solved this way.



  

Next Time

● Divide-and-Conquer Algorithms
● Mergesort
● Solving Recurrences
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