

Fundamental Graph Algorithms
Part Three

Outline for Today

● Topological Sorting, Part II
● How can we quickly compute a topological ordering

on a DAG?

● Connected Components
● How do we find the “pieces” of an undirected graph?

● Strongly Connected Components
● What are the “pieces” of a directed graph?

● Kosaraju's Algorithm, Part I
● How do we find strongly connected components?

A Correction from Last Time

Theorem: When DFS(s) returns, the set of
nodes colored green by that call is
precisely the set of nodes reachable from
s along a path consisting purely of gray
nodes (we'll call this a gray path).

Theorem: When DFS(s) returns, the set of
nodes colored green by that call is
precisely the set of nodes reachable from
s along a path consisting purely of gray
nodes (we'll call this a gray path).

Lemma: Suppose that when DFS(s) is called, v is gray
and there is a path from s to v consisting solely of
gray nodes. Then v is green when DFS(s) returns.

Proof: DFS(s) returns only after all recursive DFS calls have
returned. DFS(v) always colors v green, so if v was gray
when DFS(s) was invoked, the only way v wouldn't be green
when DFS(s) ends is if DFS(v) is never called.

Suppose there is a node v where a gray s-v path P exists
when DFS(s) is called where DFS(v) is never invoked. Let x
be the first node on path P where DFS(x) wasn't invoked. x
can't be s, since DFS(s) is explicitly invoked, so x is preceded
by some node y in P. Consider these cases:

Case 1: DFS(y) is never invoked. But then x is not the first
node on path P where DFS was not called.

Case 2: DFS(y) was invoked. At this time, x would have
been gray, so DFS(y) would have called DFS(x).

In both cases, we reach a contradiction, so our assumption
must have been wrong. Thus all gray nodes reachable by a
gray path must been green when DFS(x) returns. ■

Lemma: Suppose that v was gray when DFS(s)
was called and is green when DFS(s) ends. Then
there is a path from s to v consisting purely of
gray nodes.

Proof: Since v is green when DFS(s) returns and was
gray when DFS(s) was called, there must have been a
path P = s, x₁, x₂, … , xₙ, v from s to v formed by the
recursive calls to DFS. This means that x₁, x₂, …, xₙ
must have been gray when DFS(s) was called, since
otherwise these calls would not have been made.
Consequently, P is a path consisting purely of gray
nodes from s to v, as required. ■

Back to Topological Sorting...

Topological Sorting

● Goal: Order the nodes of a DAG G such
that if (u, v) is an edge in G, then u
appears before v.

● One simple algorithm is as follows:
repeatedly find a node with no incoming
edges, remove it, and add it to the result.

● As mentioned in Kleinberg and Tardos,
can be made to run in Θ(m + n) time.

A Completely Different Algorithm

DFS on a DAG

A

B C D

E F

E F C D B A

DFS on a DAG

A

B C D

E F

A B D C F E

DFS on a DAG, Take II

A B

C D

E F

E A F C D B

DFS on a DAG, Take II

A B

C D

E F

EAFCDB

DFS on a DAG, Take III

A B

C D E

F

DFS on a DAG, Take III

A B

C

F

F

E

E

D

D

C A B

DFS on a DAG, Take III

A B

C

F

ED

FEDCAB

procedure dfsTopoSort(DAG G):
 for each node v in G:
 color v gray

 let result be an empty list.
 for each node v in G:
 if v is gray:
 run DFS starting from v,
 appending each node to result as
 soon as it is colored green.

 return reverse of result

procedure dfsTopoSort(DAG G):
 for each node v in G:
 color v gray

 let result be an empty list.
 for each node v in G:
 if v is gray:
 run DFS starting from v,
 appending each node to result as
 soon as it is colored green.

 return reverse of result

 Question 1: How do we know this actually
produces a topological sort?

 Question 2: How efficiently does this
produce a topological sort?

Observation I

Lemma: Every node appears in the
generated list exactly once.

Proof: Nodes are added to the generated
list only when they turn green, which
can happen at most once. Moreover,
every node has DFS called on it at
least once, either by a recursive call or
when the top-level loop calls it. ■

Observation II
Lemma: If there is an edge (u, v) in G, then v will

be colored green before u is colored green.

Proof: Note that there cannot be a path from v to u, since
otherwise there would be a cycle in G (follow the path
from v to u, then cross (u, v) to close the cycle).

Since DFS is called on each node in G, either DFS(u) is
called before DFS(v) or vice-versa. So suppose DFS(v)
is called before DFS(u). Since there is no path from v
to u, when DFS(v) terminates v will be green and u will
not be. Thus v becomes green before u.

Otherwise, DFS(u) is called before DFS(v). Since u and
v are gray at this time, there is a path from u to v of
gray nodes. Thus when DFS(u) terminates, v will be
green. Since the last step of DFS(u) turns u green, this
means that v became green before u. ■

 Question 1: How do we know this actually
produces a topological sort?

 Question 2: How efficiently does this
produce a topological sort?

DFS Topological Sort

● The time complexity of this algorithm is as follows:
● Coloring all nodes gray can be done in Θ(n) time.
● DFS will be invoked exactly once on each node,

either by a top-level call in the loop or by a recursive
call. This means each node and edge will be visited
at most once by DFS. This step takes Θ(m + n)
time.

● The top-level loop visiting nodes requires Θ(n) work.
● Reversing a list of n elements requires Θ(n) work.
● Total work required: Θ(m + n)

● Asymptotically the same as our previous algorithm,
but a lot easier to code up!

Connected Components

Connected Components

● Let G = (V, E) be an undirected graph.
● Two nodes u, v ∈ V are called connected iff

there is a path from u to v.
● A connected component of G is a set C ⊆ V

with the following properties:
● C is nonempty.
● For any u, v ∈ C: u and v are connected.
● For any u ∈ C, v ∈ V – C: u and v are not

connected.

Properties of Connected Components

● All of the following are true; it's an
interesting exercise to prove them:
● Any two connected components C₁ and C₂

are either equal or disjoint.
● Every node in a graph belongs to exactly one

connected component.
● The connected components of a graph form a

partition of the nodes of the graph.

Finding Connected Components

● Recall: When DFS(u) terminates, u and all gray
nodes reachable from u by gray paths will have
turned green and no other nodes will have been
colored green.

● Suppose that we call DFS in a connected
component where we have previously not called
DFS before.

● All nodes in the connected component are
reachable from one another, and all nodes are
gray.

● Therefore, DFS terminates having colored all
nodes in that connected component green and
coloring no other nodes green.

procedure findCCs(graph G):
 for each node v:
 color v gray

 let cc be an array of size n

 let index = 0
 for each node in v:
 if v is gray:
 run DFS(v), setting cc[u] = index
 whenever a node u is colored green
 index = index + 1

 return cc

procedure findCCs(graph G):
 for each node v:
 color v gray

 let cc be an array of size n

 let index = 0
 for each node in v:
 if v is gray:
 run DFS(v), setting cc[u] = index
 whenever a node u is colored green
 index = index + 1

 return cc

Analyzing the Runtime

● We do Θ(n) work initially coloring each
node gray.

● Across all iterations of DFS, each node is
visited exactly once and each edge is
visited exactly once. This takes Θ(m + n)
time.

● Consequently, total work is Θ(m + n).
● Could we also use BFS here? If so, what

would the runtime be?

Strongly Connected Components

Directed Connectivity

● In a directed graph G, we say v is reachable
from u iff there is a path from u to v.

● In an undirected graph, if there is a path from
u to v, there is also a path from v to u.

● In a directed graph, it is possible for there v to
be reachable from u, but for u not to be
reachable from v.

● How would we generalize the idea of a
connected component to a directed graph?

Strongly Connected Components

● Let G = (V, E) be a directed graph.
● Two nodes u, v ∈ V are called strongly

connected iff v is reachable from u and u
is reachable from v.

● A strongly connected component (or
SCC) of G is a set C ⊆ V such that
● C is not empty.
● For any u, v ∈ C: u and v are strongly

connected.
● For any u ∈ C and v ∈ V – C: u and v are not

strongly connected.

Properties of SCCs

● The following properties of SCCs are
true; it's a good exercise to prove them.
● Two SCCs C₁ and C₂ are either equal or

disjoint.
● Every node belongs to exactly one SCC.
● The SCCs of a graph form a partition of the

nodes of the graph.

Finding SCCs

● Every graph must have a collection of
SCCs.

● In the undirected case, it was easy to find
all the connected components of a graph
by using DFS or BFS.

● Will this find all SCCs in a directed graph?
● Question: How can we determine all of

the strongly connected components of a
directed graph G?

A Beautiful Observation

Condensation Graphs

● The condensation of a directed graph G
is the directed graph GSCC whose nodes
are the SCCs of G and whose edges are
defined as follows:

(C₁, C₂) is an edge in GSCC iff
∃u ∈ C₁, v ∈ C₂. (u, v) is an edge in G.

● In other words, if there is an edge in G
from any node in C₁ to any node in C₂,
there is an edge in GSCC from C₁ to C₂.

An Amazing Result

● Theorem: For any directed graph G, the
condensation GSCC of G is a DAG.

● Proof Sketch:

An Amazing Result

● Theorem: For any directed graph G, the
condensation GSCC of G is a DAG.

● Proof Sketch:

An Amazing Result

● Theorem: For any directed graph G, the
condensation GSCC of G is a DAG.

● Proof Sketch:

SCCs and DAGs

● We now see that there is a close
connection between SCCs and DAGs:
the SCCs of a graph form a DAG.

● Intuitively, you can think of a graph as a
two-layer structure:
● At a high level, a graph is a DAG of SCCs

showing the top-level connections between
clusters of nodes.

● At a lower level, you can see the connections
between nodes in the same SCC.

SCCs and DAGs

● Now that we have found a connection
between SCCs and DAGs, can we adapt any
of our algorithms on DAGs to find SCCs?

● Right now, our main operation on DAGs is
topological sort, and we have two
algorithms we can use:
● Repeatedly removing a source node. That won't

help us here, since we can't easily tell if a node
is in a source SCC.

● Running DFS and reversing the result. So what
happens if we try that out?

C D

A

F G

KJ

H I

E

B

A C K J G F D B I H E

C D

A

F G

KJ

H I

E

B

A C K J G F D B I H E

A C K G B

C D

A

F G

KJ

H I

E

B

J F D I H E

A C K G B

C D

A

F G

KJ

H I

E

B

J F D I H E
E H I D F J

What's Going On?

● It looks like if we look purely at the last node from
each SCC to turn green, we get a topological sort
of GSCC in reverse.

● Here, each SCC is represented by a single node.
● This helps us get a better sense for how the SCCs

are interlinked!

● However, we still don't have a reliable way to
determine which node is the last node in each SCC
to turn green...

● For starters, let's convince ourselves that this isn't
a coincidence.

Some Notation

● We'll denote by f(v) the time at which node v is
colored green by the algorithm.
● f(u) < f(v) means “node u was colored green

before node v was colored green.”
● Note that every node is eventually colored

green, so this notation is well-defined.
● Let C be an SCC. Define

f(C) = maxv ∈ C f(v)

● In other words, f(C) is the time at which the
last node in C was colored green.

Lemma: If s is the first node in SCC C visited
by DFS, then f(C) = f(s).

Proof: At the time DFS(s) is called, since s is the
first node in C visited by DFS, all nodes in C are
gray. Since C is an SCC, every node v ∈ C is
reachable from s. This means there is a gray
path from s to v for every v ∈ C. Thus every
node v ∈ C will be green when DFS(s) returns.

Since the last step of DFS(s) is to color s green,
this means that s is colored green only after all
other nodes in C are colored green. Therefore,
f(s) ≥ f(v) for any v ∈ C. Since by definition
f(C) = maxv ∈ C f(v), this means f(C) = f(s). ■

Theorem: Suppose we run DFS starting at each node in
G. Let C₁ and C₂ be SCCs in G. If (u, v) is an edge in
G where u ∈ C₁ and v ∈ C₂, then f(C₂) < f(C₁).

Proof: Let x₁ and x₂ be the first nodes DFS visits in C₁ and C₂,
respectively. By our lemma, f(C₁) = f(x₁) and f(C₂) = f(x₂).
Therefore, we will show f(x₂) < f(x₁).

Note x₂ is reachable from x₁, since we can go from x₁ to u,
across (u, v), and from v to x₂. However, x₁ is not reachable
from x₂, since then x₁ and x₂ would be strongly connected,
contradicting that they belong to different SCCs.

Now, suppose DFS(x₂) is called before DFS(x₁). Since x₁ is
not reachable from x₂, x₁ will not be green when DFS(x₂)
returns. Thus x₁ becomes green after x₂, so f(x₂) < f(x₁).

Otherwise, DFS(x₁) was called before DFS(x₂). When
DFS(x₁) is called, all nodes in C₁ and C₂ are gray, so there
is a gray path from x₁ to x₂. Thus when DFS(x₁) returns, x₂
will be green. Since DFS(x₁) colors x₁ green just before it
returns, this means that x₁ was colored green after x₂, so
f(x₂) < f(x₁). ■

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63

