

Searching and Sorting
Part One

Recap from Last Time

Assume any individual statement takes one unit
of time to execute. If the input Vector has n elements,

how many time units will this code take to run?

double averageOf(const Vector<int>& vec) {
 double total = 0.0;

 for (int i = 0; i < vec.size(); i++) {
 total += vec[i];
 }

 return total / vec.size();
}

Assume any individual statement takes one unit
of time to execute. If the input Vector has n elements,

how many time units will this code take to run?

double averageOf(const Vector<int>& vec) {
 double total = 0.0;

 for (int i = 0; i < vec.size(); i++) {
 total += vec[i];
 }

 return total / vec.size();
}

1

1 n+1 n

n

1

One possible answer: 3n + 4.

double averageOf(const Vector<int>& vec) {
 double total = 0.0;

 for (int i = 0; i < vec.size(); i++) {
 total += vec[i];
 }

 return total / vec.size();
}

1

1 n+1 n

n

1

One possible answer: 3n + 4.
More useful answer: O(n).

double averageOf(const Vector<int>& vec) {
 double total = 0.0;

 for (int i = 0; i < vec.size(); i++) {
 total += vec[i];
 }

 return total / vec.size();
}

1

1 n+1 n

n

1

Work Done: O(n2).

void printStars(int n) {
 for (int i = 0; i < n; i++) {
 for (int j = 0; j < n; j++) {
 cout << '*' << endl;
 }
 }
}

How much time will it take for these
functions to run, as a function of n?

void beni(int n) {
 for (int i = 0; i < 2 * n; i++) {
 for (int j = 0; j < 5 * n; j++) {
 cout << '*' << endl;
 }
 }
}
void pando(int n) {
 for (int i = 0; i < 3 * n; i++) {
 cout << "*" << endl;
 }
 for (int i = 0; i < 8; i++) {
 cout << "*" << endl;
 }
}

O(n2)O(n2)

O(n)O(n)

New Stuff!

Sorting Algorithms

What is sorting?

One style of
“sorting,” but not

the one we’re
thinking about...

One style of
“sorting,” but not

the one we’re
thinking about...

Problem: Given a list of data points, sort those data points

into ascending / descending order by some quantity.

Suppose we want to rearrange a sequence
to put elements into ascending order.

What are some strategies we could use?

How do those strategies compare?

Is there a “best” strategy?

An Initial Idea: Selection Sort

An Initial Idea: Selection Sort

7 624 1

An Initial Idea: Selection Sort

7 624 1

The smallest
element

should go in
front.

The smallest
element

should go in
front.

An Initial Idea: Selection Sort

7 624 1

An Initial Idea: Selection Sort

7 621 4

An Initial Idea: Selection Sort

7 621 4

This element is
in the right
place now.

This element is
in the right
place now.

The remaining
elements are in no
particular order.

The remaining
elements are in no
particular order.

An Initial Idea: Selection Sort

7 621 4

An Initial Idea: Selection Sort

7 621 4

An Initial Idea: Selection Sort

7 621 4
The smallest element of
the remaining elements
goes at the front of the
remaining elements.

The smallest element of
the remaining elements
goes at the front of the
remaining elements.

An Initial Idea: Selection Sort

7 621 4

An Initial Idea: Selection Sort

7 641 2

An Initial Idea: Selection Sort

7 641 2

These elements
are in the right

place now.

These elements
are in the right

place now.

The remaining
elements are in no
particular order.

The remaining
elements are in no
particular order.

An Initial Idea: Selection Sort

7 641 2

An Initial Idea: Selection Sort

7 641 2

An Initial Idea: Selection Sort

7 641 2

The smallest of these
remaining elements

goes at the front of the
remaining elements.

The smallest of these
remaining elements

goes at the front of the
remaining elements.

An Initial Idea: Selection Sort

7 641 2

An Initial Idea: Selection Sort

7 641 2

These elements
are in the right

place now.

These elements
are in the right

place now.

The remaining
elements are in no
particular order.

The remaining
elements are in no
particular order.

An Initial Idea: Selection Sort

7 641 2

An Initial Idea: Selection Sort

7 641 2

An Initial Idea: Selection Sort

7 641 2
The smallest of these

elements needs to go at
the front of this group of

elements.

The smallest of these
elements needs to go at
the front of this group of

elements.

An Initial Idea: Selection Sort

7 641 2

An Initial Idea: Selection Sort

741 2 6

An Initial Idea: Selection Sort

741 2 6

These elements
are in the right

place now.

These elements
are in the right

place now.

The remaining
elements are in no
particular order.

The remaining
elements are in no
particular order.

An Initial Idea: Selection Sort

741 2 6

An Initial Idea: Selection Sort

741 2 6

An Initial Idea: Selection Sort

741 2 6

The smallest element from
this group needs to go at

the front of the group.

The smallest element from
this group needs to go at

the front of the group.

An Initial Idea: Selection Sort

741 2 6

An Initial Idea: Selection Sort

741 2 6

These elements
are in the right

place now.

These elements
are in the right

place now.

Selection Sort

● Find the smallest element and move it to
the first position.

● Find the smallest element of what’s left
and move it to the second position.

● Find the smallest element of what’s left
and move it to the third position.

● Find the smallest element of what’s left
and move it to the fourth position.

● (etc.)

/**
 * Sorts the specified vector using the selection sort algorithm.
 */
void selectionSort(Vector<int>& elems) {
 for (int index = 0; index < elems.size(); index++) {
 int smallestIndex = indexOfSmallest(elems, index);
 swap(elems[index], elems[smallestIndex]);
 }
}

/**
 * Given a vector and a starting point, returns the index of the
 * smallest element in that vector at or after the starting point.
 */
int indexOfSmallest(const Vector<int>& elems, int startPoint) {
 int smallestIndex = startPoint;
 for (int i = startPoint + 1; i < elems.size(); i++) {
 if (elems[i] < elems[smallestIndex]) {
 smallestIndex = i;
 }
 }
 return smallestIndex;
}

How fast is selection sort?

{ 46, 69, 20, 16, 09, 10, 29, 90, 67, 18, 53, 20, 38, 20, 46 }

How fast is selection sort?

{ 46, 69, 20, 16, 09, 10, 29, 90, 67, 18, 53, 20, 38, 20, 46 }

How fast is selection sort?

{ 09, 69, 20, 16, 46, 10, 29, 90, 67, 18, 53, 20, 38, 20, 46 }

How fast is selection sort?

{ 09, 69, 20, 16, 46, 10, 29, 90, 67, 18, 53, 20, 38, 20, 46 }

How fast is selection sort?

{ 09, 69, 20, 16, 46, 10, 29, 90, 67, 18, 53, 20, 38, 20, 46 }

Finding the element that goes in position 0 requires us to
scan all n elements.

Finding the element that goes in position 1 requires us to
scan n – 1 elements.

Finding the element that goes in position 2 requires us to
scan n – 2 elements.

…

Number of elements scanned:

n + (n-1) + (n-2) + … + 2 + 1.

How fast is selection sort?

{ 09, 69, 20, 16, 46, 10, 29, 90, 67, 18, 53, 20, 38, 20, 46 }

Finding the element that goes in position 0 requires us to
scan all n elements.

Finding the element that goes in position 1 requires us to
scan n – 1 elements.

Finding the element that goes in position 2 requires us to
scan n – 2 elements.

…

Number of elements scanned:

n + (n-1) + (n-2) + … + 2 + 1.

How fast is selection sort?

{ 09, 69, 20, 16, 46, 10, 29, 90, 67, 18, 53, 20, 38, 20, 46 }

Finding the element that goes in position 0 requires us to
scan all n elements.

Finding the element that goes in position 1 requires us to
scan n – 1 elements.

Finding the element that goes in position 2 requires us to
scan n – 2 elements.

…

Number of elements scanned:

n + (n-1) + (n-2) + … + 2 + 1.

How fast is selection sort?

{ 09, 10, 20, 16, 46, 69, 29, 90, 67, 18, 53, 20, 38, 20, 46 }

Finding the element that goes in position 0 requires us to
scan all n elements.

Finding the element that goes in position 1 requires us to
scan n – 1 elements.

Finding the element that goes in position 2 requires us to
scan n – 2 elements.

…

Number of elements scanned:

n + (n-1) + (n-2) + … + 2 + 1.

How fast is selection sort?

{ 09, 10, 20, 16, 46, 69, 29, 90, 67, 18, 53, 20, 38, 20, 46 }

Finding the element that goes in position 0 requires us to
scan all n elements.

Finding the element that goes in position 1 requires us to
scan n – 1 elements.

Finding the element that goes in position 2 requires us to
scan n – 2 elements.

…

Number of elements scanned:

n + (n-1) + (n-2) + … + 2 + 1.

How fast is selection sort?

{ 09, 10, 20, 16, 46, 69, 29, 90, 67, 18, 53, 20, 38, 20, 46 }

Finding the element that goes in position 0 requires us to
scan all n elements.

Finding the element that goes in position 1 requires us to
scan n – 1 elements.

Finding the element that goes in position 2 requires us to
scan n – 2 elements.

…

Number of elements scanned:

n + (n-1) + (n-2) + … + 2 + 1.

How fast is selection sort?

{ 09, 10, 20, 16, 46, 69, 29, 90, 67, 18, 53, 20, 38, 20, 46 }

Finding the element that goes in position 0 requires us to
scan all n elements.

Finding the element that goes in position 1 requires us to
scan n – 1 elements.

Finding the element that goes in position 2 requires us to
scan n – 2 elements.

…

Number of elements scanned:

n + (n-1) + (n-2) + … + 2 + 1.

How fast is selection sort?

{ 09, 10, 20, 16, 46, 69, 29, 90, 67, 18, 53, 20, 38, 20, 46 }

Finding the element that goes in position 0 requires us to
scan all n elements.

Finding the element that goes in position 1 requires us to
scan n – 1 elements.

Finding the element that goes in position 2 requires us to
scan n – 2 elements.

…

Number of elements scanned:

n + (n-1) + (n-2) + … + 2 + 1.

How fast is selection sort?

{ 09, 10, 20, 16, 46, 69, 29, 90, 67, 18, 53, 20, 38, 20, 46 }

Finding the element that goes in position 0 requires us to
scan all n elements.

Finding the element that goes in position 1 requires us to
scan n – 1 elements.

Finding the element that goes in position 2 requires us to
scan n – 2 elements.

…

Number of elements scanned:

n + (n-1) + (n-2) + … + 2 + 1.

How fast is selection sort?

{ 09, 10, 16, 20, 46, 69, 29, 90, 67, 18, 53, 20, 38, 20, 46 }

Finding the element that goes in position 0 requires us to
scan all n elements.

Finding the element that goes in position 1 requires us to
scan n – 1 elements.

Finding the element that goes in position 2 requires us to
scan n – 2 elements.

…

Number of elements scanned:

n + (n-1) + (n-2) + … + 2 + 1.

How fast is selection sort?

{ 09, 10, 16, 20, 46, 69, 29, 90, 67, 18, 53, 20, 38, 20, 46 }

Finding the element that goes in position 0 requires us to
scan all n elements.

Finding the element that goes in position 1 requires us to
scan n – 1 elements.

Finding the element that goes in position 2 requires us to
scan n – 2 elements.

…

Number of elements scanned:

n + (n-1) + (n-2) + … + 2 + 1.

How fast is selection sort?

{ 09, 10, 16, 20, 46, 69, 29, 90, 67, 18, 53, 20, 38, 20, 46 }

Finding the element that goes in position 0 requires us to
scan all n elements.

Finding the element that goes in position 1 requires us to
scan n – 1 elements.

Finding the element that goes in position 2 requires us to
scan n – 2 elements.

…

Number of elements scanned:

n + (n-1) + (n-2) + … + 2 + 1.

How fast is selection sort?

{ 09, 10, 16, 20, 46, 69, 29, 90, 67, 18, 53, 20, 38, 20, 46 }

Finding the element that goes in position 0 requires us to
scan all n elements.

Finding the element that goes in position 1 requires us to
scan n – 1 elements.

Finding the element that goes in position 2 requires us to
scan n – 2 elements.

…

Number of elements scanned:

n + (n-1) + (n-2) + … + 2 + 1.

n + (n-1) + ... + 2 + 1

n

n + 1

= n(n+1) / 2

The Complexity of Selection Sort

= O(n (n + 1) / 2)

= O(n (n + 1))

= O(n2 + n)

= O(n2)

So selection sort runs in time O(n2).

Big-O notation ignores
low-order terms. Think

“cost of making n
widgets.”

Big-O notation ignores
low-order terms. Think

“cost of making n
widgets.”

Big-O notation ignores
constant factors. (Think

“area of a circle” and
“area of a square.”)

Big-O notation ignores
constant factors. (Think

“area of a circle” and
“area of a square.”)

Our theory predicts that the runtime of
selection sort is O(n2).

Does that match what we see in practice?

What should we expect to see when we
look at a runtime plot?

Another Sorting Algorithm

Our Next Idea: Insertion Sort

Our Next Idea: Insertion Sort

7 4 1 62

Our Next Idea: Insertion Sort

7 4 1 62

This sequence in blue,
taken in isolation, is in

sorted order.

This sequence in blue,
taken in isolation, is in

sorted order.

This sequence in gray
is in no particular

order.

This sequence in gray
is in no particular

order.

Our Next Idea: Insertion Sort

7 4 1 62
Swap this element back
until it’s in the proper

place in the blue
sequence.

Swap this element back
until it’s in the proper

place in the blue
sequence.

Our Next Idea: Insertion Sort

7 4 1 62

Our Next Idea: Insertion Sort

4 1 62 7

Our Next Idea: Insertion Sort

4 1 62 7

This sequence in blue,
taken in isolation, is in

sorted order.

This sequence in blue,
taken in isolation, is in

sorted order.

This sequence in gray
is in no particular

order.

This sequence in gray
is in no particular

order.

Our Next Idea: Insertion Sort

4 1 62 7
Swap this element back
until it’s in the proper

place in the blue
sequence.

Swap this element back
until it’s in the proper

place in the blue
sequence.

Our Next Idea: Insertion Sort

4 1 62 7

Our Next Idea: Insertion Sort

4 1 62 7

Our Next Idea: Insertion Sort

4 1 62 7

Our Next Idea: Insertion Sort

2 1 674

This sequence in blue,
taken in isolation, is in

sorted order.

This sequence in blue,
taken in isolation, is in

sorted order.

This sequence in gray
is in no particular

order.

This sequence in gray
is in no particular

order.

Our Next Idea: Insertion Sort

2 1 674
Swap this element back
until it’s in the proper

place in the blue
sequence.

Swap this element back
until it’s in the proper

place in the blue
sequence.

Our Next Idea: Insertion Sort

2 1 674

Our Next Idea: Insertion Sort

2 1 64 7

Our Next Idea: Insertion Sort

2 1 64 7

Our Next Idea: Insertion Sort

2 1 674

Our Next Idea: Insertion Sort

2 1 674

Our Next Idea: Insertion Sort

2 6741

Our Next Idea: Insertion Sort

2 6741

This sequence in blue,
taken in isolation, is in

sorted order.

This sequence in blue,
taken in isolation, is in

sorted order.

This sequence in gray
is in no particular

order.

This sequence in gray
is in no particular

order.

Our Next Idea: Insertion Sort

2 6741
Swap this element back
until it’s in the proper

place in the blue
sequence.

Swap this element back
until it’s in the proper

place in the blue
sequence.

Our Next Idea: Insertion Sort

2 6741

Our Next Idea: Insertion Sort

2 641 7

Our Next Idea: Insertion Sort

2 641 7

This sequence in blue,
taken in isolation, is in

sorted order.

This sequence in blue,
taken in isolation, is in

sorted order.

There are no more
gray elements, so the
sequence is sorted!

There are no more
gray elements, so the
sequence is sorted!

Insertion Sort

● Repeatedly insert an element into a
sorted sequence at the front of the array.

● To insert an element, swap it backwards
until either
● (1) it’s at least as big as the element before

it in the sequence, or
● (2) it’s at the front of the array.

/**
 * Sorts the specified vector using insertion sort.
 *
 * @param v The vector to sort.
 */
void insertionSort(Vector<int>& v) {
 for (int i = 0; i < v.size(); i++) {
 /* Scan backwards until either (1) there is no
 * preceding element or the preceding element is
 * no bigger than us.
 */
 for (int j = i - 1; j >= 0; j--) {
 if (v[j] <= v[j + 1]) break;

 /* Swap this element back one step. */
 swap(v[j], v[j + 1]);
 }
 }
}

How Fast is Insertion Sort?

2 641 7

How Fast is Insertion Sort?

2 641 7

How Fast is Insertion Sort?

2 641 7

How Fast is Insertion Sort?

2 641 7

How Fast is Insertion Sort?

2 641 7

How Fast is Insertion Sort?

2 641 7

How Fast is Insertion Sort?

2 641 7

How Fast is Insertion Sort?

2 641 7

How Fast is Insertion Sort?

2 641 7

How Fast is Insertion Sort?

2 641 7

How Fast is Insertion Sort?

2 641 7

How Fast is Insertion Sort?

2 641 7

How Fast is Insertion Sort?

2 641 7

How Fast is Insertion Sort?

2 641 7

How Fast is Insertion Sort?

2 641 7
Work done: O(n)

How Fast is Insertion Sort?

6 4 17 2

How Fast is Insertion Sort?

6 4 17 2

How Fast is Insertion Sort?

6 4 17 2

How Fast is Insertion Sort?

6 4 17 2

How Fast is Insertion Sort?

6 4 127

How Fast is Insertion Sort?

6 4 127

How Fast is Insertion Sort?

6 4 127

How Fast is Insertion Sort?

6 4 127

How Fast is Insertion Sort?

6 4 127

How Fast is Insertion Sort?

6 4 127

How Fast is Insertion Sort?

6 1274

How Fast is Insertion Sort?

6 1274

How Fast is Insertion Sort?

6 1274

How Fast is Insertion Sort?

6 1274

How Fast is Insertion Sort?

6 174 2

How Fast is Insertion Sort?

6 174 2

How Fast is Insertion Sort?

6 174 2

How Fast is Insertion Sort?

6 174 2

How Fast is Insertion Sort?

6 1742

How Fast is Insertion Sort?

6 1742

How Fast is Insertion Sort?

6 1742

How Fast is Insertion Sort?

6 1742

How Fast is Insertion Sort?

6 742 1

How Fast is Insertion Sort?

6 742 1

How Fast is Insertion Sort?

6 742 1

How Fast is Insertion Sort?

6 742 1

How Fast is Insertion Sort?

6 742 1

How Fast is Insertion Sort?

6 742 1

How Fast is Insertion Sort?

6 7421

How Fast is Insertion Sort?

6 7421

How Fast is Insertion Sort?

6 7421

Work Done: 1 + 2 + 3 + … + n-1
= O(n2)

Three Analyses

● Worst-Case Analysis
● What's the worst possible runtime for the algorithm?
● Useful for “sleeping well at night.”

● Best-Case Analysis
● What's the best possible runtime for the algorithm?
● Useful to see if the algorithm performs well in some

cases.
● Average-Case Analysis

● What's the average runtime for the algorithm?
● Far beyond the scope of this class; take CS109,

CS161, or CS265 for more information!

The Complexity of Insertion Sort

● In the best case (the array is sorted),
insertion takes time O(n).

● In the worst case (the array is reverse-
sorted), insertion sort takes time O(n2).

● Fun fact: Insertion sorting an array of
random values takes, on average, O(n2)
time.
● Curious why? Come talk to me after class!

How do selection sort and insertion sort
compare against one another?

Building a Better Sorting Algorithm

n

n

2n

2n

n / 2

n / 2

n

n

Thinking About O(n2)

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12 4

T(n)

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12 4

T(½n) T(½n)

Thinking About O(n2)

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12 4

T(n)

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12 4

¼T(n) ¼T(n)

Thinking About O(n2)

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12 4

T(n)

2 3 6 7 9 14 15 16 1 4 5 8 10 11 12 13

¼T(n) ¼T(n)

2 · ¼T(n) = ½T(n)

With an O(n2)-time sorting algorithm, it
takes twice as long to sort the whole array
as it does to split the array in half and sort

each half.

Can we exploit this?

The Key Insight: Merge

The Key Insight: Merge

2 3 5 7 10

The Key Insight: Merge

2 3 5 7 10 1 4 6 8 9

The Key Insight: Merge

2 3 5 7 10 1 4 6 8 9

The Key Insight: Merge

2 3 5 7 10

1

4 6 8 9

The Key Insight: Merge

2

3 5 7 10

1

4 6 8 9

The Key Insight: Merge

2 3

5 7 10

1

4 6 8 9

The Key Insight: Merge

2 3

5 7 10

1 4

6 8 9

The Key Insight: Merge

2 3 5

7 10

1 4

6 8 9

The Key Insight: Merge

2 3 5

7 10

1 4 6

8 9

The Key Insight: Merge

2 3 5 7

10

1 4 6

8 9

The Key Insight: Merge

2 3 5 7

10

1 4 6 8

9

The Key Insight: Merge

2 3 5 7

10

1 4 6 8 9

The Key Insight: Merge

2 3 5 7 101 4 6 8 9

The Key Insight: Merge

2 3 5 7 101 4 6 8 9

Each step makes a single
comparison and reduces
the number of elements

by one.

If there are n total
elements, this algorithm

runs in time O(n).

Each step makes a single
comparison and reduces
the number of elements

by one.

If there are n total
elements, this algorithm

runs in time O(n).

The Key Insight: Merge

● The merge algorithm takes in two sorted
lists and combines them into a single
sorted list.

● While both lists are nonempty, compare
their first elements. Remove the smaller
element and append it to the output.

● Once one list is empty, add all elements
from the other list to the output.

● We’ll leave the code for this as an
Exercise to the Reader. 😃

“Split Sort”

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12 4

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12 4

1. Split the input in half.

2. Insertion sort each half.

3. Merge the halves back together.

1. Split the input in half.

2. Insertion sort each half.

3. Merge the halves back together.

“Split Sort”

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12 4

2 3 6 7 9 14 15 16 1 4 5 8 10 11 12 13

1. Split the input in half.

2. Insertion sort each half.

3. Merge the halves back together.

1. Split the input in half.

2. Insertion sort each half.

3. Merge the halves back together.

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12 4

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12 4

“Split Sort”

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

2 3 6 7 9 14 15 16 1 4 5 8 10 11 12 13

1. Split the input in half.

2. Insertion sort each half.

3. Merge the halves back together.

1. Split the input in half.

2. Insertion sort each half.

3. Merge the halves back together.

“Split Sort”

void splitSort(Vector<int>& v) {
 /* Split the vector in half */
 int half = v.size() / 2;
 Vector<int> left = v.subList(0, half);
 Vector<int> right = v.subList(half);

 /* Sort each half. */
 insertionSort(left);
 insertionSort(right);

 /* Merge them back together. */
 v = merge(left, right);
}

“Split Sort”

void splitSort(Vector<int>& v) {
 /* Split the vector in half */
 int half = v.size() / 2;
 Vector<int> left = v.subList(0, half);
 Vector<int> right = v.subList(half);

 /* Sort each half. */
 insertionSort(left);
 insertionSort(right);

 /* Merge them back together. */
 v = merge(left, right);
}

Takes O(n) time,
since we copy all
n elements into

new Vectors.

Takes O(n) time,
since we copy all
n elements into

new Vectors.

“Split Sort”

void splitSort(Vector<int>& v) {
 /* Split the vector in half */
 int half = v.size() / 2;
 Vector<int> left = v.subList(0, half);
 Vector<int> right = v.subList(half);

 /* Sort each half. */
 insertionSort(left);
 insertionSort(right);

 /* Merge them back together. */
 v = merge(left, right);
}

Takes O(n) time,
since we copy all
n elements into

new Vectors.

Takes O(n) time,
since we copy all
n elements into

new Vectors.

Takes O(n2) time, but
about half as much as
what we did before.

Takes O(n2) time, but
about half as much as
what we did before.

“Split Sort”

void splitSort(Vector<int>& v) {
 /* Split the vector in half */
 int half = v.size() / 2;
 Vector<int> left = v.subList(0, half);
 Vector<int> right = v.subList(half);

 /* Sort each half. */
 insertionSort(left);
 insertionSort(right);

 /* Merge them back together. */
 v = merge(left, right);
}

Takes O(n) time,
since we copy all
n elements into

new Vectors.

Takes O(n) time,
since we copy all
n elements into

new Vectors.

Takes O(n2) time, but
about half as much as
what we did before.

Takes O(n2) time, but
about half as much as
what we did before.

Takes O(n)
time.

Takes O(n)
time.

“Split Sort”

void splitSort(Vector<int>& v) {
 /* Split the vector in half */
 int half = v.size() / 2;
 Vector<int> left = v.subList(0, half);
 Vector<int> right = v.subList(half);

 /* Sort each half. */
 insertionSort(left);
 insertionSort(right);

 /* Merge them back together. */
 v = merge(left, right);
} Prediction: This

should still take time
O(n2), but be about

twice as fast as
insertion sort.

Prediction: This
should still take time
O(n2), but be about

twice as fast as
insertion sort.

Takes O(n) time,
since we copy all
n elements into

new Vectors.

Takes O(n) time,
since we copy all
n elements into

new Vectors.

Takes O(n2) time, but
about half as much as
what we did before.

Takes O(n2) time, but
about half as much as
what we did before.

Takes O(n)
time.

Takes O(n)
time.

Next Time

● Mergesort
● A beautiful, elegant sorting algorithm.

● Analyzing Mergesort
● An unusual runtime analysis.

● Hybrid Sorting Algorithms
● Improving on mergesort.

● Binary Search
● Finding things fast!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158
	Slide 159
	Slide 160
	Slide 161
	Slide 162
	Slide 163
	Slide 164
	Slide 165
	Slide 166
	Slide 167
	Slide 168
	Slide 169
	Slide 170
	Slide 171
	Slide 172

