Fundamental Graph Algorithms Part One

Announcements

- Problem Set One out, due Wednesday, July 3.
- Play around with O, Ω, and Θ notations!
- Get your feet wet designing and analyzing algorithms.
- Explore today's material on graphs.
- Can be completed using just material from the first two lectures.
- We suggest reading through the handout on how to approach the problem sets. There's a lot of useful information there!
- Office hours schedule will be announced tomorrow.

Announcements

- We will not be writing any code in CS161; we'll focus more on the design and analysis techniques.
- Each week, we will have an optional programming section where you can practice coding up these algorithms.
- Run by TA Andy Nguyen, who coaches Stanford's ACM programming team.
- Meets Thursdays, 4:15PM - 5:05PM in Gates $B 08$.

Graphs

A Social Network

Chemical Bonds

PANFLUTE FLOWCHART

A graph is a mathematical structure for representing relationships.

A graph consists of a set of nodes connected by edges.

Some graphs are directed.

Some graphs are undirected.

You can think of them as directed graphs with edges both ways.

Formalisms

- A graph is an ordered pair $G=(V, E)$ where
- V is a set of the vertices (nodes) of the graph.
- E is a set of the edges (arcs) of the graph.
- E can be a set of ordered pairs or unordered pairs.
- If E consists of ordered pairs, G is directed
- If E consists of unordered pairs, G is undirected.
- In an undirected graph, the degree of node v (denoted $\operatorname{deg}(\mathrm{v})$) is the number of edges incident to v.
- In a directed graph, the indegree of a node v (denoted $\boldsymbol{d e g}^{-(v)}$) is the number of edges entering v and the outdegree of a node v (denoted ($\boldsymbol{d e g}^{+}(\mathbf{v})$) is the number of edges leaving v.

An Application: Six Degrees of Separation

A Social Network

A Social Network

A Social Network

Shortest Paths

- The length of a path P (denoted $|P|$) in a graph is the number of edges it contains.
- A shortest path between u and v is a path P where $|P| \leq\left|P^{\prime}\right|$ for any path P^{\prime} from u to v.
- For any nodes u and v, define $\mathbf{d}(\boldsymbol{u}, \boldsymbol{v})$ to be the length of the shortest path from u to v, or ∞ if no such path exists.
- What is $\mathrm{d}(v, v)$ for any $v \in V$?

The Shortest Path Problem

- Input:
- A graph $G=(V, E)$, which may be directed or undirected.
- A start node $s \in V$.
- Output:
- A table dist[v], where $\operatorname{dist}[v]=\mathrm{d}(s, v)$ for any $v \in V$.

Radiating Outward

A Secondary Idea

- Proceed outward from the source node s in "layers."
- The first layer is all nodes of distance 0 .
- The second layer is all nodes of distance 1 .
- The third layer is all nodes of distance 2.
- etc.
- This gives rise to breadth-first search.
procedure breadthFirstSearch(s, G):
let q be a new queue.
for each node v in G :

$$
\operatorname{dist}[v]=\infty
$$

dist[s] = 0
enqueue(s, q)
while q is not empty:
let $v=$ dequeue (q)
for each neighbor u of v :
if dist $[u]=\infty$: $\operatorname{dist}[u]=\operatorname{dist}[v]+1$ enqueue(u, q)

Question 1: How do we prove this always finds the right distances?

Question 2: How efficiently does this find the right distances?

Theorem: Breadth-first search always terminates with dist[$v]=\mathrm{d}(s, v)$ for all $v \in V$.

Proof: Define "round n" of BFS to be an instance where at the start of the loop, all nodes v in the queue satisfy dist $[v]=n$. We will prove in an lemma the following are always true after the first n rounds:
(1) For any node $v, \mathrm{~d}(s, v)=n$ iff v is in the queue.
(2) All nodes v where $\mathrm{d}(s, v) \leq n$ have $\operatorname{dist}[v]=\mathrm{d}(s, v)$.
(3) All nodes v where $\mathrm{d}(s, v)>n$ have $\operatorname{dist}[v]=\infty$

Let k be the maximum finite distance of any node from node s. Note the following:

- Any node v where $\mathrm{d}(s, v)$ is finite satisfies $\mathrm{d}(s, v) \leq k$, and any node v where $d(s, v)>k$ satisfies $d(s, v)=\infty$. This follows from the fact that we picked the maximum possible finite k.
- There must be nodes at distances $0,1,2, \ldots, k$ from s. A simple inductive argument using property (1) shows that there will be exactly $k+1$ rounds, corresponding to distances $0,1, \ldots, k$.
So consider dist[v] for any node v after the algorithm terminates (that is, after $k+1$ rounds). If $\mathrm{d}(s, v)$ is finite, then $\mathrm{d}(s, v) \leq k \leq k+1$, and so by (1) we have $\operatorname{dist}[v]=\mathrm{d}(s, v)$. If $\mathrm{d}(s, v)=\infty$, then $\mathrm{d}(s, v)>k+1$, so by (2) we have $\operatorname{dist}[v]=\infty$. Thus $\mathrm{d}(s, v)=\operatorname{dist}[v]$ for all $v \in V$, as required.

Lemma: After n rounds, the following hold:

(1) For any node $v, \mathrm{~d}(s, v)=n$ iff v is in the queue.
(2) All nodes v where $\mathrm{d}(s, v) \leq n$ have $\operatorname{dist}[v]=\mathrm{d}(s, v)$.
(3) All nodes v where $\mathrm{d}(s, v)>n$ have $\operatorname{dist}[v]=\infty$

Proof: By induction n. After 0 rounds, $\operatorname{dist}[s]=0, \operatorname{dist}[v]=\infty$ for any $v \neq s$, and the queue holds only s. Since s is the only node at distance 0 , (1) - (3) hold.
For the inductive step, assume for some n that (1) - (3) hold after n rounds. We will prove (1) - (3) hold after $n+1$ rounds. We need to show the following:
(a) For any node $v, \mathrm{~d}(s, v)=n+1$ iff v is in the queue.
(b) All nodes v where $\mathrm{d}(\mathrm{s}, \mathrm{v}) \leq n+1$ have $\operatorname{dist}[\mathrm{v}]=\mathrm{d}(\mathrm{s}, \mathrm{v})$.
(c) All nodes v where $\mathrm{d}(\mathrm{s}, \mathrm{v})>\mathrm{n}+1$ have $\operatorname{dist[v]~}=\infty$

To prove (a), note that at the end of round n, all nodes of distance n will have been dequeued, so we need to show all nodes v where $d(s, v)=n+1$ are enqueued and nothing else is. Note that if a node u is enqueued in round $n+1$, then at the start of round $n+1 \operatorname{dist}[u]=\infty$ (so by (2) and (3), its distance is at least $n+1$) and u must have been adjacent to a node v in the queue (by (1), $\mathrm{d}(s, v)=n$). Thus there is a path of length $n+1$ to u (take the path of length n to v, then follow the edge to u), and there is no shorter path, so this is the shortest path to u. Thus, $\mathrm{d}(s, u)=n+1$. Also note that if a node u satisfies $d(s, u)=n+1$, then by (3) at the start of round $n+1$ it must have dist[u]=m. Also, it must be adjacent to some node at distance n, which by (1) must be in the queue at the start of the round. Thus at the end of round $n+1$, u will be enqueued and dist[$[u]$ set to $n+1$.
By our above argument, we know that (a) must hold. Since we didn't change any dist values for nodes at distance n or less, and we set dist values for all enqueued nodes to $n+1$, (b) holds. Finally, since we only changed labels for nodes at distance $n+1$, (c) holds as well. This completes the induction.

Question 1: How do we prove this always finds the right distances?

Question 2: How efficiently does this find the right distances?

Graph Terminology

- When analyzing algorithms on a graph, there are (usually) two parameters we care about:
- The number of nodes, denoted \boldsymbol{n}. $(n=|V|)$
- The number of edges, denoted $\boldsymbol{m} .(m=|E|)$
- Note that $m=O\left(n^{2}\right)$. (Why?)
- A graph is called dense if $m=\Theta\left(n^{2}\right)$. A graph is called sparse if it is not dense.
procedure breadthFirstSearch(s, G):
let q be a new queue.
for each node v in G :

$$
\operatorname{dist}[v]=\infty
$$

dist[s] = 0
enqueue(s, q)
while q is not empty:
let $v=$ dequeue (q)
for each neighbor u of v :
if dist $[u]=\infty$: $\operatorname{dist}[u]=\operatorname{dist}[v]+1$ enqueue(u, q)

O(1)
procedure breadthFirstSearch(s, G):

O(n)

O(1)
let q be a new queue. for each node v in G :

$$
\operatorname{dist}[v]=\infty
$$

dist[s] = 0 enqueue(s, q)
while q is not empty:
let $v=$ dequeue (q)
for each neighbor u of v :
if $\operatorname{dist}[u]=\infty$:
$\operatorname{dist}[u]=\operatorname{dist}[v]+1$ enqueue(u, q)

How are our graphs represented?

Adjacency Matrices

- An adjacency matrix is a representation of a graph as an $n \times n$ matrix M of 0 s and 1 s , where
- $M_{u v}=1$ if $(u, v) \in E$.
- $M_{u v}=0$ otherwise.

- Memory usage: $\boldsymbol{\Theta}\left(\boldsymbol{n}^{\mathbf{2}}\right)$.

$$
\left(\begin{array}{llll}
0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0
\end{array}\right)
$$

- Time to check if an edge exists: $\mathbf{O (1)}$
- Time to find all outgoing edges for a node: $\boldsymbol{\Theta}(\boldsymbol{n})$

O(1)
On)

O(1)
$+\mathbf{O}\left(n^{2}\right)$
$\mathbf{O}\left(n^{2}\right)$
procedure breadthFirstSearch(s, G):
let q be a new queue. for each node v in G :

$$
\operatorname{dist}[v]=\infty
$$

dist [s] = 0
enqueue (s, q)
Why isn't the runtime $\boldsymbol{\Theta}\left(\boldsymbol{n}^{2}\right)$?
while q is not empty:
let $v=$ dequeue (q)
for each neighbor u of v :
$\boldsymbol{\Theta}(\mathbf{n})$

$$
\text { if } \operatorname{dist}[u]=\infty \text { : }
$$ $\operatorname{dist}[u]=\operatorname{dist}[v]+1$ enqueue (u, q)

Linear Time on Graphs

- With an adjacency matrix, BFS runs in time $\mathbf{O}\left(\boldsymbol{n}^{2}\right)$. Is that efficient?
- In a graph with n nodes and m edges, we say that an algorithm runs in linear time iff the algorithm runs in time $\mathrm{O}(m+n)$.
- This is linear in the number of "pieces" of the graph, which is the number of nodes plus the number of edges.
- On a dense graph, this implementation of BFS runs in linear time:

$$
\mathrm{O}\left(n^{2}\right)=\mathrm{O}\left(n^{2}+n\right)=\mathrm{O}(m+n)
$$

- On sparser graphs (say, $m=O(n)$), though, this is not linear time:

$$
\mathrm{O}\left(n^{2}\right) \neq \mathrm{O}(n)=\mathrm{O}(m+n)
$$

The Issue

- Our algorithm is slow because this step always takes $\Theta(n)$ time:
for each neighbor u of v :
- Can we refine our data structure for storing the graph so that we can easily find all edges incident to a node?

Adjacency Lists

- An adjacency list is a representation of a graph as an array A of n lists. The list $A[u]$ holds all nodes v where (u, v) is an edge.

- Memory usage: $\boldsymbol{\Theta}(\boldsymbol{n}+\boldsymbol{m})$.
- Time to check if edge (u, v) exists: $\mathbf{O}\left(\operatorname{deg}^{+}(u)\right)$
- Time to find all outgoing edges for a node u : $\boldsymbol{\Theta}\left(\operatorname{deg}^{+}(\mathbf{u})\right)$

O(1)
O(n)

O(1)
$+\mathbf{O}\left(n^{2}\right)$
$\mathbf{O}\left(n^{2}\right)$
procedure breadthFirstSearch(s, G):
let q be a new queue. for each node v in G :

$$
\operatorname{dist}[v]=\infty
$$

dist[s] $=0$
enqueue(s, q)
while q is not empty:
let $v=$ dequeue (q)
for each neighbor u of v :
O(n)
$\operatorname{dist}[u]=\operatorname{dist}[v]+1$ enqueue(u, q)

A Better Analysis
procedure breadthFirstSearch(s, G):
O(1)
O(n)
let q be a new queue. for each node v in G :

$$
\operatorname{dist}[v]=\infty
$$

dist[s] $=0$
enqueue(s, q)
O(n) while q is not empty:
let $v=$ dequeue (q)
for each neighbor u of v :
if $\operatorname{dist}[u]=\infty$: $\operatorname{dist}[u]=\operatorname{dist}[v]+1$ enqueue(u, q)

A Better Analysis

- Using adjacency lists, BFS runs in time $\mathbf{O}(\boldsymbol{m}+\boldsymbol{n})$.
- This is linear time!
- Key Idea: Do a more precise accounting of the work done by an algorithm.
- Determine how much work is done across all iterations to determine total work.
- Don't just find worst-case runtime and multiply by number of iterations.
- Going forward, we will use adjacency lists rather than adjacency matrices as our graph representation unless stated otherwise.

Next Time

- Dijkstra's Algorithm
- Depth-First Search
- Directed Acyclic Graphs

