

Welcome to CS161!

● Two Handouts
● Today:

● Course Overview
● Correctness Proofs
● Runtime Analysis

Course Staff

Keith Schwarz (htiek@cs.stanford.edu)

Andy Nguyen (tanonev@stanford.edu)
Julie Tibshirani (jtibs@cs.stanford.edu)
Kostas Kollias (kkollias@stanford.edu)
Phillip Chen (pcchen@stanford.edu)
Sean Choi (yo2seol@stanford.edu)

Course Staff Mailing List:
cs161-sum1213-staff@lists.stanford.edu

mailto:htiek@cs.stanford.edu
mailto:tanonev@stanford.edu
mailto:jtibs@cs.stanford.edu
mailto:kkollias@stanford.edu
mailto:pcchen@stanford.edu
mailto:yo2seol@stanford.edu
mailto:cs161-sum1213-staff@lists.stanford.edu

http://cs161.stanford.edu

The Course Website

http://cs161.stanford.edu/

Required Reading

● Algorithm Design by
Kleinberg and Tardos.

● Available in the
Stanford Bookstore.

Grading Policies

70% Assignments
30% Final Project

Prerequisites

● CS103 (Mathematical Foundations of
Computing)
● Mathematical proof.
● Discrete math (sets, functions, graphs,

relations.)
● Undecidability
● P ≟ NP
● (etc.)

Prerequisites

● CS109 (Probability for Computer
Scientists)
● Linearity of expectation
● Random variables
● Conditional probability
● (etc.)

Prerequisites

● CS106B/X (Programming Abstractions)
● Recursion and recursive problem solving.
● Fundamental data structures (stacks,

queues, lists, binary search trees, hash
tables.)

● Basic algorithmic analysis using big-O
notation.

● (etc.)

Why Study Algorithms?

Key Questions

● How do you find efficient solutions to
seemingly hard problems?

● How do you prove that an algorithm
is correct?

● How do you analyze an algorithm's
runtime?

A First Algorithm: Insertion Sort

 procedure insertionSort(list A):
 for i = 0 to length(A) - 1

 let j = i
 while j > 0 and A[j - 1] > A[j]:

 swap A[j - 1] and A[j]
 j = j – 1

 procedure insertionSort(list A):
 for i = 0 to length(A) - 1

 let j = i
 while j > 0 and A[j - 1] > A[j]:

 swap A[j - 1] and A[j]
 j = j – 1

 Question 1: How do we prove this always
sorts the input array?

 Question 2: How efficiently does insertion
sort sort the input array?

Proving Correctness

● Algorithms represent a process during which
data is created, modified, or destroyed.

● Reasoning about these processes can be tricky
because so much data generated or changed.

● It often helps to look for things that don't
change.

● An invariant is a property of data that is
unmodified by an algorithm, typically a set of
relationships that hold between elements.

● Finding invariants makes it easier to prove
properties of the algorithm.

Insertion Sort

2 1 64 7

Lemma: If A[0 … i–1] is sorted at the top of the insertion sort loop, after
the inner loop terminates, A[0 … i] will be sorted.

Proof: Color all values in A[0 … i-1] red and color the element at A[i] gold.
 Note that the following are always true:

 · The gold element is always at index j, since it starts at index i = j
 and each time it moves, j is updated to its new index. Since all swaps
 involve positions j and j-1, each swap moves the gold element.

 · The red elements are always in sorted order, since they begin sorted
 and every swap exchanges the gold element with an adjacent red
 element and thus never moves a red element across another.

 · The gold element is always less than all red elements that come after
 it. Initially, there are no red elements after the gold element, and
 each swap moves a larger red element across the gold element.

 Since the inner loop runs while j > 0 and A[j–1] > A[j], we know one of
 the following must be true when the loop ends:

 Case 1: j = 0. Since the gold element is less than all elements after it
 (which are red) and the red elements are sorted, A[0 … i] is sorted.

 Case 2: A[j–1] ≤ A[j]. Since the red elements are sorted and the gold
 element is at least as large as the red element that precedes it, it is no
 smaller than any preceding red elements. It is also smaller than all
 successive red elements. Thus A[0 … i] is sorted. ■

Proof Structure

● At a high level, the proof works by finding three invariants
(the position of the gold element, the relative ordering of the
red elements, and the relation of the gold element to the
successive red elements).

● The proof works by establishing these are indeed invariants
(through informal inductive arguments), then showing that
these invariants show the overall result.

● Note the level of detail – this proof could be made
significantly more rigorous and complex, but sufficiently
justifies its main points and show how they lead to an
overall result.

● It takes practice to write proofs like this, and we'll try to
give you feedback in the problem sets to get you to write
clean proofs.

Theorem: Insertion sort sorts its argument.
Proof: We will prove that after any number of iterations of the

top-level loop, A[0 … i–1] is sorted. Since the loop terminates with
i = length(A), this implies A[0 … length(A)–1] is sorted when the
loop ends, proving the theorem.

To see this, note that before the loop starts, when i = 0,
A[0 … i–1] = A[0 … -1] is trivially sorted. Otherwise, let i₀ be the
value of i at the start of some loop iteration. If A[0 … i₀–1] is
sorted at the start of that loop iteration, then by our lemma
A[0 … i₀] will be sorted at the end of the iteration. Since i = i₀+1
at the end of the loop, this means A[0 … i-1] is still sorted at the
end of the loop. ■

 Question 1: How do we prove this always
sorts the input array?

 Question 2: How efficiently does insertion
sort sort the input array?

 procedure insertionSort(list A):
 for i = 0 to length(A) - 1

 let j = i
 while j > 0 and A[j - 1] > A[j]:
 swap A[j - 1] and A[j]
 j = j – 1

Analyzing the Runtime

Total work done:
O(n2)

O(n)
work per
iteration

O(n)
iterations

What does big-O notation mean?

Big-O Notation

● Big-O notation is a mathematical notation for
upper-bounding a function's growth rate.

● Informally, can be found by ignoring constants and
non-dominant growth terms.

● Examples:
● n + 137 = O(n)
● 3n + 42 = O(n)
● n2 + 3n – 2 = O(n2)
● n3 + 10n2 log n – 15n = O(n3)
● 2n + n2 = O(2n)

Big-O Notation, Formally

● Formally speaking, let f, g : ℕ → ℕ.
● We say f(n) = O(g(n)) iff

 ∃n0 ∈ ℕ, c ∈ ℝ.
 ∀n ∈ ℕ.
 (n ≥ n0 → f(n) ≤ c·g(n))

● Intuitively, when n gets “sufficiently
large” (i.e. greater than n0), f(n) is
bounded from above by some constant
multiple (specifically, c) of g(n).

f(n) = O(g(n))

f(n)

g(n)

c · g(n)

n₀

Big-O and Runtimes

● This definition of big-O notation talks about
functions, not runtimes.

● How do we connect them together?

● For any algorithm A that works on inputs of size n,
there is some function wA(n) that gives the
maximum amount of work A can do on an input of
size n.

● We might not know what this function is, but
mathematically it's guaranteed to exist.

● When we say an algorithm A has worst-case
runtime O(n2), for example, we're saying that
wA(n) = O(n2).

Big-O Notation, Formally

● Insertion sort never executes any more than
3n2 + 2n + 1 lines of code.

Claim: 3n2 + 2n + 1 = O(n2).

Proof: Take n₀ = 1 and c = 6. Then for
 any n ≥ n₀, we have

 3n2 + 2n + 1 ≤ 3n2 + 2n · n + 1 · n2

 = 3n2 + 2n2 + n2

 = 6n2

 ≤ 6(n2) ■

Big-O Notation, Formally

● Insertion sort never executes any more than
3n2 + 2n + 1 lines of code.

Claim: 3n2 + 2n + 1 = O(n161).

Proof: Take n₀ = 1 and c = 6. Then for
 any n ≥ n₀, we have

 3n2 + 2n + 1 ≤ 3n2 · n159 + 2n · n160 + 1 · n161

 = 3n161 + 2n161 + n161

 = 6n161

 = 6(n161) ■ Big-O does not
guarantee a tight

bound!

Big-O does not
guarantee a tight

bound!

A Different Analysis

● What is the best-case runtime for insertion sort?

● What happens if the input is already sorted?

● (For comparison: what happens if the input is
reverse-sorted?)

 procedure insertionSort(list A):
for i = 0 to length(A) - 1

let j = i
while j > 0 and A[j - 1] > A[j]:

swap A[j - 1] and A[j]
j = j – 1

 procedure insertionSort(list A):
for i = 0 to length(A) - 1

let j = i
while j > 0 and A[j - 1] > A[j]:

swap A[j - 1] and A[j]
j = j – 1

A Different Analysis

● True but not very precise statement:

In the best case,
insertion sort does O(n) work.

● Why is this imprecise?
● Big-O gives an upper bound!

 ∃n0 ∈ ℕ, c ∈ ℝ.
 ∀n ∈ ℕ.
 (n ≥ n0 → f(n) ≤ c·g(n))

● Saying the best-case runtime is O(n) doesn't
preclude a best-case runtime of 1 or log n, for
example.

Ω Notation

● Let f, g : ℕ → ℕ.
● We say f(n) = Ω(g(n)) iff

 ∃n0 ∈ ℕ, c > 0 ∈ ℝ.
 ∀n ∈ ℕ.
 (n ≥ n0 → f(n) ≥ c · g(n))

● Intuitively, when n gets “sufficiently large” (i.e.
greater than n0), f(n) is bounded from below by
some constant multiple (specifically, c) of g(n).

● In our case, insertion sort runs in time Ω(n).

f(n) = Ω(g(n))

f(n)

g(n)

c · g(n)

n₀

Θ Notation

● We say f(n) = Θ(g(n)) iff both f(n) = O(g(n))
and f(n) = Ω(g(n)).

● Intuitively, f(n) and g(n) grow at the same rate
as one another.

● Examples:
● 10n + 137 = Θ(n)
● n = Θ(10n + 137)
● 15 log (n + 3) = Θ(log n)

The Story So Far

● A quick glance at the pseudocode tells us that

Insertion sort runs in time O(n2)

 Insertion sort runs in time Ω(n)

● By finding concrete examples of best-case and
worst-case inputs to insertion sort, we now know

The worst-case runtime of insertion sort is Θ(n2)

The best-case runtime of insertion sort is Θ(n)

● What about the average-case?

Defining our Inputs

● To perform an average-case analysis, we need to
define some distribution over our inputs.

● Insertion sort doesn't care about the absolute
values of the array elements; just their relative
values.

● Assume the input to be sorted is a random
permutation of 1 … n.
● This doesn't account for duplicate values; for now, we'll

ignore that.
● In this case, how fast will insertion sort be?

A More Precise Analysis

● Our original analysis had this form:

● Each time the outer loop executes, the inner loop does
O(n) work.

● The outer loop runs O(n) times.

● Therefore, the total work done is O(n2).

● We can be much more precise in our analysis by noting
the following:

● Across the entire run of the algorithm, the code purely in
the outer loop runs some number of times.

● Across the entire run of the algorithm, the code purely
inside the inner loop runs some number of times.

● The total work across the entire run of the algorithm is
the sum of these two amounts.

 procedure insertionSort(list A):
 for i = 0 to length(A) - 1

 let j = i
 while j > 0 and A[j - 1] > A[j]:

 swap A[j - 1] and A[j]
 j = j – 1

Work done across the entire algorithm:
Θ(n)

 procedure insertionSort(list A):
 for i = 0 to length(A) - 1

 let j = i
 while j > 0 and A[j - 1] > A[j]:

 swap A[j - 1] and A[j]
 j = j – 1

Work done across the entire algorithm:
Θ(n + #swaps)

Insertion Sort Runtime

● The runtime of insertion sort is

Θ(n) + Θ(n + #swaps) = Θ(n + #swaps)
● Matches our intuition:

● In a sorted array, no swaps need to be made. The
runtime is Θ(n).

● In a reverse-sorted array, Θ(n2) swaps need to be
made. The runtime is Θ(n2).

● The number of swaps is somehow connected to
the “sortedness” of the original array.

● How can we measure this?

Inversions

● An inversion in an array A is a pair of elements
(A[i], A[j]) such that i < j (the first element
appears before the second), but A[i] > A[j] (the
elements are out of order).

● How many inversions are there in this array?

● How many inversions are there in a sorted
array?

2 4 7 1 6

Inversions and Insertion Sort

● Key Observation: An unsorted array
contains some number of inversions,
while a sorted array contains 0.

● Every sorting algorithm ultimately
decreases the number of inversions in
the array to zero.

● How efficiently do these algorithms
decrease the number of inversions?

Counting Inversions

2 1 674

Total Inversions: 4

Counting Inversions

2 1 64 7

Total Inversions: 3

Counting Inversions

2 1 674

Total Inversions: 2

The Critical Observation

● Every swap performed by insertion sort
decreases the number of inversions by
exactly one.

● Proof idea:

left side X right sideY

left side right sideY X

A Better Analysis

● Insertion sort's runtime is

Θ(n + #swaps)
● Since the number of swaps equals the

number of inversions I, the runtime is

Θ(n + I)
● How many inversions are there in a

random permutation of 1 … n?

Average-Case Analysis

● To count up the expected number of inversions in a
random array, we can determine the probability that
any individual pair is an inversion, then sum up across
all pairs.

● The math checks out – we'll see why in a few weeks!

● If the input array is chosen truly at random, the
probability that any pair of array elements form an
inversion is 50%.

● 50% chance they're in order, 50% chance they're not.

● There are n(n – 1) / 2 pairs of elements in an n-element
array.

● Average number of inversions: n(n – 1) / 4 = Θ(n2)

● Average runtime for insertion sort: Θ(n + n2) = Θ(n2).

Why All This Matters

● Insertion sort is a simple algorithm, but by
analyzing its correctness and runtime, we
explored the following:
● Loop invariants and correctness proofs.
● Asymptotic notation: O, Ω, and Θ notations.
● Techniques for precisely analyzing algorithms.

● As we start to explore more complex
algorithms, we will employ these techniques
more extensively.

Next Time

● Fundamental Graph Algorithms
● Breadth-First Search.
● Representing Graphs.
● Dijkstra's Algorithm.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48

