

Fundamental Graph Algorithms
Part II

Outline for Today

● Dijkstra's Algorithm
● An algorithm for finding shortest paths in more

realistic settings

● Depth-First Search
● A different graph search algorithm.

● Directed Acyclic Graphs
● Graphs for representing prerequisites.

● (ITA) Topological Sorting
● Algorithms for ordering dependencies.

Recap from Last Time

Breadth-First Search

● Given an arbitrary graph G = (V, E) and a
starting node s ∈ V, breadth-first search finds
shortest paths from s to each reachable node v.

● When implemented using an adjacency list, runs
in O(m + n) time, which we defined to be linear
time on a graph.

● One correctness proof worked in terms of
“layers:” the algorithm finds all nodes at
distance 0, 1, 2, … in order.

A Second Intuition for BFS

Breadth-First Search

G

H J

F

J

N M

I L

P O

K

E

I H

D B A C

M

Q P

L O

S R

N K

Breadth-First Search

G

H J

F

M

Q P

L O

S R

N

E

I H

D B C A

K

Breadth-First Search

G

H J

F

J

N M

I L

P O

K

E

I H

D B C A 0

K ∞ M

Q P

L O

S R

N K

Breadth-First Search

G ∞

H ∞J ∞

F ∞

J ∞

N ∞M ∞

I ∞ L ∞

P ∞O ∞

K ∞

E ∞

I ∞H ∞

D ∞B ∞ C ∞A 0

K ∞ M ∞

Q ∞P ∞

L ∞ O ∞

S ∞R ∞

N ∞K ∞

Breadth-First Search

G ∞

H ∞J ∞

F ∞

J ∞

N ∞M ∞

I ∞ L ∞

P ∞O ∞

K ∞

E ∞

I ∞H ∞

D ∞B ∞ C ∞A 0

K ∞ M ∞

Q ∞P ∞

L ∞ O ∞

S ∞R ∞

N ∞K ∞

Breadth-First Search

H ∞J ∞

F ∞

J ∞

N ∞M ∞

I ∞ L ∞

P ∞O ∞

K ∞

E ∞

I ∞H ∞

D ∞C ∞A 0

K ∞ M ∞

Q ∞P ∞

L ∞ O ∞

S ∞R ∞

N ∞K ∞

G ∞

B ∞

Breadth-First Search

H ∞J ∞

F ∞

J ∞

N ∞M ∞

I ∞ L ∞

P ∞O ∞

K ∞

E ∞

I ∞H ∞

D ∞C ∞A 0

K ∞ M ∞

Q ∞P ∞

L ∞ O ∞

S ∞R ∞

N ∞K ∞

G 1

B 1

Breadth-First Search

H ∞J ∞

F ∞

J ∞

N ∞M ∞

I ∞ L ∞

P ∞O ∞

K ∞

E ∞

I ∞H ∞

D ∞C ∞A 0

K ∞ M ∞

Q ∞P ∞

L ∞ O ∞

S ∞R ∞

N ∞K ∞

G 1

B 1

Breadth-First Search

H ∞ J ∞

N ∞M ∞

I ∞ L ∞

P ∞O ∞

K ∞

E ∞

I ∞

D ∞C ∞A 0

K ∞ M ∞

Q ∞P ∞

L ∞ O ∞

S ∞R ∞

N ∞

G 1

B 1

J ∞

F ∞

K ∞

H ∞

Breadth-First Search

H ∞ J ∞

N ∞M ∞

I ∞ L ∞

P ∞O ∞

K ∞

E ∞

I ∞

D ∞C ∞A 0

K ∞ M ∞

Q ∞P ∞

L ∞ O ∞

S ∞R ∞

N ∞

G 1

B 1

H 2

J 2

F 2

K 2

Breadth-First Search

H ∞ J ∞

N ∞M ∞

I ∞ L ∞

P ∞O ∞

K ∞

E ∞

I ∞

D ∞A 0

K ∞ M ∞

Q ∞P ∞

O ∞

S ∞R ∞

N ∞

G 1

B 1

H 2

J 2

F 2

K 2

C ∞

L ∞

Breadth-First Search

H ∞ J ∞

N ∞M ∞

I ∞ L ∞

P ∞O ∞

K ∞

E ∞

I ∞

D ∞A 0

K ∞ M ∞

Q ∞P ∞

O ∞

S ∞R ∞

N ∞

G 1

B 1

H 2

J 2

F 2

K 2

C 2

L 2

Breadth-First Search

H ∞ J ∞

N ∞M ∞

I ∞ L ∞

P ∞O ∞

K ∞

E ∞

I ∞

D ∞A 0

K ∞ M ∞

Q ∞P ∞

O ∞

S ∞R ∞

N ∞

G 1

B 1

H 2

J 2

F 2

K 2

C 2

L 2

Breadth-First Search

H ∞ J ∞

N ∞M ∞

I ∞ L ∞

P ∞O ∞

K ∞

E ∞D ∞A 0

K ∞ M ∞

Q ∞P ∞ S ∞R ∞

G 1

B 1

H 2

J 2

F 2

K 2

C 2

L 2

I ∞

O ∞N ∞

Breadth-First Search

H ∞ J ∞

N ∞M ∞

I ∞ L ∞

P ∞O ∞

K ∞

E ∞D ∞A 0

K ∞ M ∞

Q ∞P ∞ S ∞R ∞

G 1

B 1

H 2

J 2

F 2

K 2

C 2

L 2

I 3

O 3N 3

A Second Intuition

● At each point in the execution of BFS, a node v is either

● green, and we have the shortest path to v;

● yellow, and it is connected to some green node; or

● gray, and v is undiscovered.

● Each iteration, we pick a yellow node with minimal distance
from the start node and color it green. So what is the cost
of the lowest-cost yellow node?

● If v is yellow, it is connected to a green node u by an edge.

● The cost of getting from s to v is then d(s, u) + 1.

● BFS works by picking the yellow node v minimizing

d(s, u) + 1

where (u, v) is an edge and u is green.

0

3
3

3

33

2

Pick yellow node v minimizing d(s, u) + 1,
where (u, v) is an edge and u is green.

s

0

3
3

3

33

2

Pick yellow node v minimizing d(s, u) + 1,
where (u, v) is an edge and u is green.

s
u

v

0

3
3

3

33

2

Pick yellow node v minimizing d(s, u) + 1,
where (u, v) is an edge and u is green.

s
u

v

0

3
3

3

33

2

Pick yellow node v minimizing d(s, u) + 1,
where (u, v) is an edge and u is green.

s
u

v

0

3
3

3

33

2

Pick yellow node v minimizing d(s, u) + 1,
where (u, v) is an edge and u is green.

s
u

v

0

3
3

3

33

2

Pick yellow node v minimizing d(s, u) + 1,
where (u, v) is an edge and u is green.

s
u

v

0

3
3

3

33

2

Pick yellow node v minimizing d(s, u) + 1,
where (u, v) is an edge and u is green.

s
u

v

This red path can't
possibly be better
than the blue path

we've found, since it
takes a suboptimal

path out of the circle!

This red path can't
possibly be better
than the blue path

we've found, since it
takes a suboptimal

path out of the circle!

0

3
3

3

33

2

Pick yellow node v minimizing d(s, u) + 1,
where (u, v) is an edge and u is green.

s

0

3
3

3

33

2

Pick yellow node v minimizing d(s, u) + 1,
where (u, v) is an edge and u is green.

s

0

3
3

3

33

2

Pick yellow node v minimizing d(s, u) + 1,
where (u, v) is an edge and u is green.

s

0

3
3

3

33

2

Pick yellow node v minimizing d(s, u) + 1,
where (u, v) is an edge and u is green.

s

S

0

3
3

3

33

2

Pick node v ∉ S minimizing d(s, u) + 1,
where (u, v) is an edge and u ∈ S

s

S

Lemma: Suppose we have shortest paths computed for nodes S ⊆ V,
where s ∈ S. Consider a node v where (u, v) ∈ E, u ∈ S, and the
quantity d(s, u) + 1 is minimized. Then d(s, v) = d(s, u) + 1.

Proof: There is a path to v of cost d(s, u) + 1: follow the shortest
path to u (which has cost d(s, u)), then follow one more edge to
v for total cost d(s, u) + 1.

Now suppose for the sake of contradiction that there is a shorter
path P to v. This path must start in S (since s ∈ S) and leave S
(since v ∉ S). So consider when P leaves S. When this happens,
P must go from s to some node x ∈ S, cross an edge (x, y) to
some node y, then continue from y to v. This means that |P| is at
least d(s, x) + 1, since the path goes from s to x and then follows
at least one more edge.

Since v was picked to minimize d(s, u) + 1 for any choice of
u ∈ S adjacent to an edge (u, v), we know

d(s, u) + 1 ≤ d(s, x) + 1 ≤ |P|

contradicting the fact that |P| < d(s, u) + 1. We have reached a
contradiction, so our assumption was wrong and no shorter path
exists.

Since there is a path of length d(s, u) + 1 from s to v and no
shorter path, this means that d(s, v) = d(s, u) + 1. ■

Why These Two Proofs Matter

● The first proof of correctness (based on layers)
is based on our first observation: the nodes
visited in BFS radiate outward from the start
node in ascending order of distance.

● The second proof of correctness (based on
picking the lowest yellow node) is based on our
second observation: picking the lowest-cost
yellow node correctly computes a shortest
path.

● Interestingly, this second correctness proof can
be generalized to a larger setting...

Edges with Costs

● In many applications, edges have an associated
length (or cost, weight, etc.), denoted l(u, v).

● Assumption: Lengths are nonnegative. (We'll
revisit this later in the quarter.)

● Let's say that the length of a path P (denoted
l(P)) is the sum of all the edge lengths in the
path P.

● Goal: find the shortest path from s to every
node in V, taking costs into account.

10 717 14

6

14

5

5 18 4

11 9 12

8 7 20

13

15

17

7 37 9 13

7

7

9

10 2

14

4

713

10 717 14

6

14

5

5 18 4

11 9 12

8 7 20

13

15

17

7 37 9 13

7

7

9

10 2

14

4

713

10 717 14

6

14

5

5 18 4

11 9 12

8 7 20

13

15

17

7 37 9 13

7

7

9

10 2

14

4

713

0

10 717 14

6

14

5

5 18 4

11 9 12

8 7 20

13

15

17

7 37 9 13

7

7

9

10 2

14

4

713

0

10 717 14

6

14

5

5 18 4

11 9 12

8 7 20

13

15

17

7 37 9 13

7

7

9

10 2

14

4

713

0 10

13

10 717 14

6

14

5

5 18 4

11 9 12

8 7 20

13

15

17

7 37 9 13

7

7

9

10 2

14

4

713

0 10

13

10 717 14

6

14

5

5 18 4

11 9 12

8 7 20

13

15

17

7 37 9 13

7

7

9

10 2

14

4

713

0 10

1713

27

10 717 14

6

14

5

5 18 4

11 9 12

8 7 20

13

15

17

7 37 9 13

7

7

9

10 2

14

4

713

0 10

1713

27

10 717 14

6

14

5

5 18 4

11 9 12

8 7 20

13

15

17

7 37 9 13

7

7

9

10 2

14

4

713

0 10

1713

27

28

10 717 14

6

14

5

5 18 4

11 9 12

8 7 20

13

15

17

7 37 9 13

7

7

9

10 2

14

4

713

0 10

1713

27

28

10 717 14

6

14

5

5 18 4

11 9 12

8 7 20

13

15

17

7 37 9 13

7

7

9

10 2

14

4

713

0 10

1713

27

22

28 27

10 717 14

6

14

5

5 18 4

11 9 12

8 7 20

13

15

17

7 37 9 13

7

7

9

10 2

14

4

713

0 10

1713

27

22

28 27

10 717 14

6

14

5

5 18 4

11 9 12

8 7 20

13

15

17

7 37 9 13

7

7

9

10 2

14

4

713

0 10

1713

25

4022

28 27 29

10 717 14

6

14

5

5 18 4

11 9 12

8 7 20

13

15

17

7 37 9 13

7

7

9

10 2

14

4

713

0 10

1713

25

4022

28 27 29

10 717 14

6

14

5

5 18 4

11 9 12

8 7 20

13

15

17

7 37 9 13

7

7

9

10 2

14

4

713

0 10

1713

25 32

4022

28 27 29

10 717 14

6

14

5

5 18 4

11 9 12

8 7 20

13

15

17

7 37 9 13

7

7

9

10 2

14

4

713

0 10

1713

25 32

4022

28 27 29

10 717 14

6

14

5

5 18 4

11 9 12

8 7 20

13

15

17

7 37 9 13

7

7

9

10 2

14

4

713

0 10

1713

25 32

4022

28 27

40

29

10 717 14

6

14

5

5 18 4

11 9 12

8 7 20

13

15

17

7 37 9 13

7

7

9

10 2

14

4

713

0 10

1713

25 32

4022

28 27

40

29

10 717 14

6

14

5

5 18 4

11 9 12

8 7 20

13

15

17

7 37 9 13

7

7

9

10 2

14

4

713

0 10

1713

25 32

4022

28 27

4045

29

10 717 14

6

14

5

5 18 4

11 9 12

8 7 20

13

15

17

7 37 9 13

7

7

9

10 2

14

4

713

0 10

1713

25 32

4022

28 27

40

29

45

10 717 14

6

14

5

5 18 4

11 9 12

8 7 20

13

15

17

7 37 9 13

7

7

9

10 2

14

4

713

0 10

1713

25 32

4022

28 27

40

29 36

3845

10 717 14

6

14

5

5 18 4

11 9 12

8 7 20

13

15

17

7 37 9 13

7

7

9

10 2

14

4

713

0 10

1713

25 32

4022

28 27

40

29 36

3845

10 717 14

6

14

5

5 18 4

11 9 12

8 7 20

13

15

17

7 37 9 13

7

7

9

10 2

14

4

713

0 10

1713

25 32

4022

28 27

40

29 36

38

46

45

10 717 14

6

14

5

5 18 4

11 9 12

8 7 20

13

15

17

7 37 9 13

7

7

9

10 2

14

4

713

0 10

1713

25 32

4022

28 27

40

29 36

38

46

45

10 717 14

6

14

5

5 18 4

11 9 12

8 7 20

13

15

17

7 37 9 13

7

7

9

10 2

14

4

713

0 10

1713

25 32

3822

28 27

40

29 36

5038

46

56

45

10 717 14

6

14

5

5 18 4

11 9 12

8 7 20

13

15

17

7 37 9 13

7

7

9

10 2

14

4

713

0 10

1713

25 32

3822

28 27

40

29 36

5038

46

56

45

10 717 14

6

14

5

5 18 4

11 9 12

8 7 20

13

15

17

7 37 9 13

7

7

9

10 2

14

4

713

0 10

1713

25 32

3822

28 27

40

29 36

4738

46

56

45

10 717 14

6

14

5

5 18 4

11 9 12

8 7 20

13

15

17

7 37 9 13

7

7

9

10 2

14

4

713

0 10

1713

25 32

3822

28 27

40

29 36

4738

46

56

45

10 717 14

6

14

5

5 18 4

11 9 12

8 7 20

13

15

17

7 37 9 13

7

7

9

10 2

14

4

713

0 10

1713

25 32

3822

28 27

40

29 36

4738

46

42

56

45

10 717 14

6

14

5

5 18 4

11 9 12

8 7 20

13

15

17

7 37 9 13

7

7

9

10 2

14

4

713

0 10

1713

25 32

3822

28 27

40

29 36

4738

46

42

56

45

10 717 14

6

14

5

5 18 4

11 9 12

8 7 20

13

15

17

7 37 9 13

7

7

9

10 2

14

4

713

0 10

1713

25 32

3822

28 27

40

29 36

4738

46

42

56

45

10 717 14

6

14

5

5 18 4

11 9 12

8 7 20

13

15

17

7 37 9 13

7

7

9

10 2

14

4

713

0 10

1713

25 32

3822

28 27

40

29 36

4738

46

42

56

45

10 717 14

6

14

5

5 18 4

11 9 12

8 7 20

13

15

17

7 37 9 13

7

7

9

10 2

14

4

713

0 10

1713

25 32

3822

28 27

40

29 36

4738

46

42

46

45

10 717 14

6

14

5

5 18 4

11 9 12

8 7 20

13

15

17

7 37 9 13

7

7

9

10 2

14

4

713

0 10

1713

25 32

3822

28 27

40

29 36

4738

46

42

46

45

10 717 14

6

14

5

5 18 4

11 9 12

8 7 20

13

15

17

7 37 9 13

7

7

9

10 2

14

4

713

0 10

1713

25 32

3822

28 27

40

29 36

4738

46

42

46

45

10 717 14

6

14

5

5 18 4

11 9 12

8 7 20

13

15

17

7 37 9 13

7

7

9

10 2

14

4

713

0 10

1713

25 32

3822

28 27

40

29 36

4738

46

42

46

45

10 717 14

6

14

5

5 18 4

11 9 12

8 7 20

13

15

17

7 37 9 13

7

7

9

10 2

14

4

713

0 10

1713

25 32

3822

28 27

40

29 36

4738

46

42

46

5945

10 717 14

6

14

5

5 18 4

11 9 12

8 7 20

13

15

17

7 37 9 13

7

7

9

10 2

14

4

713

0 10

1713

25 32

3822

28 27

40

29 36

4738

46

42

46

5945

10 717 14

6

14

5

5 18 4

11 9 12

8 7 20

13

15

17

7 37 9 13

7

7

9

10 2

14

4

713

0 10

1713

25 32

3822

28 27

40

29 36

4738

46

42

46

5345

10 717 14

6

14

5

5 18 4

11 9 12

8 7 20

13

15

17

7 37 9 13

7

7

9

10 2

14

4

713

0 10

1713

25 32

3822

28 27

40

29 36

4738

46

42

46

5345

10 717 14

6

14

5

5 18 4

11 9 12

8 7 20

13

15

17

7 37 9 13

7

7

9

10 2

14

4

713

0 10

1713

25 32

3822

28 27

40

29 36

4738

46

42

46

5345

10 717 14

6

14

5

5 18 4

11 9 12

8 7 20

13

15

17

7 37 9 13

7

7

9

10 2

14

4

713

0 10

1713

25 32

3822

28 27

40

29 36

4738

46

42

46

5345

The black edges form a
shortest-path tree,

which traces the shortest
paths from each node to

the source node.

The black edges form a
shortest-path tree,

which traces the shortest
paths from each node to

the source node.

 procedure dijkstrasAlgorithm(s, G):
 let q be a new queue
 for each v in V:
 dist[v] = ∞

 dist[s] = 0
 enqueue(s, q)

 while q is not empty:
 let v be a node in q minimizing dist[v]
 remove(v, q)

 for each node u connected to v:
 if dist[u] > dist[v] + l(u, v):
 dist[u] = dist[v] + l(u, v)
 if u is not enqueued into q:
 enqueue(u, q)

 procedure dijkstrasAlgorithm(s, G):
 let q be a new queue
 for each v in V:
 dist[v] = ∞

 dist[s] = 0
 enqueue(s, q)

 while q is not empty:
 let v be a node in q minimizing dist[v]
 remove(v, q)

 for each node u connected to v:
 if dist[u] > dist[v] + l(u, v):
 dist[u] = dist[v] + l(u, v)
 if u is not enqueued into q:
 enqueue(u, q)

Dijkstra's Algorithm

● Assuming nonnegative edge lengths, finds the
shortest path from s to each node in G.

● Correctness proof sketch is based on the second
argument for breadth-first search:

● Always picks the node v minimizing d(s, u) + l(u, v)
for yellow v and green u.

● If a shorter path P exists to v, it must leave the set
of green nodes through some edge (x, y).

● But then l(P) is at least d(s, x) + l(x, y), which is at
least d(s, u) + l(u, v).

● So the “shorter” path costs at least as much as the
path we found.

 procedure dijkstrasAlgorithm(s, G):
 let q be a new queue
 for each v in V:
 dist[v] = ∞

 dist[s] = 0
 enqueue(s, q)

 while q is not empty:
 let v be a node in q minimizing dist[v]
 remove(v, q)

 for each node u connected to v:
 if dist[u] > dist[v] + l(u, v):
 dist[u] = dist[v] + l(u, v)
 if u is not enqueued into q:
 enqueue(u, q)

 procedure dijkstrasAlgorithm(s, G):
 let q be a new queue
 for each v in V:
 dist[v] = ∞

 dist[s] = 0
 enqueue(s, q)

 while q is not empty:
 let v be a node in q minimizing dist[v]
 remove(v, q)

 for each node u connected to v:
 if dist[u] > dist[v] + l(u, v):
 dist[u] = dist[v] + l(u, v)
 if u is not enqueued into q:
 enqueue(u, q)

 procedure dijkstrasAlgorithm(s, G):
 let q be a new queue
 for each v in V:
 dist[v] = ∞

 dist[s] = 0
 enqueue(s, q)

 while q is not empty:
 let v be a node in q minimizing dist[v]
 remove(v, q)

 for each node u connected to v:
 if dist[u] > dist[v] + l(u, v):
 dist[u] = dist[v] + l(u, v)
 if u is not enqueued into q:
 enqueue(u, q)

 procedure dijkstrasAlgorithm(s, G):
 let q be a new queue
 for each v in V:
 dist[v] = ∞

 dist[s] = 0
 enqueue(s, q)

 while q is not empty:
 let v be a node in q minimizing dist[v]
 remove(v, q)

 for each node u connected to v:
 if dist[u] > dist[v] + l(u, v):
 dist[u] = dist[v] + l(u, v)
 if u is not enqueued into q:
 enqueue(u, q)

 procedure dijkstrasAlgorithm(s, G):
 let q be a new queue
 for each v in V:
 dist[v] = ∞

 dist[s] = 0
 enqueue(s, q)

 while q is not empty:
 let v be a node in q minimizing dist[v]
 remove(v, q)

 for each node u connected to v:
 if dist[u] > dist[v] + l(u, v):
 dist[u] = dist[v] + l(u, v)
 if u is not enqueued into q:
 enqueue(u, q)

 procedure dijkstrasAlgorithm(s, G):
 let q be a new queue
 for each v in V:
 dist[v] = ∞

 dist[s] = 0
 enqueue(s, q)

 while q is not empty:
 let v be a node in q minimizing dist[v]
 remove(v, q)

 for each node u connected to v:
 if dist[u] > dist[v] + l(u, v):
 dist[u] = dist[v] + l(u, v)
 if u is not enqueued into q:
 enqueue(u, q)

O(m + n)

 procedure dijkstrasAlgorithm(s, G):
 let q be a new queue
 for each v in V:
 dist[v] = ∞

 dist[s] = 0
 enqueue(s, q)

 while q is not empty:
 let v be a node in q minimizing dist[v]
 remove(v, q)

 for each node u connected to v:
 if dist[u] > dist[v] + l(u, v):
 dist[u] = dist[v] + l(u, v)
 if u is not enqueued into q:
 enqueue(u, q)

 procedure dijkstrasAlgorithm(s, G):
 let q be a new queue
 for each v in V:
 dist[v] = ∞

 dist[s] = 0
 enqueue(s, q)

 while q is not empty:
 let v be a node in q minimizing dist[v]
 remove(v, q)

 for each node u connected to v:
 if dist[u] > dist[v] + l(u, v):
 dist[u] = dist[v] + l(u, v)
 if u is not enqueued into q:
 enqueue(u, q)

 procedure dijkstrasAlgorithm(s, G):
 let q be a new queue
 for each v in V:
 dist[v] = ∞

 dist[s] = 0
 enqueue(s, q)

 while q is not empty:
 let v be a node in q minimizing dist[v]
 remove(v, q)

 for each node u connected to v:
 if dist[u] > dist[v] + l(u, v):
 dist[u] = dist[v] + l(u, v)
 if u is not enqueued into q:
 enqueue(u, q)

 procedure dijkstrasAlgorithm(s, G):
 let q be a new queue
 for each v in V:
 dist[v] = ∞

 dist[s] = 0
 enqueue(s, q)

 while q is not empty:
 let v be a node in q minimizing dist[v]
 remove(v, q)

 for each node u connected to v:
 if dist[u] > dist[v] + l(u, v):
 dist[u] = dist[v] + l(u, v)
 if u is not enqueued into q:
 enqueue(u, q)

O(n2)

Dijkstra Runtime

● Using a standard implementation of a queue, Dijkstra's
algorithm runs in time O(n2).

● O(n + m) time processing nodes and edges, plus
O(n2) time finding the lowest-cost node.

● Since m = O(n2), O(n + m + n2) = O(n2).
● Using a slightly fancier data structure (a binary heap),

can be made to run in time O(m log n).

● Is this necessarily more efficient?

● More on how to do this later this quarter.

● Using a much fancier data structure (the Fibonacci
heap), can be made to run in time
O(m + n log n).

● Take CS166 for details!

Shortest Path Algorithms

● If all edges have the same weight, can use
breadth-first search to find shortest paths.
● Takes time O(m + n).

● If edges have nonnegative weight, can use
Dijkstra's algorithm.
● Takes time O(n2), or less using more complex

data structures.

● What about the case where edges can have
negative weight?
● More on that later in the quarter...

Depth-First Search

BFS and DFS

● Last time, we saw the breadth-first search
(BFS) algorithm, which explored a graph
and found shortest paths.

● The algorithm explored outward in all
directions uniformly.

● We will now see depth-first search (DFS),
an algorithm that explores out in one
direction, backing up when necessary.

Depth-First Search

Depth-First Search

Depth-First Search

Depth-First Search

Depth-First Search

Depth-First Search

Depth-First Search

Depth-First Search

Depth-First Search

Depth-First Search

Depth-First Search

Depth-First Search

Depth-First Search

Depth-First Search

Depth-First Search

Depth-First Search

Depth-First Search

Depth-First Search

Depth-First Search

Depth-First Search

Depth-First Search

Depth-First Search

Depth-First Search

Depth-First Search

Depth-First Search

Depth-First Search

Depth-First Search

Depth-First Search

Depth-First Search

Depth-First Search

Depth-First Search

Depth-First Search

Depth-First Search

Depth-First Search

Depth-First Search

Depth-First Search

Depth-First Search

Depth-First Search

Depth-First Search

Depth-First Search

Depth-First Search

Depth-First Search

Depth-First Search

Depth-First Search

Depth-First Search

Depth-First Search

Depth-First Search

Depth-First Search

Depth-First Search

Depth-First Search

Depth-First Search

Depth-First Search

Depth-First Search

Depth-First Search

Depth-First Search

Depth-First Search

These black edges for a
depth-first search

tree, which traces paths
from the root to each

node in the graph.

These black edges for a
depth-first search

tree, which traces paths
from the root to each

node in the graph.

Depth-First Search, Again

Depth-First Search, Again

Depth-First Search, Again

Depth-First Search, Again

Depth-First Search, Again

Depth-First Search, Again

Depth-First Search, Again

Depth-First Search, Again

Depth-First Search, Again

Depth-First Search, Again

Depth-First Search, Again

Depth-First Search, Again

Depth-First Search, Again

Depth-First Search, Again

Depth-First Search, Again

Depth-First Search, Again

Depth-First Search, Again

Depth-First Search, Again

Depth-First Search, Again

Depth-First Search, Again

Depth-First Search, Again

Depth-First Search, Again

Depth-First Search, Again

Depth-First Search, Again

Depth-First Search, Again

Depth-First Search, Again

Depth-First Search, Again

Depth-First Search, Again

Depth-First Search, Again

Depth-First Search, Again

Depth-First Search, Again

procedure DFS(node v):
 color v yellow.

 for each neighbor u of v:
 if u is gray:
 DFS(u)

 color v green

procedure doDFS(graph G, node s):
 for each node v in G:
 color v gray
 DFS(s)

procedure DFS(node v):
 color v yellow.

 for each neighbor u of v:
 if u is gray:
 DFS(u)

 color v green

procedure doDFS(graph G, node s):
 for each node v in G:
 color v gray
 DFS(s)

 Question 1: What nodes will DFS reach?

 Question 2: How efficiently will DFS reach
those nodes?

 Question 1: What nodes will DFS reach?

 Question 2: How efficiently will DFS reach
those nodes?

Theorem: When DFS(s) is called on node s, no nodes
reachable from s will be gray when DFS(s) and all
ancestor calls return.

Proof: By induction on the distance of nodes from s. As a
base case, consider all nodes at distance 0 from s. This
is just s itself. When DFS(s) is called, DFS(s) will color s
yellow, then green.

Suppose the claim holds for all nodes at distance n from s; we'll
prove it holds for all nodes at distance n + 1 from s. Take any
node v at distance n + 1 from s; v is adjacent to some node u at
distance n from s. By our IH, u will not be gray when DFS(s)
and its ancestor calls return, so DFS(u) must have been called at
some point. This call must have called DFS on each of u's gray
neighbors. If v was gray at this time, DFS(v) must have been
called on v, coloring v yellow and then green. Otherwise, v was
already not colored gray.

Since our choice of v was arbitrary, no nodes at distance n + 1
will be gray when DFS(s) and its ancestor calls return,
completing the induction. ■

Theorem: When DFS(s) is called on node s, no nodes
reachable from s will be gray when DFS(s) and all
ancestor calls return.

Proof: By induction on the distance of nodes from s. As a
base case, consider all nodes at distance 0 from s. This
is just s itself. When DFS(s) is called, DFS(s) will color s
yellow, then green.

Suppose the claim holds for all nodes at distance n from s; we'll
prove it holds for all nodes at distance n + 1 from s. Take any
node v at distance n + 1 from s; v is adjacent to some node u at
distance n from s. By our IH, u will not be gray when DFS(s)
and its ancestor calls return, so DFS(u) must have been called at
some point. This call must have called DFS on each of u's gray
neighbors. If v was gray at this time, DFS(v) must have been
called on v, coloring v yellow and then green. Otherwise, v was
already not colored gray.

Since our choice of v was arbitrary, no nodes at distance n + 1
will be gray when DFS(s) and its ancestor calls return,
completing the induction. ■

Theorem: When DFS(s) is called on node s, no nodes
reachable from s will be gray when DFS(s) and all
ancestor calls return.

Proof: By induction on the distance of nodes from s. As a
base case, consider all nodes at distance 0 from s. This
is just s itself. When DFS(s) is called, DFS(s) will color s
yellow, then green.

Suppose the claim holds for all nodes at distance n from s; we'll
prove it holds for all nodes at distance n + 1 from s. Take any
node v at distance n + 1 from s; v is adjacent to some node u at
distance n from s. By our IH, u will not be gray when DFS(s)
and its ancestor calls return, so DFS(u) must have been called at
some point. This call must have called DFS on each of u's gray
neighbors. If v was gray at this time, DFS(v) must have been
called on v, coloring v yellow and then green. Otherwise, v was
already not colored gray.

Since our choice of v was arbitrary, no nodes at distance n + 1
will be gray when DFS(s) and its ancestor calls return,
completing the induction. ■

Theorem: When DFS(s) is called on node s, no nodes
reachable from s will be gray when DFS(s) and all
ancestor calls return.

Proof: By induction on the distance of nodes from s. As a
base case, consider all nodes at distance 0 from s. This
is just s itself. When DFS(s) is called, DFS(s) will color s
yellow, then green.

Suppose the claim holds for all nodes at distance n from s; we'll
prove it holds for all nodes at distance n + 1 from s. Take any
node v at distance n + 1 from s; v is adjacent to some node u at
distance n from s. By our IH, u will not be gray when DFS(s)
and its ancestor calls return, so DFS(u) must have been called at
some point. This call must have called DFS on each of u's gray
neighbors. If v was gray at this time, DFS(v) must have been
called on v, coloring v yellow and then green. Otherwise, v was
already not colored gray.

Since our choice of v was arbitrary, no nodes at distance n + 1
will be gray when DFS(s) and its ancestor calls return,
completing the induction. ■

Theorem: When DFS(s) is called on node s, no nodes
reachable from s will be gray when DFS(s) and all
ancestor calls return.

Proof: By induction on the distance of nodes from s. As a
base case, consider all nodes at distance 0 from s. This
is just s itself. When DFS(s) is called, DFS(s) will color s
yellow, then green.

Suppose the claim holds for all nodes at distance n from s; we'll
prove it holds for all nodes at distance n + 1 from s. Take any
node v at distance n + 1 from s; v is adjacent to some node u at
distance n from s. By our IH, u will not be gray when DFS(s)
and its ancestor calls return, so DFS(u) must have been called at
some point. This call must have called DFS on each of u's gray
neighbors. If v was gray at this time, DFS(v) must have been
called on v, coloring v yellow and then green. Otherwise, v was
already not colored gray.

Since our choice of v was arbitrary, no nodes at distance n + 1
will be gray when DFS(s) and its ancestor calls return,
completing the induction. ■

Theorem: When DFS(s) is called on node s, no nodes
reachable from s will be gray when DFS(s) and all
ancestor calls return.

Proof: By induction on the distance of nodes from s. As a
base case, consider all nodes at distance 0 from s. This
is just s itself. When DFS(s) is called, DFS(s) will color s
yellow, then green.

Suppose the claim holds for all nodes at distance n from s; we'll
prove it holds for all nodes at distance n + 1 from s. Take any
node v at distance n + 1 from s; v is adjacent to some node u at
distance n from s. By our IH, u will not be gray when DFS(s)
and its ancestor calls return, so DFS(u) must have been called at
some point. This call must have called DFS on each of u's gray
neighbors. If v was gray at this time, DFS(v) must have been
called on v, coloring v yellow and then green. Otherwise, v was
already not colored gray.

Since our choice of v was arbitrary, no nodes at distance n + 1
will be gray when DFS(s) and its ancestor calls return,
completing the induction. ■

Theorem: When DFS(s) is called on node s, no nodes
reachable from s will be gray when DFS(s) and all
ancestor calls return.

Proof: By induction on the distance of nodes from s. As a
base case, consider all nodes at distance 0 from s. This
is just s itself. When DFS(s) is called, DFS(s) will color s
yellow, then green.

Suppose the claim holds for all nodes at distance n from s; we'll
prove it holds for all nodes at distance n + 1 from s. Take any
node v at distance n + 1 from s; v is adjacent to some node u at
distance n from s. By our IH, u will not be gray when DFS(s)
and its ancestor calls return, so DFS(u) must have been called at
some point. This call must have called DFS on each of u's gray
neighbors. If v was gray at this time, DFS(v) must have been
called on v, coloring v yellow and then green. Otherwise, v was
already not colored gray.

Since our choice of v was arbitrary, no nodes at distance n + 1
will be gray when DFS(s) and its ancestor calls return,
completing the induction. ■

Theorem: When DFS(s) is called on node s, no nodes
reachable from s will be gray when DFS(s) and all
ancestor calls return.

Proof: By induction on the distance of nodes from s. As a
base case, consider all nodes at distance 0 from s. This
is just s itself. When DFS(s) is called, DFS(s) will color s
yellow, then green.

Suppose the claim holds for all nodes at distance n from s; we'll
prove it holds for all nodes at distance n + 1 from s. Take any
node v at distance n + 1 from s; v is adjacent to some node u at
distance n from s. By our IH, u will not be gray when DFS(s)
and its ancestor calls return, so DFS(u) must have been called at
some point. This call must have called DFS on each of u's gray
neighbors. If v was gray at this time, DFS(v) must have been
called on v, coloring v yellow and then green. Otherwise, v was
already not colored gray.

Since our choice of v was arbitrary, no nodes at distance n + 1
will be gray when DFS(s) and its ancestor calls return,
completing the induction. ■

Theorem: When DFS(s) is called on node s, no nodes
reachable from s will be gray when DFS(s) and all
ancestor calls return.

Proof: By induction on the distance of nodes from s. As a
base case, consider all nodes at distance 0 from s. This
is just s itself. When DFS(s) is called, DFS(s) will color s
yellow, then green.

Suppose the claim holds for all nodes at distance n from s; we'll
prove it holds for all nodes at distance n + 1 from s. Take any
node v at distance n + 1 from s; v is adjacent to some node u at
distance n from s. By our IH, u will not be gray when DFS(s)
and its ancestor calls return, so DFS(u) must have been called at
some point. This call must have called DFS on each of u's gray
neighbors. If v was gray at this time, DFS(v) must have been
called on v, coloring v yellow and then green. Otherwise, v was
already not colored gray.

Since our choice of v was arbitrary, no nodes at distance n + 1
will be gray when DFS(s) and its ancestor calls return,
completing the induction. ■

Theorem: When DFS(s) is called on node s, no nodes
reachable from s will be gray when DFS(s) and all
ancestor calls return.

Proof: By induction on the distance of nodes from s. As a
base case, consider all nodes at distance 0 from s. This
is just s itself. When DFS(s) is called, DFS(s) will color s
yellow, then green.

Suppose the claim holds for all nodes at distance n from s; we'll
prove it holds for all nodes at distance n + 1 from s. Take any
node v at distance n + 1 from s; v is adjacent to some node u at
distance n from s. By our IH, u will not be gray when DFS(s)
and its ancestor calls return, so DFS(u) must have been called at
some point. This call must have called DFS on each of u's gray
neighbors. If v was gray at this time, DFS(v) must have been
called on v, coloring v yellow and then green. Otherwise, v was
already not colored gray.

Since our choice of v was arbitrary, no nodes at distance n + 1
will be gray when DFS(s) and its ancestor calls return,
completing the induction. ■

Theorem: When DFS(s) is called on node s, no nodes
reachable from s will be gray when DFS(s) and all
ancestor calls return.

Proof: By induction on the distance of nodes from s. As a
base case, consider all nodes at distance 0 from s. This
is just s itself. When DFS(s) is called, DFS(s) will color s
yellow, then green.

Suppose the claim holds for all nodes at distance n from s; we'll
prove it holds for all nodes at distance n + 1 from s. Take any
node v at distance n + 1 from s; v is adjacent to some node u at
distance n from s. By our IH, u will not be gray when DFS(s)
and its ancestor calls return, so DFS(u) must have been called at
some point. This call must have called DFS on each of u's gray
neighbors. If v was gray at this time, DFS(v) must have been
called on v, coloring v yellow and then green. Otherwise, v was
already not colored gray.

Since our choice of v was arbitrary, no nodes at distance n + 1
will be gray when DFS(s) and its ancestor calls return,
completing the induction. ■

Theorem: When DFS(s) is called on node s, no nodes
reachable from s will be gray when DFS(s) and all
ancestor calls return.

Proof: By induction on the distance of nodes from s. As a
base case, consider all nodes at distance 0 from s. This
is just s itself. When DFS(s) is called, DFS(s) will color s
yellow, then green.

Suppose the claim holds for all nodes at distance n from s; we'll
prove it holds for all nodes at distance n + 1 from s. Take any
node v at distance n + 1 from s; v is adjacent to some node u at
distance n from s. By our IH, u will not be gray when DFS(s)
and its ancestor calls return, so DFS(u) must have been called at
some point. This call must have called DFS on each of u's gray
neighbors. If v was gray at this time, DFS(v) must have been
called on v, coloring v yellow and then green. Otherwise, v was
already not colored gray.

Since our choice of v was arbitrary, no nodes at distance n + 1
will be gray when DFS(s) and its ancestor calls return,
completing the induction. ■

Theorem: When DFS(s) is called on node s, no nodes
reachable from s will be gray when DFS(s) and all
ancestor calls return.

Proof: By induction on the distance of nodes from s. As a
base case, consider all nodes at distance 0 from s. This
is just s itself. When DFS(s) is called, DFS(s) will color s
yellow, then green.

Suppose the claim holds for all nodes at distance n from s; we'll
prove it holds for all nodes at distance n + 1 from s. Take any
node v at distance n + 1 from s; v is adjacent to some node u at
distance n from s. By our IH, u will not be gray when DFS(s)
and its ancestor calls return, so DFS(u) must have been called at
some point. This call must have called DFS on each of u's gray
neighbors. If v was gray at this time, DFS(v) must have been
called on v, coloring v yellow and then green. Otherwise, v was
already not colored gray.

Since our choice of v was arbitrary, no nodes at distance n + 1
will be gray when DFS(s) and its ancestor calls return,
completing the induction. ■

Theorem: When DFS(s) is called on a node s, no recursive
calls will be made on nodes not reachable from s.

Proof: By contradiction; assume a recursive call is made
on at least one node not reachable from s. There must
be a first node visited this way; call it v. v can't be s,
since s is trivially reachable from itself. Thus DFS(v)
must have been recursively invoked by DFS(u) for some
node u ≠ v, which in turn called DFS(v). This means
edge (u, v) must exist. Now, we consider two cases:

Case 1: u is reachable from s. But then v is
reachable from s, because we can take the path from
s to u and follow edge (u, v).

Case 2: u is not reachable from s. But then v was not
the first node not reachable from s to have DFS
called on it.

In either case, we reach a contradiction, so our
assumption was wrong. Thus DFS(s) never makes
recursive calls on nodes not reachable from s. ■

Theorem: When DFS(s) is called on a node s, no recursive
calls will be made on nodes not reachable from s.

Proof: By contradiction; assume a recursive call is made
on at least one node not reachable from s. There must
be a first node visited this way; call it v. v can't be s,
since s is trivially reachable from itself. Thus DFS(v)
must have been recursively invoked by DFS(u) for some
node u ≠ v, which in turn called DFS(v). This means
edge (u, v) must exist. Now, we consider two cases:

Case 1: u is reachable from s. But then v is
reachable from s, because we can take the path from
s to u and follow edge (u, v).

Case 2: u is not reachable from s. But then v was not
the first node not reachable from s to have DFS
called on it.

In either case, we reach a contradiction, so our
assumption was wrong. Thus DFS(s) never makes
recursive calls on nodes not reachable from s. ■

Theorem: When DFS(s) is called on a node s, no recursive
calls will be made on nodes not reachable from s.

Proof: By contradiction; assume a recursive call is made
on at least one node not reachable from s. There must
be a first node visited this way; call it v. v can't be s,
since s is trivially reachable from itself. Thus DFS(v)
must have been recursively invoked by DFS(u) for some
node u ≠ v, which in turn called DFS(v). This means
edge (u, v) must exist. Now, we consider two cases:

Case 1: u is reachable from s. But then v is
reachable from s, because we can take the path from
s to u and follow edge (u, v).

Case 2: u is not reachable from s. But then v was not
the first node not reachable from s to have DFS
called on it.

In either case, we reach a contradiction, so our
assumption was wrong. Thus DFS(s) never makes
recursive calls on nodes not reachable from s. ■

Theorem: When DFS(s) is called on a node s, no recursive
calls will be made on nodes not reachable from s.

Proof: By contradiction; assume a recursive call is made
on at least one node not reachable from s. There must
be a first node visited this way; call it v. v can't be s,
since s is trivially reachable from itself. Thus DFS(v)
must have been recursively invoked by DFS(u) for some
node u ≠ v, which in turn called DFS(v). This means
edge (u, v) must exist. Now, we consider two cases:

Case 1: u is reachable from s. But then v is
reachable from s, because we can take the path from
s to u and follow edge (u, v).

Case 2: u is not reachable from s. But then v was not
the first node not reachable from s to have DFS
called on it.

In either case, we reach a contradiction, so our
assumption was wrong. Thus DFS(s) never makes
recursive calls on nodes not reachable from s. ■

Theorem: When DFS(s) is called on a node s, no recursive
calls will be made on nodes not reachable from s.

Proof: By contradiction; assume a recursive call is made
on at least one node not reachable from s. There must
be a first node visited this way; call it v. v can't be s,
since s is trivially reachable from itself. Thus DFS(v)
must have been recursively invoked by DFS(u) for some
node u ≠ v, which in turn called DFS(v). This means
edge (u, v) must exist. Now, we consider two cases:

Case 1: u is reachable from s. But then v is
reachable from s, because we can take the path from
s to u and follow edge (u, v).

Case 2: u is not reachable from s. But then v was not
the first node not reachable from s to have DFS
called on it.

In either case, we reach a contradiction, so our
assumption was wrong. Thus DFS(s) never makes
recursive calls on nodes not reachable from s. ■

Theorem: When DFS(s) is called on a node s, no recursive
calls will be made on nodes not reachable from s.

Proof: By contradiction; assume a recursive call is made
on at least one node not reachable from s. There must
be a first node visited this way; call it v. v can't be s,
since s is trivially reachable from itself. Thus DFS(v)
must have been recursively invoked by DFS(u) for some
node u ≠ v, which in turn called DFS(v). This means
edge (u, v) must exist. Now, we consider two cases:

Case 1: u is reachable from s. But then v is
reachable from s, because we can take the path from
s to u and follow edge (u, v).

Case 2: u is not reachable from s. But then v was not
the first node not reachable from s to have DFS
called on it.

In either case, we reach a contradiction, so our
assumption was wrong. Thus DFS(s) never makes
recursive calls on nodes not reachable from s. ■

Theorem: When DFS(s) is called on a node s, no recursive
calls will be made on nodes not reachable from s.

Proof: By contradiction; assume a recursive call is made
on at least one node not reachable from s. There must
be a first node visited this way; call it v. v can't be s,
since s is trivially reachable from itself. Thus DFS(v)
must have been recursively invoked by DFS(u) for some
node u ≠ v, which in turn called DFS(v). This means
edge (u, v) must exist. Now, we consider two cases:

– Case 1: u is reachable from s. But then v is
reachable from s, because we can take the path from
s to u and follow edge (u, v).

– Case 2: u is not reachable from s. But then v was not
the first node not reachable from s to have DFS
called on it.

In either case, we reach a contradiction, so our
assumption was wrong. Thus DFS(s) never makes
recursive calls on nodes not reachable from s. ■

Theorem: When DFS(s) is called on a node s, no recursive
calls will be made on nodes not reachable from s.

Proof: By contradiction; assume a recursive call is made
on at least one node not reachable from s. There must
be a first node visited this way; call it v. v can't be s,
since s is trivially reachable from itself. Thus DFS(v)
must have been recursively invoked by DFS(u) for some
node u ≠ v, which in turn called DFS(v). This means
edge (u, v) must exist. Now, we consider two cases:

– Case 1: u is reachable from s. But then v is
reachable from s, because we can take the path from
s to u and follow edge (u, v).

– Case 2: u is not reachable from s. But then v was not
the first node not reachable from s to have DFS
called on it.

In either case, we reach a contradiction, so our
assumption was wrong. Thus DFS(s) never makes
recursive calls on nodes not reachable from s. ■

Theorem: When DFS(s) is called on a node s, no recursive
calls will be made on nodes not reachable from s.

Proof: By contradiction; assume a recursive call is made
on at least one node not reachable from s. There must
be a first node visited this way; call it v. v can't be s,
since s is trivially reachable from itself. Thus DFS(v)
must have been recursively invoked by DFS(u) for some
node u ≠ v, which in turn called DFS(v). This means
edge (u, v) must exist. Now, we consider two cases:

– Case 1: u is reachable from s. But then v is
reachable from s, because we can take the path from
s to u and follow edge (u, v).

– Case 2: u is not reachable from s. But then v was not
the first node not reachable from s to have DFS
called on it.

In either case, we reach a contradiction, so our
assumption was wrong. Thus DFS(s) never makes
recursive calls on nodes not reachable from s. ■

Theorem: When DFS(s) is called on a node s, no recursive
calls will be made on nodes not reachable from s.

Proof: By contradiction; assume a recursive call is made
on at least one node not reachable from s. There must
be a first node visited this way; call it v. v can't be s,
since s is trivially reachable from itself. Thus DFS(v)
must have been recursively invoked by DFS(u) for some
node u ≠ v, which in turn called DFS(v). This means
edge (u, v) must exist. Now, we consider two cases:

– Case 1: u is reachable from s. But then v is
reachable from s, because we can take the path from
s to u and follow edge (u, v).

– Case 2: u is not reachable from s. But then v was not
the first node not reachable from s to have DFS
called on it.

In either case, we reach a contradiction, so our
assumption was wrong. Thus DFS(s) never makes
recursive calls on nodes not reachable from s. ■

Theorem: When DFS(s) is called on a node s, no recursive
calls will be made on nodes not reachable from s.

Proof: By contradiction; assume a recursive call is made
on at least one node not reachable from s. There must
be a first node visited this way; call it v. v can't be s,
since s is trivially reachable from itself. Thus DFS(v)
must have been recursively invoked by DFS(u) for some
node u ≠ v, which in turn called DFS(v). This means
edge (u, v) must exist. Now, we consider two cases:

– Case 1: u is reachable from s. But then v is
reachable from s, because we can take the path from
s to u and follow edge (u, v).

– Case 2: u is not reachable from s. But then v was not
the first node not reachable from s to have DFS
called on it.

In either case, we reach a contradiction, so our
assumption was wrong. Thus DFS(s) never makes
recursive calls on nodes not reachable from s. ■

Theorem: When DFS(s) is called on a node s, no recursive
calls will be made on nodes not reachable from s.

Proof: By contradiction; assume a recursive call is made
on at least one node not reachable from s. There must
be a first node visited this way; call it v. v can't be s,
since s is trivially reachable from itself. Thus DFS(v)
must have been recursively invoked by DFS(u) for some
node u ≠ v, which in turn called DFS(v). This means
edge (u, v) must exist. Now, we consider two cases:

– Case 1: u is reachable from s. But then v is
reachable from s, because we can take the path from
s to u and follow edge (u, v).

– Case 2: u is not reachable from s. But then v was not
the first node not reachable from s to have DFS
called on it.

In either case, we reach a contradiction, so our
assumption was wrong. Thus DFS(s) never makes
recursive calls on nodes not reachable from s. ■

What DFS Visits

● Taken together, the two theorems we have
proven show the following:
● When DFS(s) terminates, every node reachable from

s will have had DFS called on it, though the call to
DFS(s) might not have initiated those other calls.

● When DFS(s) terminates, it will never have called
DFS on a node not reachable from s.

● Thus when DFS(s) terminates, the only nodes
DFS will have been called on are nodes on
which DFS had already been called, plus the
nodes reachable from s.

 Question 1: What nodes will DFS reach?

 Question 2: How efficiently will DFS reach
those nodes?

 Question 1: What nodes will DFS reach?

 Question 2: How efficiently will DFS reach
those nodes?

procedure DFS(node v):
 color v yellow.

 for each neighbor u of v:
 if u is gray:
 DFS(u)

 color v green

procedure doDFS(graph G, node s):
 for each node v in G:
 color v gray
 DFS(s)

procedure DFS(node v):
 color v yellow.

 for each neighbor u of v:
 if u is gray:
 DFS(u)

 color v green

procedure doDFS(graph G, node s):
 for each node v in G:
 color v gray
 DFS(s)

Analyzing Recursive Functions

● In general, it can be very difficult to
analyze the runtime of a recursive
function.
● We'll see some techniques for special cases

later in the quarter.

● One general technique is to look at the
total number of calls made and the work
done at each call.

Analyzing DFS

● The maximum number of function calls made is
O(n), since we can't call DFS on a node twice.

● Each call to DFS on node v does Θ(deg+(v)) work,
since it visits each outgoing edge from v exactly
once.

● Summing across all recursive calls:

● O(n) work done initially coloring nodes.
● O(n) work done coloring nodes yellow / green.
● O(m) work visiting edges.
● Total work done: O(m + n).

● When might this not do Θ(m + n) work?

BFS and DFS

● BFS and DFS always visit the same set of
nodes.

● However, BFS always finds the shortest
path from the source node to each other
node in the graph, while DFS might not.

● That said: the order in which DFS visits
nodes is pretty important and has lots of
applications. We'll see some of them soon...

Ordering Prerequisites

Measure
Flour

Measure
Baking
Powder

Measure
Salt

Measure
Sugar

Measure
Sugar

Measure
Milk

Melt
Butter

Beat
Egg

Combine
Dry

Ingredients

Oil
Griddle

Heat
Griddle

Add Wet
Ingredients

Make
Pancakes

Serve
Pancakes

CS106A

CS106B

CS103 CS109

CS107 CS110

CS143

CS161

Modeling Prerequisites

● We can model prerequisites as a graph
with the following properties:
● The graph has to be directed, since we have

to be able to distinguish “A depends on B”
from “B depends on A.”

● The graph has to be acyclic (containing no
cycles), since otherwise there is no way to
accomplish all the tasks.

● A graph with this property is called a
directed acyclic graph, or DAG.

Some DAG Terminology

● A source node in a
DAG is a node with
no incoming edges.

● A sink node in a
DAG is a node with
no outgoing edges.

● DAGs can have
many sources and
sinks.

Theorem: Every nonempty DAG has at least one source
node.

Proof: Suppose for the sake of contradiction that there
is a nonempty DAG G where each node has at least
one incoming edge. Start at any node v1 ∈ G and
repeatedly follow an edge entering v1 in reverse.
This gives a sequence of nodes v1, v2, v3, …

Since there are only finitely many nodes in the DAG,
this process eventually must revisit a node vi. But
then we have that vi, vi+1, vi+2, …, vi is a cycle in G
traced in reverse order, contradicting the fact that G
is a DAG. We have reached a contradiction, so our
assumption was wrong and every DAG must contain
at least one node with no incoming edges. ■

Theorem: Every nonempty DAG has at least one source
node.

Proof: Suppose for the sake of contradiction that there
is a nonempty DAG G where each node has at least
one incoming edge. Start at any node v1 ∈ G and
repeatedly follow an edge entering v1 in reverse.
This gives a sequence of nodes v1, v2, v3, …

Since there are only finitely many nodes in the DAG,
this process eventually must revisit a node vi. But
then we have that vi, vi+1, vi+2, …, vi is a cycle in G
traced in reverse order, contradicting the fact that G
is a DAG. We have reached a contradiction, so our
assumption was wrong and every DAG must contain
at least one node with no incoming edges. ■

Theorem: Every nonempty DAG has at least one source
node.

Proof: Suppose for the sake of contradiction that there
is a nonempty DAG G where each node has at least
one incoming edge. Start at any node v1 ∈ G and
repeatedly follow an edge entering v1 in reverse.
This gives a sequence of nodes v1, v2, v3, …

Since there are only finitely many nodes in the DAG,
this process eventually must revisit a node vi. But
then we have that vi, vi+1, vi+2, …, vi is a cycle in G
traced in reverse order, contradicting the fact that G
is a DAG. We have reached a contradiction, so our
assumption was wrong and every DAG must contain
at least one node with no incoming edges. ■

Theorem: Every nonempty DAG has at least one source
node.

Proof: Suppose for the sake of contradiction that there
is a nonempty DAG G where each node has at least
one incoming edge. Start at any node v1 ∈ G and
repeatedly follow an edge entering v1 in reverse.
This gives a sequence of nodes v1, v2, v3, …

Since there are only finitely many nodes in the DAG,
this process eventually must revisit a node vi. But
then we have that vi, vi+1, vi+2, …, vi is a cycle in G
traced in reverse order, contradicting the fact that G
is a DAG. We have reached a contradiction, so our
assumption was wrong and every DAG must contain
at least one node with no incoming edges. ■

Theorem: Every nonempty DAG has at least one source
node.

Proof: Suppose for the sake of contradiction that there
is a nonempty DAG G where each node has at least
one incoming edge. Start at any node v1 ∈ G and
repeatedly follow an edge entering v1 in reverse.
This gives a sequence of nodes v1, v2, v3, …

Since there are only finitely many nodes in the DAG,
this process eventually must revisit a node vi. But
then we have that vi, vi+1, vi+2, …, vi is a cycle in G
traced in reverse order, contradicting the fact that G
is a DAG. We have reached a contradiction, so our
assumption was wrong and every DAG must contain
at least one node with no incoming edges. ■

Theorem: Every nonempty DAG has at least one source
node.

Proof: Suppose for the sake of contradiction that there
is a nonempty DAG G where each node has at least
one incoming edge. Start at any node v1 ∈ G and
repeatedly follow an edge entering v1 in reverse.
This gives a sequence of nodes v1, v2, v3, …

Since there are only finitely many nodes in the DAG,
this process eventually must revisit a node vi. But
then we have that vi, vi+1, vi+2, …, vi is a cycle in G
traced in reverse order, contradicting the fact that G
is a DAG. We have reached a contradiction, so our
assumption was wrong and every DAG must contain
at least one node with no incoming edges. ■

Theorem: Every nonempty DAG has at least one source
node.

Proof: Suppose for the sake of contradiction that there
is a nonempty DAG G where each node has at least
one incoming edge. Start at any node v1 ∈ G and
repeatedly follow an edge entering v1 in reverse.
This gives a sequence of nodes v1, v2, v3, …

Since there are only finitely many nodes in the DAG,
this process eventually must revisit a node vi. But
then we have that vi, vi+1, vi+2, …, vi is a cycle in G
traced in reverse order, contradicting the fact that G
is a DAG. We have reached a contradiction, so our
assumption was wrong and every DAG must contain
at least one node with no incoming edges. ■

Theorem: Every nonempty DAG has at least one source
node.

Proof: Suppose for the sake of contradiction that there
is a nonempty DAG G where each node has at least
one incoming edge. Start at any node v1 ∈ G and
repeatedly follow an edge entering v1 in reverse.
This gives a sequence of nodes v1, v2, v3, …

Since there are only finitely many nodes in the DAG,
this process eventually must revisit a node vi. But
then we have that vi, vi+1, vi+2, …, vi is a cycle in G
traced in reverse order, contradicting the fact that G
is a DAG. We have reached a contradiction, so our
assumption was wrong and every DAG must contain
at least one node with no incoming edges. ■

Ordering Prerequisites

● When ordering prerequisites, we want to
order the tasks such that no task is
placed before tasks it depends on.

● In graph-theoretic terms: given a DAG
G = (V, E), we want to order the nodes so
that if (u, v) ∈ E, then v appears after u.

● Such an ordering is called a topological
ordering. An algorithm for finding a
topological ordering is called a
topological sort.

Wake Up In
The Morning
Wake Up In

The Morning

Feel Like
P Diddy

Brush Teeth With
Bottle of Jack

Leave

ClothesPedicure Play Favorite
CDs

Pull up to Party

Fight Get Crunk,
Crunk

Police Shut
Down, Down

See the Sunlight

Blow
Speakers Up

Feel Like
P Diddy

Brush Teeth With
Bottle of Jack

Leave

ClothesPedicure
Play Favorite

CDs

Pull up to Party

Fight
Get Crunk,

Crunk
Police Shut

Down, Down

See the Sunlight

Blow
Speakers Up

Wake Up In
The Morning
Wake Up In

The Morning

Feel Like
P Diddy

Brush Teeth With
Bottle of Jack

Leave

ClothesPedicure Play Favorite
CDs

Pull up to Party

Fight Get Crunk,
Crunk

Police Shut
Down, Down

See the Sunlight

Blow
Speakers Up

Feel Like
P Diddy

Brush Teeth With
Bottle of Jack

Leave

ClothesPedicure
Play Favorite

CDs

Pull up to Party

Fight
Get Crunk,

Crunk
Police Shut

Down, Down

See the Sunlight

Blow
Speakers Up

Feel Like
P Diddy

Brush Teeth With
Bottle of Jack

Leave

ClothesPedicure Play Favorite
CDs

Pull up to Party

Fight Get Crunk,
Crunk

Police Shut
Down, Down

See the Sunlight

Blow
Speakers Up

Feel Like
P Diddy

Brush Teeth With
Bottle of Jack

Leave

ClothesPedicure
Play Favorite

CDs

Pull up to Party

Fight
Get Crunk,

Crunk
Police Shut

Down, Down

See the Sunlight

Blow
Speakers Up

Wake Up In
The Morning

Feel Like
P Diddy

Feel Like
P Diddy

Brush Teeth With
Bottle of Jack

Leave

ClothesPedicure Play Favorite
CDs

Pull up to Party

Fight Get Crunk,
Crunk

Police Shut
Down, Down

See the Sunlight

Blow
Speakers Up

Brush Teeth With
Bottle of Jack

Leave

ClothesPedicure
Play Favorite

CDs

Pull up to Party

Fight
Get Crunk,

Crunk
Police Shut

Down, Down

See the Sunlight

Blow
Speakers Up

Wake Up In
The Morning

Brush Teeth With
Bottle of Jack

Leave

ClothesPedicure Play Favorite
CDs

Pull up to Party

Fight Get Crunk,
Crunk

Police Shut
Down, Down

See the Sunlight

Blow
Speakers Up

Brush Teeth With
Bottle of Jack

Leave

ClothesPedicure
Play Favorite

CDs

Pull up to Party

Fight
Get Crunk,

Crunk
Police Shut

Down, Down

See the Sunlight

Blow
Speakers Up

Wake Up In
The Morning

Feel Like P Diddy

Brush Teeth With
Bottle of Jack

Leave

ClothesPedicure Play Favorite
CDs

Pull up to Party

Fight Get Crunk,
Crunk

Police Shut
Down, Down

See the Sunlight

Blow
Speakers Up

Leave

ClothesPedicure
Play Favorite

CDs

Pull up to Party

Fight
Get Crunk,

Crunk
Police Shut

Down, Down

See the Sunlight

Blow
Speakers Up

Wake Up In
The Morning

Feel Like P Diddy

Wake Up In
The Morning

Feel Like P Diddy

Brush Teeth With
Bottle of Jack

Leave

ClothesPedicure Play Favorite
CDs

Pull up to Party

Fight Get Crunk,
Crunk

Police Shut
Down, Down

See the Sunlight

Blow
Speakers Up

Leave

ClothesPedicure
Play Favorite

CDs

Pull up to Party

Fight
Get Crunk,

Crunk
Police Shut

Down, Down

See the Sunlight

Blow
Speakers Up

Wake Up In
The Morning

Feel Like P Diddy

Brush Teeth With
Bottle of Jack

Leave

ClothesPedicure Play Favorite
CDs

Pull up to Party

Fight Get Crunk,
Crunk

Police Shut
Down, Down

See the Sunlight

Blow
Speakers Up

ClothesPedicure
Play Favorite

CDs

Pull up to Party

Fight
Get Crunk,

Crunk
Police Shut

Down, Down

See the Sunlight

Blow
Speakers Up

Wake Up In
The Morning

Feel Like P Diddy

Brush Teeth With
Bottle of Jack

Leave

ClothesPedicure Play Favorite
CDs

Pull up to Party

Fight Get Crunk,
Crunk

Police Shut
Down, Down

See the Sunlight

Blow
Speakers Up

ClothesPedicure
Play Favorite

CDs

Pull up to Party

Fight
Get Crunk,

Crunk
Police Shut

Down, Down

See the Sunlight

Blow
Speakers Up

Clothes

Wake Up In
The Morning

Feel Like P Diddy

Brush Teeth With
Bottle of Jack

Leave

ClothesPedicure Play Favorite
CDs

Pull up to Party

Fight Get Crunk,
Crunk

Police Shut
Down, Down

See the Sunlight

Blow
Speakers Up

Pedicure
Play Favorite

CDs

Pull up to Party

Fight
Get Crunk,

Crunk
Police Shut

Down, Down

See the Sunlight

Blow
Speakers Up

Wake Up In
The Morning

Feel Like P Diddy

Brush Teeth With
Bottle of Jack

Leave

Clothes

Pedicure Play Favorite
CDs

Pull up to Party

Fight Get Crunk,
Crunk

Police Shut
Down, Down

See the Sunlight

Blow
Speakers Up

Pedicure
Play Favorite

CDs

Pull up to Party

Fight
Get Crunk,

Crunk
Police Shut

Down, Down

See the Sunlight

Blow
Speakers Up

Wake Up In
The Morning

Feel Like P Diddy

Brush Teeth With
Bottle of Jack

Leave

Clothes

Pedicure Play Favorite
CDs

Pull up to Party

Fight Get Crunk,
Crunk

Police Shut
Down, Down

See the Sunlight

Blow
Speakers Up

Pedicure

Pull up to Party

Fight
Get Crunk,

Crunk
Police Shut

Down, Down

See the Sunlight

Blow
Speakers Up

Wake Up In
The Morning

Feel Like P Diddy

Brush Teeth With
Bottle of Jack

Leave

Clothes

Pedicure

Play Favorite CDs

Pull up to Party

Fight Get Crunk,
Crunk

Police Shut
Down, Down

See the Sunlight

Blow
Speakers Up

Pedicure

Pull up to Party

Fight
Get Crunk,

Crunk
Police Shut

Down, Down

See the Sunlight

Blow
Speakers Up

Wake Up In
The Morning

Feel Like P Diddy

Brush Teeth With
Bottle of Jack

Leave

Clothes

Pedicure

Play Favorite CDs

Pull up to Party

Fight Get Crunk,
Crunk

Police Shut
Down, Down

See the Sunlight

Blow
Speakers Up

Pull up to Party

Fight
Get Crunk,

Crunk
Police Shut

Down, Down

See the Sunlight

Blow
Speakers Up

Wake Up In
The Morning

Feel Like P Diddy

Brush Teeth With
Bottle of Jack

Leave

Clothes

Pedicure

Play Favorite CDs

Pull up to Party

Fight Get Crunk,
Crunk

Police Shut
Down, Down

See the Sunlight

Blow
Speakers Up

Pull up to Party

Fight
Get Crunk,

Crunk
Police Shut

Down, Down

See the Sunlight

Blow
Speakers Up

Wake Up In
The Morning

Feel Like P Diddy

Brush Teeth With
Bottle of Jack

Leave

Clothes

Pedicure

Play Favorite CDs

Pull up to Party

Fight Get Crunk,
Crunk

Police Shut
Down, Down

See the Sunlight

Blow
Speakers UpFight

Get Crunk,
Crunk

Police Shut
Down, Down

See the Sunlight

Blow
Speakers Up

Wake Up In
The Morning

Feel Like P Diddy

Brush Teeth With
Bottle of Jack

Leave

Clothes

Pedicure

Play Favorite CDs

Pull up to Party

Fight Get Crunk,
Crunk

Police Shut
Down, Down

See the Sunlight

Blow
Speakers UpFight

Get Crunk,
Crunk

Police Shut
Down, Down

See the Sunlight

Blow
Speakers Up

Fight

Wake Up In
The Morning

Feel Like P Diddy

Brush Teeth With
Bottle of Jack

Leave

Clothes

Pedicure

Play Favorite CDs

Pull up to Party

Fight Get Crunk,
Crunk

Police Shut
Down, Down

See the Sunlight

Blow
Speakers Up

Get Crunk,
Crunk

Police Shut
Down, Down

See the Sunlight

Blow
Speakers Up

Wake Up In
The Morning

Feel Like P Diddy

Brush Teeth With
Bottle of Jack

Leave

Clothes

Pedicure

Play Favorite CDs

Pull up to Party

Fight

Get Crunk,
Crunk

Police Shut
Down, Down

See the Sunlight

Blow
Speakers Up

Get Crunk,
Crunk

Police Shut
Down, Down

See the Sunlight

Blow
Speakers Up

Blow
Speakers Up

Wake Up In
The Morning

Feel Like P Diddy

Brush Teeth With
Bottle of Jack

Leave

Clothes

Pedicure

Play Favorite CDs

Pull up to Party

Fight

Get Crunk,
Crunk

Police Shut
Down, Down

See the Sunlight

Blow
Speakers Up

Get Crunk,
Crunk

Police Shut
Down, Down

See the Sunlight

Wake Up In
The Morning

Feel Like P Diddy

Brush Teeth With
Bottle of Jack

Leave

Clothes

Pedicure

Play Favorite CDs

Pull up to Party

Fight

Get Crunk,
Crunk

Police Shut
Down, Down

See the Sunlight

Get Crunk,
Crunk

Police Shut
Down, Down

See the Sunlight

Blow Speakers Up

Police Shut
Down, Down

Wake Up In
The Morning

Feel Like P Diddy

Brush Teeth With
Bottle of Jack

Leave

Clothes

Pedicure

Play Favorite CDs

Pull up to Party

Fight

Get Crunk,
Crunk

Police Shut
Down, Down

See the Sunlight

Get Crunk,
Crunk

See the Sunlight

Blow Speakers Up

Wake Up In
The Morning

Feel Like P Diddy

Brush Teeth With
Bottle of Jack

Leave

Clothes

Pedicure

Play Favorite CDs

Pull up to Party

Fight

Get Crunk,
Crunk

See the Sunlight

Get Crunk,
Crunk

See the Sunlight

Blow Speakers Up

Police Shut
Down, Down

Wake Up In
The Morning

Feel Like P Diddy

Brush Teeth With
Bottle of Jack

Leave

Clothes

Pedicure

Play Favorite CDs

Pull up to Party

Fight

Get Crunk,
Crunk

See the SunlightSee the Sunlight

Blow Speakers Up

Police Shut
Down, Down

Wake Up In
The Morning

Feel Like P Diddy

Brush Teeth With
Bottle of Jack

Leave

Clothes

Pedicure

Play Favorite CDs

Pull up to Party

Fight

See the SunlightSee the Sunlight

Blow Speakers Up

Police Shut
Down, Down

Get Crunk, Crunk

Wake Up In
The Morning

Feel Like P Diddy

Brush Teeth With
Bottle of Jack

Leave

Clothes

Pedicure

Play Favorite CDs

Pull up to Party

Fight

See the Sunlight

Blow Speakers Up

Police Shut
Down, Down

Get Crunk, Crunk

Wake Up In
The Morning

Feel Like P Diddy

Brush Teeth With
Bottle of Jack

Leave

Clothes

Pedicure

Play Favorite CDs

Pull up to Party

Fight

See the Sunlight

Blow Speakers Up

Police Shut
Down, Down

Get Crunk, Crunk

Wake Up In
The Morning

Feel Like P Diddy

Brush Teeth With
Bottle of Jack

Leave

Clothes

Pedicure

Play Favorite CDs

Pull up to Party

Fight

See the Sunlight

Blow Speakers Up

Police Shut
Down, Down

Get Crunk, Crunk

Wake Up In
The Morning
Wake Up In

The Morning

Feel Like
P Diddy

Brush Teeth With
Bottle of Jack

Leave

ClothesPedicure Play Favorite
CDs

Pull up to Party

Fight Get Crunk,
Crunk

Police Shut
Down, Down

See the Sunlight

Blow
Speakers Up

Feel Like
P Diddy

Brush Teeth With
Bottle of Jack

Leave

ClothesPedicure
Play Favorite

CDs

Pull up to Party

Fight
Get Crunk,

Crunk
Police Shut

Down, Down

See the Sunlight

Blow
Speakers Up

procedure topologicalSort(DAG G):
 let result be an empty list.
 while G is not empty:
 let v be a node in G with indegree 0
 add v to result
 remove v from G
 return result

procedure topologicalSort(DAG G):
 let result be an empty list.
 while G is not empty:
 let v be a node in G with indegree 0
 add v to result
 remove v from G
 return result

Correctness Proof Sketch

● Whenever a node v is added to the result, it
has no incoming edges.

● Therefore, either
● v never had any incoming edges, in which case

adding v to result cannot place v out of order, or
● All of v's predecessors have already been placed

into result, and v comes after all of them.

● Can't get stuck, since every nonempty DAG
has at least one source.

Next Time

● Topological Sorting, Part II
● Connected Components
● Strongly-Connected Components
● Kosaraju's Algorithm I

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158
	Slide 159
	Slide 160
	Slide 161
	Slide 162
	Slide 163
	Slide 164
	Slide 165
	Slide 166
	Slide 167
	Slide 168
	Slide 169
	Slide 170
	Slide 171
	Slide 172
	Slide 173
	Slide 174
	Slide 175
	Slide 176
	Slide 177
	Slide 178
	Slide 179
	Slide 180
	Slide 181
	Slide 182
	Slide 183
	Slide 184
	Slide 185
	Slide 186
	Slide 187
	Slide 188
	Slide 189
	Slide 190
	Slide 191
	Slide 192
	Slide 193
	Slide 194
	Slide 195
	Slide 196
	Slide 197
	Slide 198
	Slide 199
	Slide 200
	Slide 201
	Slide 202
	Slide 203
	Slide 204
	Slide 205
	Slide 206
	Slide 207
	Slide 208
	Slide 209
	Slide 210
	Slide 211
	Slide 212
	Slide 213
	Slide 214
	Slide 215
	Slide 216
	Slide 217
	Slide 218
	Slide 219
	Slide 220
	Slide 221
	Slide 222
	Slide 223
	Slide 224
	Slide 225
	Slide 226
	Slide 227
	Slide 228
	Slide 229
	Slide 230
	Slide 231
	Slide 232
	Slide 233
	Slide 234
	Slide 235
	Slide 236
	Slide 237
	Slide 238
	Slide 239
	Slide 240
	Slide 241
	Slide 242
	Slide 243
	Slide 244
	Slide 245
	Slide 246
	Slide 247
	Slide 248
	Slide 249
	Slide 250
	Slide 251
	Slide 252
	Slide 253
	Slide 254
	Slide 255
	Slide 256
	Slide 257
	Slide 258
	Slide 259

