Linked Lists

Part One

Outline for Today

* Linked Lists, Conceptually

« A different way to represent a sequence.
« ILinked Lists, In Code

e Some cool new C++ tricks.

Changing Offices

The Sign on Room 100

Dr. Cynthia Lee is no
longer in room 100.

She can be found in
room 108.

Room Room
100 108

The Sign on Room 108

Dr. Cynthia Lee is no
longer in room 108.

She can be found in
room 190.

Room Room Room
100 108 190

The Sign on Room 190

Dr. Cynthia Lee is no
longer in room 190.

She can be found in
room 192.

Room Room Room Room
100 108 190 192

The Sign on Room 192

Welcome to Cynthia’s
Office!

Room Room Room Room
100 108 190 192

[LLinked Lists at a Glance

» A linked list is a data structure for storing a

sequence of elements.

 Each element is stored separately from the rest.

 The elements are then chained together into a

sequence.

 The end of the list is marked with some special

indicator.

S

O

[LLinked Lists at a Glance

» A linked list is a data structure for storing a
sequence of elements.

 Each element is stored separately from the rest.

 The elements are then chained together into a

sequence.

 The end of the list is marked with some special

indicator.

e

B

[LLinked Lists at a Glance

» A linked list is a data structure for storing a

sequence of elements.

 Each element is stored separately from the rest.

 The elements are then chained together into a

sequence.

 The end of the list is marked with some special

indicator.

137

S

S

B

[LLinked Lists at a Glance

» A linked list is a data structure for storing a

sequence of elements.

 Each element is stored separately from the rest.

 The elements are then chained together into a

sequence.

 The end of the list is marked with some special

indicator.

137

o 1 >
el

S

B

A Linked LisT is Either..

~an empty list,

or ..

a single cell..

\
-

. That points atf

another linked list,

—

=

137

3

S

B

Representing Linked Lists

A Linked List is Either..

.an empty list,

oy ..

O

a single cell.

-

. That points af
another linked list,

A Linked LisT is Either..

-

a single cell. . That points at
another linked list,

struct Cell {
string value;
Cell* next;

s

Hi Mom: >€i:j:j::;;3

a single cell. . That points at
another linked list,

struct Cell {
string value;
Cell* next;

s

2 f137f 3

Struc;'é Cell {l . We just want a single cell,
STring vatue; not an array of cells. To

Cell* next; get the space we need,
}s we’ll just say new Cell.

Cell* list = Bew Celf;

Notice that list is still a
Cell*, a pointer to a cell.
It still says “look over
there for your Cell”
rather than “I'm a Cell!”

Yes, it’s a bit confusing that

| C++ uses the same types to
mean “look over there for an

array of Cells” and “look over

tist there for a single Cell.”

struct Cell {
string value;
Cell* next;

}s

Cell* list = new Cell;

l}st->valg§ = "dikdik!'";

Because list is a pointer to
a Cell, we use the arrow
operator -> instead of the

dot operator.

—>| dikdik!

list

Think of list->value as
saying “start at list,
follow an arrow, then pick
the value field.”

struct Cell {
string value;
Cell* next;

}s

Cell* list = new Cell;
list->value = "dikdik!";
List->next = new Cell;
list->next->value = "quokka!";
l[ist->next->next = new Ce11°
l[ist->next->next->value = "pudu!
[ist->next->next->next = nullptr;

—>| dikdik! quokka'! pudu!

list

struct Cell {
string value;
Cell* next;

}s
Cell* list = new Cell;
list->value = "dikdik!";

list->next = new Cell;
L1st->next->value =

list->next->next->value

—>| dikdik!

/J quokka'!

list

"quokka!";
list->next->next = new Cell;

= "pudu!";
list->next->next->next =

/J pudu!

C++ uses the nullptr
keyword to mean “a pointer
that doesn’t point at
anything.”

(Older code uses NULL instead
of nullptr; that’s also okay,
but we recommend nullptr.)

nullptr;

A Linked List is Either.
.an empTy list,
represented by
nullptr, Or..

a single linked list . at another linked
cell that points. list,

Measuring a Linked List

A Linked List is Either.
.an empTy list,
represented by
nullptr, Or..

a single linked list . at another linked
cell that points. list,

A Linked LisT is Either..

~an empty list,
represented by
nullptr, oOvr..

\

a single linked list
cell that points..

dikdik!

-

. at another linked
list,

/J quokka'!

RS

Printing a Linked List

A Linked List is Either.
.an empTy list,
represented by
nullptr, Or..

a single linked list . at another linked
cell that points. list,

A Linked LisT is Either..

~an empty list,
represented by
nullptr, oOvr..

\

a single linked list
cell that points..

dikdik!

-

. at another linked
list,

/J quokka'!

RS

Building a Linked List

A Linked List is Either.
.an empTy list,
represented by
nullptr, Or..

a single linked list . at another linked
cell that points. list,

Cleaning Up a Linked List

Endearing C++ Quirks

» If you allocate memory using the new[] operator
(e.g. new int[137]), you have to free it using the
delete[] operator.

delete[] ptr;

» If you allocate memory using the new operator
(e.g. new Cell), you have to free it using the
delete operator.

delete ptr;

« Make sure to use the proper deletion
operation. Mixing these up leads to Undefined
Behavior.

Cleaning Up Memory

* To free a linked list, we can’t just do this:
delete list;
« Why not?

list

h 4

Gerenuk 4>| Quokka 4>| Pudu 4>®

Cleaning Up Memory

* To free a linked list, we can’t just do this:
delete list;
« Why nt?

B Quokka 4>| Pudu 4>®

Cleaning Up Memory

* To free a linked list, we can’t just do this:
delete list;
« Why not?
- ™ - ™

list
Quokka 4>| Pudu 4>®

A Linked List is Either.
.an empTy list,
represented by
nullptr, Or..

a single linked list . at another linked
cell that points. list,

Watch Out!

void deletelList(Cell* list) {
if (list == nullptr) return;

delete list;
deletelList(list->next);

}

list

!

Gerenuk 4>| Quokka 4>| Pudu

Watch Out!

vor : x 1ist) {
lif (list == nullptr) return;]

delete list;
deletelList(list->next);

}

list

!

Gerenuk 4>| Quokka 4>| Pudu

Watch Out!

void deletelList(Cell* list) {
if (list == nullptr) return;

}

[delete list;]

deletel1st(list->next);

list

!

Gerenuk

4>| Quokka

4>| Pudu

Watch Out!

void deletelList(Cell* list) {
if (list == nullptr) return;

[delete list;]
deletel1st(list->next);

ok
ldelete]

}

Quokka 4>| Pudu

Watch Out!

void deletelList(Cell* list) {
if (list == nullptr) return;

[delete list;]
deletel1st(list->next);

}

list

ﬁ Quokka 4>| Pudu

Watch Out!

void deletelList(Cell* list) {
if (list == nullptr) return;

ldeleteList(list->next);]

}

list

ﬁ Quokka 4>| Pudu

Watch Out!

void deletelList(Cell* list) {
if (list == nullptr) return;

delete list;
deleteList{iist->neXﬁb;

}

list

ﬁ Quokka 4>| Pudu

Watch Out!

vy

void deletelList(Lell
if (list == n

delete _li

deletelt nd eﬁned

}
behaV"’r!

ﬂ Quokka 4>| Pudu

In the Land of C++, we
do not speak to the dead.

What should we do instead?

One Option

}

if (list ==

Cell* next =

delete list;

void deletelList(Cell* list) {

nullptr) return;

list->next;

deletelList(next);

list

!

Gerenuk

4>| Quokka

4>| Pudu

One Option

vor : x 1ist) {
lif (list == nullptr) return;]

Cell* next = list->next;
delete list;
deletelList(next);

list

!

Gerenuk 4>| Quokka 4>| Pudu

One Option

}

if (list ==

void deletelList(Cell* list) {

nullptr) return;

[Cell* next =

list->nextj

delete List;

deletelList(next);

list

!

Gerenuk

4>| Quokka

4>| Pudu

One Option

}

if (list ==

void deletelList(Cell* list) {

nullptr) return;

[Cell* next =

list->nextj

delete List;

deletelList(next);

list

next

!

Gerenuk

4>| Quokka

4>| Pudu

One Option

void deletelList(Cell* list) {

}

if (list ==

nullptr) return;

[Cell* next =

list->nextj

delete List;

deletelList(next);

list

next

!

Gerenuk

4>| Quokka

4>| Pudu

One Option

void deletelList(Cell* list) {

}

if (list ==

nullptr) return;

Cell* pext = 1list->next;

[delete list;

deletelList(next);

list

next

!

Gerenuk

4>| Quokka

4>| Pudu

One Option

void deletelList(Cell* list) {
if (list == nullptr) return;

Cell* pext = 1list->next;
[delete list;
deletel[Tst(nextd;

}

list [delete] next

v

namiC
D(:zl)l}locatiO“! Quokka

4>| Pudu

One Option

}

void deletelList(Cell* list) {
if (list == nullptr) return;

Cell* pext = 1list->next;

[delete list;
deletelList(next);

list

next

Quokka

4>| Pudu

One Option

}

|deleteList(ﬁext)J

list

void deletelList(Cell* list) {
if (list == nullptr) return;

Cell* next = list-

>next;

next

Quokka

4>| Pudu

One Option

void deletelList(Cell* list) {
if (list == nullptr) return;

Cell* next = list->next;

|de1eteList(ﬁext)J

list next

}

One Option

void deletelList(Cell* list) {
if (list == nullptr) return;

Cell* next = list->next;

|deleteList(ﬁext)J

}

list next

Another Option

void deletelList(Cell* list) {
if (list == nullptr) return;

deleteList(list->next);
delete list;

}

!

Gerenuk 4>| Quokka 4>| Pudu

Another Option

vor : x 1ist) {
lif (list == nullptr) return;]

deleteList(list->next);
delete list;

}

!

Gerenuk 4>| Quokka 4>| Pudu

Another Option

void deletelList(Cell* list) {
if (list == nullptr) return;

[deleteList(list->next);]
delete L1sT;

}

list

!

Gerenuk 4>| Quokka 4>| Pudu

Another Option

void deletelList(Cell* list) {
if (list == nullptr) return;

|de1eteList(list->next);]

elete L1st;

}

list

!

Gerenuk

Another Option

void deletelList(Cell* list) {
if (list == nullptr) return;

[deleteList(list->next);]
delete L1sT;

}

list

!

Gerenuk —

Another Option

void deletelList(Cell* list) {
if (list == nullptr) return;

] ist->next);
delete list;

}

!

Gerenuk —

Another Option

void deletelList(Cell* list) {
if (list == nullptr) return;

] ist->next);
delete list;
*
ldelete]

}

Another Option

void deletelList(Cell* list) {
if (list == nullptr) return;

] ist->next);
delete list;

}

list

Your Action Items

* Read Chapter 12.1 - 12.3.

e There’s lots of useful information in there
about how to work with linked lists.

« Work on Assignment 6.

 Aim to complete Linear Probing and to have
started Robin Hood hashing by Wednesday.

Next Time

 Linked Lists, Iteratively
« How do you manually walk a linked list?
 Pointers by Reference

 Combining two methods of indirection!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66

