

Fundamental Graph Algorithms
Part One

Announcements

● Problem Set One out, due Wednesday, July 3.

● Play around with O, Ω, and Θ notations!

● Get your feet wet designing and analyzing algorithms.

● Explore today's material on graphs.

● Can be completed using just material from the first two
lectures.

● We suggest reading through the handout on how to
approach the problem sets. There's a lot of useful
information there!

● Office hours schedule will be announced tomorrow.

Announcements

● We will not be writing any code in
CS161; we'll focus more on the design
and analysis techniques.

● Each week, we will have an optional
programming section where you can
practice coding up these algorithms.

● Run by TA Andy Nguyen, who coaches
Stanford's ACM programming team.

● Meets Thursdays, 4:15PM – 5:05PM in
Gates B08.

Graphs

A Social Network

Chemical Bonds

http://4.bp.blogspot.com/-xCtBJ8lKHqA/Tjm0BONWBRI/AAAAAAAAAK4/-mHrbAUOHHg/s1600/Etha
nol2.gif

http://strangemaps.files.wordpress.com/2007/02/fullinterstatemap-web.jpg

http://www.toothpastefordinner.com/

http://www.prospectmagazine.co.uk/wp-content/uploads/2009/09/163_tayl
or2.jpg

A graph is a mathematical structure
for representing relationships.

A graph consists of a set of nodes
connected by edges.

Some graphs are directed.

CAT SAT RAT

RANMAN

MAT

CAN

Some graphs are undirected.

You can think of them as directed
graphs with edges both ways.

Formalisms

● A graph is an ordered pair G = (V, E) where
● V is a set of the vertices (nodes) of the graph.
● E is a set of the edges (arcs) of the graph.

● E can be a set of ordered pairs or unordered pairs.
● If E consists of ordered pairs, G is directed
● If E consists of unordered pairs, G is undirected.

● In an undirected graph, the degree of node v (denoted
deg(v)) is the number of edges incident to v.

● In a directed graph, the indegree of a node v (denoted
deg -(v)) is the number of edges entering v and the
outdegree of a node v (denoted (deg+(v)) is the
number of edges leaving v.

An Application: Six Degrees of Separation

A Social Network

4

55

5

1

01

1 2

51

4

3

43

223 2

A Social Network

4

55

5

1

01

1 2

51

4

3

43

223 2

A Social Network

4

55

5

1

01

1 2

51

4

3

43

223 2

Shortest Paths

● The length of a path P (denoted |P|) in a
graph is the number of edges it contains.

● A shortest path between u and v is a
path P where |P| ≤ |P'| for any path P'
from u to v.

● For any nodes u and v, define d(u, v) to
be the length of the shortest path from u
to v, or ∞ if no such path exists.

● What is d(v, v) for any v ∈ V?

The Shortest Path Problem

● Input:
● A graph G = (V, E), which may be directed or

undirected.
● A start node s ∈ V.

● Output:
● A table dist[v], where dist[v] = d(s, v) for any

v ∈ V.

Radiating Outward

0

Radiating Outward

1

01

1

1

Radiating Outward

1

01

1 2

1

22 2

Radiating Outward

1

01

1 2

1

3

3

223 2

Radiating Outward

4

1

01

1 2

1

4

3

43

223 2

Radiating Outward

4

55

5

1

01

1 2

51

4

3

43

223 2

A Secondary Idea

● Proceed outward from the source node s
in “layers.”
● The first layer is all nodes of distance 0.
● The second layer is all nodes of distance 1.
● The third layer is all nodes of distance 2.
● etc.

● This gives rise to breadth-first search.

 procedure breadthFirstSearch(s, G):
 let q be a new queue.
 for each node v in G:
 dist[v] = ∞

 dist[s] = 0
 enqueue(s, q)

 while q is not empty:
 let v = dequeue(q)
 for each neighbor u of v:
 if dist[u] = ∞:
 dist[u] = dist[v] + 1
 enqueue(u, q)

 procedure breadthFirstSearch(s, G):
 let q be a new queue.
 for each node v in G:
 dist[v] = ∞

 dist[s] = 0
 enqueue(s, q)

 while q is not empty:
 let v = dequeue(q)
 for each neighbor u of v:
 if dist[u] = ∞:
 dist[u] = dist[v] + 1
 enqueue(u, q)

 Question 1: How do we prove this always
finds the right distances?

 Question 2: How efficiently does this find
the right distances?

Theorem: Breadth-first search always terminates with dist[v] = d(s, v)
for all v ∈ V.

Proof: Define “round n” of BFS to be an instance where at the start of
the loop, all nodes v in the queue satisfy dist[v] = n. We will prove
in an lemma the following are always true after the first n rounds:

 (1) For any node v, d(s, v) = n iff v is in the queue.
 (2) All nodes v where d(s, v) ≤ n have dist[v] = d(s, v).
 (3) All nodes v where d(s, v) > n have dist[v] = ∞

Let k be the maximum finite distance of any node from node s. Note
the following:

· Any node v where d(s, v) is finite satisfies d(s, v) ≤ k, and any
 node v where d(s, v) > k satisfies d(s, v) = ∞. This follows from
 the fact that we picked the maximum possible finite k.

· There must be nodes at distances 0, 1, 2, …, k from s. A simple
 inductive argument using property (1) shows that there will be
 exactly k + 1 rounds, corresponding to distances 0, 1, …, k.

So consider dist[v] for any node v after the algorithm terminates
(that is, after k+1 rounds). If d(s, v) is finite, then d(s, v) ≤ k ≤ k+1,
and so by (1) we have dist[v] = d(s, v). If d(s, v) = ∞, then
d(s, v) > k + 1, so by (2) we have dist[v] = ∞. Thus d(s, v) = dist[v]
for all v ∈ V, as required. ■

Lemma: After n rounds, the following hold:

 (1) For any node v, d(s, v) = n iff v is in the queue.
 (2) All nodes v where d(s, v) ≤ n have dist[v] = d(s, v).
 (3) All nodes v where d(s, v) > n have dist[v] = ∞

Proof: By induction n. After 0 rounds, dist[s] = 0, dist[v] = ∞ for any v ≠ s, and the
queue holds only s. Since s is the only node at distance 0, (1) – (3) hold.

For the inductive step, assume for some n that (1) – (3) hold after n rounds. We will
prove (1) – (3) hold after n + 1 rounds. We need to show the following:

 (a) For any node v, d(s, v) = n + 1 iff v is in the queue.
 (b) All nodes v where d(s, v) ≤ n + 1 have dist[v] = d(s, v).
 (c) All nodes v where d(s, v) > n + 1 have dist[v] = ∞

To prove (a), note that at the end of round n, all nodes of distance n will have been
dequeued, so we need to show all nodes v where d(s, v) = n + 1 are enqueued and
nothing else is. Note that if a node u is enqueued in round n + 1, then at the start of
round n + 1 dist[u] = ∞ (so by (2) and (3), its distance is at least n + 1) and u must
have been adjacent to a node v in the queue (by (1), d(s, v) = n). Thus there is a
path of length n + 1 to u (take the path of length n to v, then follow the edge to u),
and there is no shorter path, so this is the shortest path to u. Thus, d(s, u) = n + 1.

Also note that if a node u satisfies d(s, u) = n + 1, then by (3) at the start of round
n + 1 it must have dist[u] = ∞. Also, it must be adjacent to some node at distance
n, which by (1) must be in the queue at the start of the round. Thus at the end of
round n + 1, u will be enqueued and dist[u] set to n + 1.

By our above argument, we know that (a) must hold. Since we didn't change any
dist values for nodes at distance n or less, and we set dist values for all enqueued
nodes to n + 1, (b) holds. Finally, since we only changed labels for nodes at
distance n + 1, (c) holds as well. This completes the induction. ■

 Question 1: How do we prove this always
finds the right distances?

 Question 2: How efficiently does this find
the right distances?

Graph Terminology

● When analyzing algorithms on a graph,
there are (usually) two parameters we
care about:
● The number of nodes, denoted n. (n = |V|)
● The number of edges, denoted m. (m = |E|)

● Note that m = O(n2). (Why?)
● A graph is called dense if m = Θ(n2). A

graph is called sparse if it is not dense.

 procedure breadthFirstSearch(s, G):
 let q be a new queue.
 for each node v in G:
 dist[v] = ∞

 dist[s] = 0
 enqueue(s, q)

 while q is not empty:
 let v = dequeue(q)
 for each neighbor u of v:
 if dist[u] = ∞:
 dist[u] = dist[v] + 1
 enqueue(u, q)

 procedure breadthFirstSearch(s, G):
 let q be a new queue.
 for each node v in G:
 dist[v] = ∞

 dist[s] = 0
 enqueue(s, q)

 while q is not empty:
 let v = dequeue(q)
 for each neighbor u of v:
 if dist[u] = ∞:
 dist[u] = dist[v] + 1
 enqueue(u, q)

 procedure breadthFirstSearch(s, G):
 let q be a new queue.
 for each node v in G:
 dist[v] = ∞

 dist[s] = 0
 enqueue(s, q)

 while q is not empty:
 let v = dequeue(q)
 for each neighbor u of v:
 if dist[u] = ∞:
 dist[u] = dist[v] + 1
 enqueue(u, q)

 procedure breadthFirstSearch(s, G):
 let q be a new queue.
 for each node v in G:
 dist[v] = ∞

 dist[s] = 0
 enqueue(s, q)

 while q is not empty:
 let v = dequeue(q)
 for each neighbor u of v:
 if dist[u] = ∞:
 dist[u] = dist[v] + 1
 enqueue(u, q)

O(1)

O(1)

O(n)

How are our graphs represented?

Adjacency Matrices

● An adjacency matrix is a representation of a graph as an
n × n matrix M of 0s and 1s, where

● Muv = 1 if (u, v) ∈ E.

● Muv = 0 otherwise.

● Memory usage: Θ(n2).

● Time to check if an edge exists: O(1)

● Time to find all outgoing edges for a node: Θ(n)

1 2

34

0 1 1 1

0 0 0 0

0 0 0 1

0 1 0 0

 procedure breadthFirstSearch(s, G):
 let q be a new queue.
 for each node v in G:
 dist[v] = ∞

 dist[s] = 0
 enqueue(s, q)

 while q is not empty:
 let v = dequeue(q)
 for each neighbor u of v:
 if dist[u] = ∞:
 dist[u] = dist[v] + 1
 enqueue(u, q)

 procedure breadthFirstSearch(s, G):
 let q be a new queue.
 for each node v in G:
 dist[v] = ∞

 dist[s] = 0
 enqueue(s, q)

 while q is not empty:
 let v = dequeue(q)
 for each neighbor u of v:
 if dist[u] = ∞:
 dist[u] = dist[v] + 1
 enqueue(u, q)

O(1)

O(1)

O(n)

Θ(n)

O(n2)+

O(n2)

Why isn't the
runtime Θ(n2)?
Why isn't the
runtime Θ(n2)?

Linear Time on Graphs

● With an adjacency matrix, BFS runs in time O(n2). Is
that efficient?

● In a graph with n nodes and m edges, we say that an
algorithm runs in linear time iff the algorithm runs in
time O(m + n).
● This is linear in the number of “pieces” of the graph, which is

the number of nodes plus the number of edges.

● On a dense graph, this implementation of BFS runs in
linear time:

O(n2) = O(n2 + n) = O(m + n)
● On sparser graphs (say, m = O(n)), though, this is not

linear time:

O(n2) ≠ O(n) = O(m + n)

The Issue

● Our algorithm is slow because this step
always takes Θ(n) time:

for each neighbor u of v:

● Can we refine our data structure for
storing the graph so that we can easily
find all edges incident to a node?

1 2

34

0 1 1 1

0 0 0 0

0 0 0 1

0 1 0 0

Adjacency Lists

● An adjacency list is a representation of a graph as an array
A of n lists. The list A[u] holds all nodes v where (u, v) is an
edge.

● Memory usage: Θ(n + m).

● Time to check if edge (u, v) exists: O(deg+(u))

● Time to find all outgoing edges for a node u: Θ(deg+(u))

1 2

34

1

2

3

4

2 3 4

4

2

 procedure breadthFirstSearch(s, G):
 let q be a new queue.
 for each node v in G:
 dist[v] = ∞

 dist[s] = 0
 enqueue(s, q)

 while q is not empty:
 let v = dequeue(q)
 for each neighbor u of v:
 if dist[u] = ∞:
 dist[u] = dist[v] + 1
 enqueue(u, q)

 procedure breadthFirstSearch(s, G):
 let q be a new queue.
 for each node v in G:
 dist[v] = ∞

 dist[s] = 0
 enqueue(s, q)

 while q is not empty:
 let v = dequeue(q)
 for each neighbor u of v:
 if dist[u] = ∞:
 dist[u] = dist[v] + 1
 enqueue(u, q)

O(1)

O(1)

O(n)

O(n)

O(n2)+

O(n2)

A Better Analysis

 procedure breadthFirstSearch(s, G):
 let q be a new queue.
 for each node v in G:
 dist[v] = ∞

 dist[s] = 0
 enqueue(s, q)

 while q is not empty:
 let v = dequeue(q)
 for each neighbor u of v:
 if dist[u] = ∞:
 dist[u] = dist[v] + 1
 enqueue(u, q)

 procedure breadthFirstSearch(s, G):
 let q be a new queue.
 for each node v in G:
 dist[v] = ∞

 dist[s] = 0
 enqueue(s, q)

 while q is not empty:
 let v = dequeue(q)
 for each neighbor u of v:
 if dist[u] = ∞:
 dist[u] = dist[v] + 1
 enqueue(u, q)

O(1)

O(1)

O(n)

O(n)

O(m + n)

A Better Analysis

● Using adjacency lists, BFS runs in time O(m + n).
● This is linear time!

● Key Idea: Do a more precise accounting of the
work done by an algorithm.

● Determine how much work is done across all
iterations to determine total work.

● Don't just find worst-case runtime and multiply by
number of iterations.

● Going forward, we will use adjacency lists rather
than adjacency matrices as our graph
representation unless stated otherwise.

Next Time

● Dijkstra's Algorithm
● Depth-First Search
● Directed Acyclic Graphs

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46

