
  

Searching and Sorting
Part One



  

Recap from Last Time



  

Assume any individual statement takes one unit
of time to execute. If the input Vector has n elements,

how many time units will this code take to run?

double averageOf(const Vector<int>& vec) {
  double total = 0.0;

  for (int i = 0; i < vec.size(); i++) {
      total += vec[i];
  }

  return total / vec.size();
}
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One possible answer: 3n + 4.

double averageOf(const Vector<int>& vec) {
  double total = 0.0;

  for (int i = 0; i < vec.size(); i++) {
      total += vec[i];
  }

  return total / vec.size();
}
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One possible answer: 3n + 4.
More useful answer: O(n).

double averageOf(const Vector<int>& vec) {
  double total = 0.0;

  for (int i = 0; i < vec.size(); i++) {
      total += vec[i];
  }

  return total / vec.size();
}
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Work Done: O(n2).

void printStars(int n) {
    for (int i = 0; i < n; i++) {
        for (int j = 0; j < n; j++) {
            cout << '*' << endl;
        }
    }
}



  

How much time will it take for these
functions to run, as a function of n?

void beni(int n) {
    for (int i = 0; i < 2 * n; i++) {
        for (int j = 0; j < 5 * n; j++) {
            cout << '*' << endl;
        }
    }
}
void pando(int n) {
    for (int i = 0; i < 3 * n; i++) {
        cout << "*" << endl;
    }
    for (int i = 0; i < 8; i++) {
        cout << "*" << endl;
    }
}

O(n2)O(n2)

O(n)O(n)



  

New Stuff!



  

Sorting Algorithms



  

What is sorting?



  

One style of 
“sorting,” but not 

the one we’re 
thinking about...

One style of 
“sorting,” but not 

the one we’re 
thinking about...



  
Problem: Given a list of data points, sort those data points 

into ascending / descending order by some quantity.



  

Suppose we want to rearrange a sequence 
to put elements into ascending order.

 

What are some strategies we could use?
 

How do those strategies compare?
 

Is there a “best” strategy?



  

An Initial Idea: Selection Sort
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Selection Sort

● Find the smallest element and move it to 
the first position.

● Find the smallest element of what’s left 
and move it to the second position.

● Find the smallest element of what’s left 
and move it to the third position.

● Find the smallest element of what’s left 
and move it to the fourth position.

● (etc.)



  

/**
 * Sorts the specified vector using the selection sort algorithm.
 */
void selectionSort(Vector<int>& elems) {
  for (int index = 0; index < elems.size(); index++) {
    int smallestIndex = indexOfSmallest(elems, index);
    swap(elems[index], elems[smallestIndex]);
  }
}
 
/**
 * Given a vector and a starting point, returns the index of the
 * smallest element in that vector at or after the starting point.
 */
int indexOfSmallest(const Vector<int>& elems, int startPoint) {
  int smallestIndex = startPoint;
  for (int i = startPoint + 1; i < elems.size(); i++) {
    if (elems[i] < elems[smallestIndex]) {
      smallestIndex = i;
    }
  }
  return smallestIndex;
}



  
How fast is selection sort?

{ 46, 69, 20, 16, 09, 10, 29, 90, 67, 18, 53, 20, 38, 20, 46 }
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n + (n-1) + ... + 2 + 1             

n

n + 1

= n(n+1) / 2



  

The Complexity of Selection Sort

= O(n (n + 1) / 2)

= O(n (n + 1))

= O(n2 + n)

= O(n2)

 

So selection sort runs in time O(n2).

Big-O notation ignores 
low-order terms. Think 

“cost of making n 
widgets.”
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Our theory predicts that the runtime of 
selection sort is O(n2).

 

Does that match what we see in practice?
 

What should we expect to see when we 
look at a runtime plot?



  

Another Sorting Algorithm
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Insertion Sort

● Repeatedly insert an element into a 
sorted sequence at the front of the array.

● To insert an element, swap it backwards 
until either
● (1) it’s at least as big as the element before 

it in the sequence, or
● (2) it’s at the front of the array.



  

/**
 * Sorts the specified vector using insertion sort.
 *
 * @param v The vector to sort.
 */
void insertionSort(Vector<int>& v) {
  for (int i = 0; i < v.size(); i++) {
    /* Scan backwards until either (1) there is no
     * preceding element or the preceding element is
     * no bigger than us.
     */   
    for (int j = i - 1; j >= 0; j--) {
      if (v[j] <= v[j + 1]) break;

      /* Swap this element back one step. */
      swap(v[j], v[j + 1]);
    }
  }
}
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Work Done:       1 + 2 + 3 + … + n-1
= O(n2)   



  

Three Analyses

● Worst-Case Analysis
● What's the worst possible runtime for the algorithm?
● Useful for “sleeping well at night.”

● Best-Case Analysis
● What's the best possible runtime for the algorithm?
● Useful to see if the algorithm performs well in some 

cases.
● Average-Case Analysis

● What's the average runtime for the algorithm?
● Far beyond the scope of this class; take CS109, 

CS161, or CS265 for more information!



  

The Complexity of Insertion Sort

● In the best case (the array is sorted), 
insertion takes time O(n).

● In the worst case (the array is reverse-
sorted), insertion sort takes time O(n2).

● Fun fact: Insertion sorting an array of 
random values takes, on average, O(n2) 
time.
● Curious why? Come talk to me after class!



  

How do selection sort and insertion sort 
compare against one another?



  

Building a Better Sorting Algorithm



  

n
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With an O(n2)-time sorting algorithm, it 
takes twice as long to sort the whole array 
as it does to split the array in half and sort 

each half.

Can we exploit this?
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The Key Insight: Merge

● The merge algorithm takes in two sorted 
lists and combines them into a single 
sorted list.

● While both lists are nonempty, compare 
their first elements. Remove the smaller 
element and append it to the output.

● Once one list is empty, add all elements 
from the other list to the output.

● We’ll leave the code for this as an 
Exercise to the Reader. 😃
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“Split Sort”

void splitSort(Vector<int>& v) {  
    /* Split the vector in half */
    int half = v.size() / 2;
    Vector<int> left  = v.subList(0, half);
    Vector<int> right = v.subList(half);
 
    /* Sort each half. */
    insertionSort(left);
    insertionSort(right);
 
    /* Merge them back together. */
    v = merge(left, right);
}
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Next Time

● Mergesort
● A beautiful, elegant sorting algorithm.

● Analyzing Mergesort
● An unusual runtime analysis.

● Hybrid Sorting Algorithms
● Improving on mergesort.

● Binary Search
● Finding things fast!
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