
  

Fundamental Graph Algorithms
Part One



  

Announcements

● Problem Set One out, due Wednesday, July 3.

● Play around with O, Ω, and Θ notations!

● Get your feet wet designing and analyzing algorithms.

● Explore today's material on graphs.

● Can be completed using just material from the first two 
lectures.

● We suggest reading through the handout on how to 
approach the problem sets.  There's a lot of useful 
information there!

● Office hours schedule will be announced tomorrow.



  

Announcements

● We will not be writing any code in 
CS161; we'll focus more on the design 
and analysis techniques.

● Each week, we will have an optional 
programming section where you can 
practice coding up these algorithms.

● Run by TA Andy Nguyen, who coaches 
Stanford's ACM programming team.

● Meets Thursdays, 4:15PM – 5:05PM in 
Gates B08.



  

Graphs



  

A Social Network



  

Chemical Bonds

http://4.bp.blogspot.com/-xCtBJ8lKHqA/Tjm0BONWBRI/AAAAAAAAAK4/-mHrbAUOHHg/s1600/Etha
nol2.gif



  

http://strangemaps.files.wordpress.com/2007/02/fullinterstatemap-web.jpg



  

http://www.toothpastefordinner.com/



  

http://www.prospectmagazine.co.uk/wp-content/uploads/2009/09/163_tayl
or2.jpg



  



  

A graph is a mathematical structure
for representing relationships.

A graph consists of a set of nodes 
connected by edges.



  

Some graphs are directed.
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Some graphs are undirected.

You can think of them as directed
graphs with edges both ways.



  

Formalisms

● A graph is an ordered pair G = (V, E) where
● V is a set of the vertices (nodes) of the graph.
● E is a set of the edges (arcs) of the graph.

● E can be a set of ordered pairs or unordered pairs.
● If E consists of ordered pairs, G is directed
● If E consists of unordered pairs, G is undirected.

● In an undirected graph, the degree of node v (denoted 
deg(v)) is the number of edges incident to v.

● In a directed graph, the indegree of a node v (denoted 
deg -(v)) is the number of edges entering v and the 
outdegree of a node v (denoted (deg+(v)) is the 
number of edges leaving v.



  

An Application: Six Degrees of Separation
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Shortest Paths

● The length of a path P (denoted |P|) in a 
graph is the number of edges it contains.

● A shortest path between u and v is a 
path P where |P| ≤ |P'| for any path P' 
from u to v.

● For any nodes u and v, define d(u, v) to 
be the length of the shortest path from u 
to v, or ∞ if no such path exists.

● What is d(v, v) for any v ∈ V?



  

The Shortest Path Problem

● Input:
● A graph G = (V, E), which may be directed or 

undirected.
● A start node s ∈ V.

● Output:
● A table dist[v], where dist[v] = d(s, v) for any 

v ∈ V.
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A Secondary Idea

● Proceed outward from the source node s 
in “layers.”
● The first layer is all nodes of distance 0.
● The second layer is all nodes of distance 1.
● The third layer is all nodes of distance 2.
● etc.

● This gives rise to breadth-first search.



  

 procedure breadthFirstSearch(s, G):
    let q be a new queue.
    for each node v in G:
      dist[v] = ∞

    dist[s] = 0
    enqueue(s, q)

    while q is not empty:
       let v = dequeue(q)
       for each neighbor u of v:
          if dist[u] = ∞:
             dist[u] = dist[v] + 1
             enqueue(u, q)

 procedure breadthFirstSearch(s, G):
    let q be a new queue.
    for each node v in G:
      dist[v] = ∞

    dist[s] = 0
    enqueue(s, q)

    while q is not empty:
       let v = dequeue(q)
       for each neighbor u of v:
          if dist[u] = ∞:
             dist[u] = dist[v] + 1
             enqueue(u, q)



  

  Question 1: How do we prove this always
finds the right distances?

  Question 2: How efficiently does this find
the right distances?



  

Theorem: Breadth-first search always terminates with dist[v] = d(s, v)
for all v ∈ V.

 

Proof: Define “round n” of BFS to be an instance where at the start of
the loop, all nodes v in the queue satisfy dist[v] = n.  We will prove
in an lemma the following are always true after the first n rounds:

 

   (1) For any node v, d(s, v) = n iff v is in the queue.
   (2) All nodes v where d(s, v) ≤ n have dist[v] = d(s, v).
   (3) All nodes v where d(s, v) > n have dist[v] = ∞

 

Let k be the maximum finite distance of any node from node s. Note
the following:

 

· Any node v where d(s, v) is finite satisfies d(s, v) ≤ k, and any
  node v where d(s, v) > k satisfies d(s, v) = ∞.  This follows from
  the fact that we picked the maximum possible finite k.

 

· There must be nodes at distances 0, 1, 2, …, k from s.  A simple
  inductive argument using property (1) shows that there will be
  exactly k + 1 rounds, corresponding to distances 0, 1, …, k.

 

So consider dist[v] for any node v after the algorithm terminates
(that is, after k+1 rounds). If d(s, v) is finite, then d(s, v) ≤ k ≤ k+1,
and so by (1) we have dist[v] = d(s, v).  If d(s, v) = ∞, then
d(s, v) > k + 1, so by (2) we have dist[v] = ∞.  Thus d(s, v) = dist[v]
for all v ∈ V, as required. ■



  

Lemma: After n rounds, the following hold:
 

   (1) For any node v, d(s, v) = n iff v is in the queue.
   (2) All nodes v where d(s, v) ≤ n have dist[v] = d(s, v).
   (3) All nodes v where d(s, v) > n have dist[v] = ∞

 

Proof: By induction n. After 0 rounds, dist[s] = 0, dist[v] = ∞ for any v ≠ s, and the 
queue holds only s.  Since s is the only node at distance 0, (1) – (3) hold.
 

For the inductive step, assume for some n that (1) – (3) hold after n rounds.  We will 
prove (1) – (3) hold after n + 1 rounds.  We need to show the following:
 

    (a) For any node v, d(s, v) = n + 1 iff v is in the queue.
    (b) All nodes v where d(s, v) ≤ n + 1 have dist[v] = d(s, v).
    (c) All nodes v where d(s, v) > n + 1 have dist[v] = ∞

 

To prove (a), note that at the end of round n, all nodes of distance n will have been 
dequeued, so we need to show all nodes v where d(s, v) = n + 1 are enqueued and 
nothing else is.  Note that if a node u is enqueued in round n + 1, then at the start of 
round n + 1 dist[u] = ∞ (so by (2) and (3), its distance is at least n + 1) and u must 
have been adjacent to a node v in the queue (by (1), d(s, v) = n). Thus there is a 
path of length n + 1 to u (take the path of length n to v, then follow the edge to u), 
and there is no shorter path, so this is the shortest path to u.  Thus, d(s, u) = n + 1.  

Also note that if a node u satisfies d(s, u) = n + 1, then by (3) at the start of round
n + 1 it must have dist[u] = ∞.  Also, it must be adjacent to some node at distance 
n, which by (1) must be in the queue at the start of the round.  Thus at the end of 
round n + 1, u will be enqueued and dist[u] set to n + 1.
 

By our above argument, we know that (a) must hold.  Since we didn't change any 
dist values for nodes at distance n or less, and we set dist values for all enqueued 
nodes to n + 1, (b) holds.  Finally, since we only changed labels for nodes at 
distance n + 1, (c) holds as well.  This completes the induction. ■



  

  Question 1: How do we prove this always
finds the right distances?

  Question 2: How efficiently does this find
the right distances?



  

Graph Terminology

● When analyzing algorithms on a graph, 
there are (usually) two parameters we 
care about:
● The number of nodes, denoted n. (n = |V|)
● The number of edges, denoted m. (m = |E|)

● Note that m = O(n2). (Why?)
● A graph is called dense if m = Θ(n2).  A 

graph is called sparse if it is not dense.



  

 procedure breadthFirstSearch(s, G):
    let q be a new queue.
    for each node v in G:
      dist[v] = ∞

    dist[s] = 0
    enqueue(s, q)

    while q is not empty:
       let v = dequeue(q)
       for each neighbor u of v:
          if dist[u] = ∞:
             dist[u] = dist[v] + 1
             enqueue(u, q)

 procedure breadthFirstSearch(s, G):
    let q be a new queue.
    for each node v in G:
      dist[v] = ∞

    dist[s] = 0
    enqueue(s, q)

    while q is not empty:
       let v = dequeue(q)
       for each neighbor u of v:
          if dist[u] = ∞:
             dist[u] = dist[v] + 1
             enqueue(u, q)



  

 procedure breadthFirstSearch(s, G):
    let q be a new queue.
    for each node v in G:
      dist[v] = ∞

    dist[s] = 0
    enqueue(s, q)

    while q is not empty:
       let v = dequeue(q)
       for each neighbor u of v:
          if dist[u] = ∞:
             dist[u] = dist[v] + 1
             enqueue(u, q)

 procedure breadthFirstSearch(s, G):
    let q be a new queue.
    for each node v in G:
      dist[v] = ∞

    dist[s] = 0
    enqueue(s, q)

    while q is not empty:
       let v = dequeue(q)
       for each neighbor u of v:
          if dist[u] = ∞:
             dist[u] = dist[v] + 1
             enqueue(u, q)

O(1)

O(1)

O(n)



  

How are our graphs represented?



  

Adjacency Matrices

● An adjacency matrix is a representation of a graph as an 
n × n matrix M of 0s and 1s, where

● Muv = 1 if (u, v) ∈ E.

● Muv = 0 otherwise.

● Memory usage: Θ(n2).

● Time to check if an edge exists: O(1)

● Time to find all outgoing edges for a node: Θ(n)
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0 0 0 1

0 1 0 0



  

 procedure breadthFirstSearch(s, G):
    let q be a new queue.
    for each node v in G:
      dist[v] = ∞

    dist[s] = 0
    enqueue(s, q)

    while q is not empty:
       let v = dequeue(q)
       for each neighbor u of v:
          if dist[u] = ∞:
             dist[u] = dist[v] + 1
             enqueue(u, q)

 procedure breadthFirstSearch(s, G):
    let q be a new queue.
    for each node v in G:
      dist[v] = ∞

    dist[s] = 0
    enqueue(s, q)

    while q is not empty:
       let v = dequeue(q)
       for each neighbor u of v:
          if dist[u] = ∞:
             dist[u] = dist[v] + 1
             enqueue(u, q)

O(1)

O(1)

O(n)

Θ(n)

O(n2)+

O(n2)

Why isn't the 
runtime Θ(n2)?
Why isn't the 
runtime Θ(n2)?



  

Linear Time on Graphs

● With an adjacency matrix, BFS runs in time O(n2).  Is 
that efficient?

● In a graph with n nodes and m edges, we say that an 
algorithm runs in linear time iff the algorithm runs in 
time O(m + n).
● This is linear in the number of “pieces” of the graph, which is 

the number of nodes plus the number of edges.

● On a dense graph, this implementation of BFS runs in 
linear time:

O(n2) = O(n2 + n) = O(m + n)
● On sparser graphs (say, m = O(n)), though, this is not 

linear time:

O(n2) ≠ O(n) = O(m + n)



  

The Issue

● Our algorithm is slow because this step 
always takes Θ(n) time:

for each neighbor u of v:  

● Can we refine our data structure for 
storing the graph so that we can easily 
find all edges incident to a node?

1 2
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Adjacency Lists

● An adjacency list is a representation of a graph as an array 
A of n lists.  The list A[u] holds all nodes v where (u, v) is an 
edge.

● Memory usage: Θ(n + m).

● Time to check if edge (u, v) exists: O(deg+(u))

● Time to find all outgoing edges for a node u: Θ(deg+(u))

1 2
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 procedure breadthFirstSearch(s, G):
    let q be a new queue.
    for each node v in G:
      dist[v] = ∞

    dist[s] = 0
    enqueue(s, q)

    while q is not empty:
       let v = dequeue(q)
       for each neighbor u of v:
          if dist[u] = ∞:
             dist[u] = dist[v] + 1
             enqueue(u, q)

 procedure breadthFirstSearch(s, G):
    let q be a new queue.
    for each node v in G:
      dist[v] = ∞

    dist[s] = 0
    enqueue(s, q)

    while q is not empty:
       let v = dequeue(q)
       for each neighbor u of v:
          if dist[u] = ∞:
             dist[u] = dist[v] + 1
             enqueue(u, q)

O(1)

O(1)

O(n)

O(n)

O(n2)+

O(n2)



  

A Better Analysis



  

 procedure breadthFirstSearch(s, G):
    let q be a new queue.
    for each node v in G:
      dist[v] = ∞

    dist[s] = 0
    enqueue(s, q)

    while q is not empty:
       let v = dequeue(q)
       for each neighbor u of v:
          if dist[u] = ∞:
             dist[u] = dist[v] + 1
             enqueue(u, q)

 procedure breadthFirstSearch(s, G):
    let q be a new queue.
    for each node v in G:
      dist[v] = ∞

    dist[s] = 0
    enqueue(s, q)

    while q is not empty:
       let v = dequeue(q)
       for each neighbor u of v:
          if dist[u] = ∞:
             dist[u] = dist[v] + 1
             enqueue(u, q)

O(1)

O(1)

O(n)

O(n)

O(m + n)



  

A Better Analysis

● Using adjacency lists, BFS runs in time O(m + n).
● This is linear time!

● Key Idea: Do a more precise accounting of the 
work done by an algorithm.

● Determine how much work is done across all 
iterations to determine total work.

● Don't just find worst-case runtime and multiply by 
number of iterations.

● Going forward, we will use adjacency lists rather 
than adjacency matrices as our graph 
representation unless stated otherwise.



  

Next Time

● Dijkstra's Algorithm
● Depth-First Search
● Directed Acyclic Graphs
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