

Linked Lists
Part One

Outline for Today

● Linked Lists, Conceptually
● A different way to represent a sequence.

● Linked Lists, In Code
● Some cool new C++ tricks.

Changing Offices

Dr. Cynthia Lee is no
longer in room 100.

She can be found in
room 108.

The Sign on Room 100

Room
100

Room
108

Dr. Cynthia Lee is no
longer in room 108.

She can be found in
room 190.

The Sign on Room 108

Room
100

Room
108

Room
190

Dr. Cynthia Lee is no
longer in room 190.

She can be found in
room 192.

The Sign on Room 190

Room
100

Room
108

Room
190

Room
192

The Sign on Room 192

Welcome to Cynthia’s
Office!

Room
100

Room
108

Room
190

Room
192

Linked Lists at a Glance

1 2 3

● A linked list is a data structure for storing a
sequence of elements.

● Each element is stored separately from the rest.
● The elements are then chained together into a

sequence.
● The end of the list is marked with some special

indicator.

Linked Lists at a Glance

1 2 3

● A linked list is a data structure for storing a
sequence of elements.

● Each element is stored separately from the rest.
● The elements are then chained together into a

sequence.
● The end of the list is marked with some special

indicator.

Linked Lists at a Glance

1 2 3137

● A linked list is a data structure for storing a
sequence of elements.

● Each element is stored separately from the rest.
● The elements are then chained together into a

sequence.
● The end of the list is marked with some special

indicator.

Linked Lists at a Glance

1 3137

● A linked list is a data structure for storing a
sequence of elements.

● Each element is stored separately from the rest.
● The elements are then chained together into a

sequence.
● The end of the list is marked with some special

indicator.

...an empty list,
or...

a single cell... ... that points at
another linked list.

A Linked List is Either...

1 2 3137

Representing Linked Lists

...an empty list,
or...

a single cell... ... that points at
another linked list.

A Linked List is Either...

...an empty list,
or...

a single cell... ... that points at
another linked list.

A Linked List is Either...

a single cell... ... that points at
another linked list.

struct Cell {
 string value;
 Cell* next;
};

Hi Mom!

struct Cell {
 string value;
 Cell* next;
};

1 2 3137

struct Cell {
 string value;
 Cell* next;
};

Cell* list = new Cell;

list

We just want a single cell,
not an array of cells. To
get the space we need,
we’ll just say new Cell.

We just want a single cell,
not an array of cells. To
get the space we need,
we’ll just say new Cell.

Notice that list is still a
Cell*, a pointer to a cell.

It still says “look over
there for your Cell”

rather than “I’m a Cell!”

Notice that list is still a
Cell*, a pointer to a cell.

It still says “look over
there for your Cell”

rather than “I’m a Cell!”

Yes, it’s a bit confusing that
C++ uses the same types to
mean “look over there for an
array of Cells” and “look over

there for a single Cell.”

Yes, it’s a bit confusing that
C++ uses the same types to
mean “look over there for an
array of Cells” and “look over

there for a single Cell.”

struct Cell {
 string value;
 Cell* next;
};

Cell* list = new Cell;
list->value = "dikdik!";

dikdik!

list

Because list is a pointer to
a Cell, we use the arrow
operator -> instead of the

dot operator.

Think of list->value as
saying “start at list,

follow an arrow, then pick
the value field.”

Because list is a pointer to
a Cell, we use the arrow
operator -> instead of the

dot operator.

Think of list->value as
saying “start at list,

follow an arrow, then pick
the value field.”

struct Cell {
 string value;
 Cell* next;
};

Cell* list = new Cell;
list->value = "dikdik!";
list->next = new Cell;
list->next->value = "quokka!";
list->next->next = new Cell;
list->next->next->value = "pudu!";
list->next->next->next = nullptr;

dikdik!

list

quokka! pudu!

struct Cell {
 string value;
 Cell* next;
};

Cell* list = new Cell;
list->value = "dikdik!";
list->next = new Cell;
list->next->value = "quokka!";
list->next->next = new Cell;
list->next->next->value = "pudu!";
list->next->next->next = nullptr;

dikdik!

list

quokka! pudu!

C++ uses the nullptr
keyword to mean “a pointer

that doesn’t point at
anything.”

(Older code uses NULL instead
of nullptr; that’s also okay,

but we recommend nullptr.)

C++ uses the nullptr
keyword to mean “a pointer

that doesn’t point at
anything.”

(Older code uses NULL instead
of nullptr; that’s also okay,

but we recommend nullptr.)

...an empty list,
represented by
nullptr, or...

a single linked list
cell that points...

... at another linked
list.

A Linked List is Either...

Measuring a Linked List

...an empty list,
represented by
nullptr, or...

a single linked list
cell that points...

... at another linked
list.

A Linked List is Either...

...an empty list,
represented by
nullptr, or...

a single linked list
cell that points...

... at another linked
list.

A Linked List is Either...

dikdik! quokka! pudu!

Printing a Linked List

...an empty list,
represented by
nullptr, or...

a single linked list
cell that points...

... at another linked
list.

A Linked List is Either...

...an empty list,
represented by
nullptr, or...

a single linked list
cell that points...

... at another linked
list.

A Linked List is Either...

dikdik! quokka! pudu!

Building a Linked List
(without hardcoding it)

...an empty list,
represented by
nullptr, or...

a single linked list
cell that points...

... at another linked
list.

A Linked List is Either...

Cleaning Up a Linked List

Endearing C++ Quirks

● If you allocate memory using the new[] operator
(e.g. new int[137]), you have to free it using the
delete[] operator.

delete[] ptr;

● If you allocate memory using the new operator
(e.g. new Cell), you have to free it using the
delete operator.

delete ptr;

● Make sure to use the proper deletion
operation. Mixing these up leads to Undefined
Behavior.

Cleaning Up Memory

● To free a linked list, we can’t just do this:

delete list;

● Why not?

list

Quokka PuduGerenuk

Cleaning Up Memory

● To free a linked list, we can’t just do this:

delete list;

● Why not?

list

Quokka PuduGerenuk

delete

Dynamic

Deallocation!

Cleaning Up Memory

● To free a linked list, we can’t just do this:

delete list;

● Why not?

list

Quokka Pudu

...an empty list,
represented by
nullptr, or...

a single linked list
cell that points...

... at another linked
list.

A Linked List is Either...

void deleteList(Cell* list) {
 if (list == nullptr) return;

 delete list;
 deleteList(list->next);
}

void deleteList(Cell* list) {
 if (list == nullptr) return;

 delete list;
 deleteList(list->next);
}

list

Quokka PuduGerenuk

Watch Out!

void deleteList(Cell* list) {
 if (list == nullptr) return;

 delete list;
 deleteList(list->next);
}

void deleteList(Cell* list) {
 if (list == nullptr) return;

 delete list;
 deleteList(list->next);
}

list

Quokka PuduGerenuk

Watch Out!

void deleteList(Cell* list) {
 if (list == nullptr) return;

 delete list;
 deleteList(list->next);
}

void deleteList(Cell* list) {
 if (list == nullptr) return;

 delete list;
 deleteList(list->next);
}

list

Quokka PuduGerenuk

Watch Out!

void deleteList(Cell* list) {
 if (list == nullptr) return;

 delete list;
 deleteList(list->next);
}

void deleteList(Cell* list) {
 if (list == nullptr) return;

 delete list;
 deleteList(list->next);
}

list

Quokka PuduGerenuk

Watch Out!

delete

Dynamic

Deallocation!

void deleteList(Cell* list) {
 if (list == nullptr) return;

 delete list;
 deleteList(list->next);
}

void deleteList(Cell* list) {
 if (list == nullptr) return;

 delete list;
 deleteList(list->next);
}

list

Quokka Pudu

Watch Out!

void deleteList(Cell* list) {
 if (list == nullptr) return;

 delete list;
 deleteList(list->next);
}

void deleteList(Cell* list) {
 if (list == nullptr) return;

 delete list;
 deleteList(list->next);
}

list

Quokka Pudu

Watch Out!

void deleteList(Cell* list) {
 if (list == nullptr) return;

 delete list;
 deleteList(list->next);
}

void deleteList(Cell* list) {
 if (list == nullptr) return;

 delete list;
 deleteList(list->next);
}

list

Quokka Pudu

Watch Out!

void deleteList(Cell* list) {
 if (list == nullptr) return;

 delete list;
 deleteList(list->next);
}

void deleteList(Cell* list) {
 if (list == nullptr) return;

 delete list;
 deleteList(list->next);
}

list

Quokka Pudu

Watch Out!

Undefined

behavior!

In the Land of C++, we
do not speak to the dead.

What should we do instead?

void deleteList(Cell* list) {
 if (list == nullptr) return;

 Cell* next = list->next;
 delete list;
 deleteList(next);
}

void deleteList(Cell* list) {
 if (list == nullptr) return;

 Cell* next = list->next;
 delete list;
 deleteList(next);
}

list

Quokka PuduGerenuk

One Option

void deleteList(Cell* list) {
 if (list == nullptr) return;

 Cell* next = list->next;
 delete list;
 deleteList(next);
}

void deleteList(Cell* list) {
 if (list == nullptr) return;

 Cell* next = list->next;
 delete list;
 deleteList(next);
}

list

Quokka PuduGerenuk

One Option

void deleteList(Cell* list) {
 if (list == nullptr) return;

 Cell* next = list->next;
 delete list;
 deleteList(next);
}

void deleteList(Cell* list) {
 if (list == nullptr) return;

 Cell* next = list->next;
 delete list;
 deleteList(next);
}

Quokka PuduGerenuk

One Option

list

void deleteList(Cell* list) {
 if (list == nullptr) return;

 Cell* next = list->next;
 delete list;
 deleteList(next);
}

void deleteList(Cell* list) {
 if (list == nullptr) return;

 Cell* next = list->next;
 delete list;
 deleteList(next);
}

next

Quokka PuduGerenuk

One Option

list

void deleteList(Cell* list) {
 if (list == nullptr) return;

 Cell* next = list->next;
 delete list;
 deleteList(next);
}

void deleteList(Cell* list) {
 if (list == nullptr) return;

 Cell* next = list->next;
 delete list;
 deleteList(next);
}

next

Quokka PuduGerenuk

One Option

list

void deleteList(Cell* list) {
 if (list == nullptr) return;

 Cell* next = list->next;
 delete list;
 deleteList(next);
}

void deleteList(Cell* list) {
 if (list == nullptr) return;

 Cell* next = list->next;
 delete list;
 deleteList(next);
}

next

Quokka PuduGerenuk

One Option

list

void deleteList(Cell* list) {
 if (list == nullptr) return;

 Cell* next = list->next;
 delete list;
 deleteList(next);
}

void deleteList(Cell* list) {
 if (list == nullptr) return;

 Cell* next = list->next;
 delete list;
 deleteList(next);
}

next

Quokka PuduGerenuk

One Option

list delete

Dynamic

Deallocation!

void deleteList(Cell* list) {
 if (list == nullptr) return;

 Cell* next = list->next;
 delete list;
 deleteList(next);
}

void deleteList(Cell* list) {
 if (list == nullptr) return;

 Cell* next = list->next;
 delete list;
 deleteList(next);
}

next

Quokka Pudu

One Option

list

void deleteList(Cell* list) {
 if (list == nullptr) return;

 Cell* next = list->next;
 delete list;
 deleteList(next);
}

void deleteList(Cell* list) {
 if (list == nullptr) return;

 Cell* next = list->next;
 delete list;
 deleteList(next);
}

next

Quokka Pudu

One Option

list

void deleteList(Cell* list) {
 if (list == nullptr) return;

 Cell* next = list->next;
 delete list;
 deleteList(next);
}

void deleteList(Cell* list) {
 if (list == nullptr) return;

 Cell* next = list->next;
 delete list;
 deleteList(next);
}

next

Quokka Pudu

One Option

list

Recursion!

void deleteList(Cell* list) {
 if (list == nullptr) return;

 Cell* next = list->next;
 delete list;
 deleteList(next);
}

void deleteList(Cell* list) {
 if (list == nullptr) return;

 Cell* next = list->next;
 delete list;
 deleteList(next);
}

next

One Option

list

void deleteList(Cell* list) {
 if (list == nullptr) return;

 deleteList(list->next);
 delete list;
}

void deleteList(Cell* list) {
 if (list == nullptr) return;

 deleteList(list->next);
 delete list;
}

list

Quokka PuduGerenuk

Another Option

void deleteList(Cell* list) {
 if (list == nullptr) return;

 deleteList(list->next);
 delete list;
}

void deleteList(Cell* list) {
 if (list == nullptr) return;

 deleteList(list->next);
 delete list;
}

list

Quokka PuduGerenuk

Another Option

void deleteList(Cell* list) {
 if (list == nullptr) return;

 deleteList(list->next);
 delete list;
}

void deleteList(Cell* list) {
 if (list == nullptr) return;

 deleteList(list->next);
 delete list;
}

list

Quokka PuduGerenuk

Another Option

void deleteList(Cell* list) {
 if (list == nullptr) return;

 deleteList(list->next);
 delete list;
}

void deleteList(Cell* list) {
 if (list == nullptr) return;

 deleteList(list->next);
 delete list;
}

list

Quokka PuduGerenuk

Another Option

Recursion!

void deleteList(Cell* list) {
 if (list == nullptr) return;

 deleteList(list->next);
 delete list;
}

void deleteList(Cell* list) {
 if (list == nullptr) return;

 deleteList(list->next);
 delete list;
}

list

Gerenuk

Another Option

void deleteList(Cell* list) {
 if (list == nullptr) return;

 deleteList(list->next);
 delete list;
}

void deleteList(Cell* list) {
 if (list == nullptr) return;

 deleteList(list->next);
 delete list;
}

list

Gerenuk

Another Option

void deleteList(Cell* list) {
 if (list == nullptr) return;

 deleteList(list->next);
 delete list;
}

void deleteList(Cell* list) {
 if (list == nullptr) return;

 deleteList(list->next);
 delete list;
}

list

Gerenuk

Another Option

delete

Dynamic

Deallocation!

void deleteList(Cell* list) {
 if (list == nullptr) return;

 deleteList(list->next);
 delete list;
}

void deleteList(Cell* list) {
 if (list == nullptr) return;

 deleteList(list->next);
 delete list;
}

list

Another Option

Your Action Items

● Read Chapter 12.1 – 12.3.
● There’s lots of useful information in there

about how to work with linked lists.
● Work on Assignment 6.

● Aim to complete Linear Probing and to have
started Robin Hood hashing by Wednesday.

Next Time

● Linked Lists, Iteratively
● How do you manually walk a linked list?

● Pointers by Reference
● Combining two methods of indirection!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66

