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Part One



  

Outline for Today

● Linked Lists, Conceptually
● A different way to represent a sequence.

● Linked Lists, In Code
● Some cool new C++ tricks.



  

Changing Offices



  

Dr. Cynthia Lee is no 
longer in room 100.

She can be found in 
room 108.
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Dr. Cynthia Lee is no 
longer in room 108.

She can be found in 
room 190.
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Dr. Cynthia Lee is no 
longer in room 190.

She can be found in 
room 192.
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The Sign on Room 192

  

Welcome to Cynthia’s
Office!
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Linked Lists at a Glance

1 2 3

● A linked list is a data structure for storing a 
sequence of elements.

● Each element is stored separately from the rest.
● The elements are then chained together into a 

sequence.
● The end of the list is marked with some special 

indicator.
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● A linked list is a data structure for storing a 
sequence of elements.
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...an empty list,
or...

a single cell... ... that points at 
another linked list.

A Linked List is Either...
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Representing Linked Lists



  

...an empty list,
or...

a single cell... ... that points at 
another linked list.

A Linked List is Either...



  

...an empty list,
or...

a single cell... ... that points at 
another linked list.

A Linked List is Either...



  

a single cell... ... that points at 
another linked list.

struct Cell {
    string value;
    Cell* next;
};

Hi Mom!



  

struct Cell {
    string value;
    Cell* next;
};

1 2 3137



  

struct Cell {
    string value;
    Cell* next;
};

Cell* list = new Cell;

list

We just want a single cell, 
not an array of cells. To 
get the space we need, 
we’ll just say new Cell.

We just want a single cell, 
not an array of cells. To 
get the space we need, 
we’ll just say new Cell.

Notice that list is still a 
Cell*, a pointer to a cell. 

It still says “look over 
there for your Cell” 

rather than “I’m a Cell!”

Notice that list is still a 
Cell*, a pointer to a cell. 

It still says “look over 
there for your Cell” 

rather than “I’m a Cell!”

Yes, it’s a bit confusing that 
C++ uses the same types to 
mean “look over there for an 
array of Cells” and “look over 

there for a single Cell.”

Yes, it’s a bit confusing that 
C++ uses the same types to 
mean “look over there for an 
array of Cells” and “look over 

there for a single Cell.”



  

struct Cell {
    string value;
    Cell* next;
};

Cell* list = new Cell;
list->value = "dikdik!";
 
 
 
 
 

dikdik!

list

Because list is a pointer to 
a Cell, we use the arrow 
operator -> instead of the 

dot operator.
 

Think of list->value as 
saying “start at list, 

follow an arrow, then pick 
the value field.”

Because list is a pointer to 
a Cell, we use the arrow 
operator -> instead of the 

dot operator.
 

Think of list->value as 
saying “start at list, 

follow an arrow, then pick 
the value field.”



  

struct Cell {
    string value;
    Cell* next;
};

Cell* list = new Cell;
list->value = "dikdik!";
list->next = new Cell;
list->next->value = "quokka!";
list->next->next = new Cell;
list->next->next->value = "pudu!";
list->next->next->next = nullptr;

dikdik!

list

quokka! pudu!



  

struct Cell {
    string value;
    Cell* next;
};
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list->value = "dikdik!";
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list->next->next->next = nullptr;

dikdik!

list

quokka! pudu!

C++ uses the nullptr 
keyword to mean “a pointer 

that doesn’t point at 
anything.”

 

(Older code uses NULL instead 
of nullptr; that’s also okay, 

but we recommend nullptr.)

C++ uses the nullptr 
keyword to mean “a pointer 

that doesn’t point at 
anything.”

 

(Older code uses NULL instead 
of nullptr; that’s also okay, 

but we recommend nullptr.)



  

...an empty list,
represented by
nullptr, or...

a single linked list
cell that points...

... at another linked 
list.

A Linked List is Either...



  

Measuring a Linked List



  

...an empty list,
represented by
nullptr, or...

a single linked list
cell that points...

... at another linked 
list.

A Linked List is Either...



  

...an empty list,
represented by
nullptr, or...

a single linked list
cell that points...

... at another linked 
list.

A Linked List is Either...

dikdik! quokka! pudu!



  

Printing a Linked List



  

...an empty list,
represented by
nullptr, or...

a single linked list
cell that points...

... at another linked 
list.

A Linked List is Either...



  

...an empty list,
represented by
nullptr, or...

a single linked list
cell that points...

... at another linked 
list.

A Linked List is Either...

dikdik! quokka! pudu!



  

Building a Linked List
(without hardcoding it)



  

...an empty list,
represented by
nullptr, or...

a single linked list
cell that points...

... at another linked 
list.

A Linked List is Either...



  

Cleaning Up a Linked List



  

Endearing C++ Quirks

● If you allocate memory using the new[] operator 
(e.g. new int[137]), you have to free it using the 
delete[] operator.

delete[] ptr;

● If you allocate memory using the new operator 
(e.g. new Cell), you have to free it using the 
delete operator.

delete ptr;

● Make sure to use the proper deletion 
operation. Mixing these up leads to Undefined 
Behavior.



  

Cleaning Up Memory

● To free a linked list, we can’t just do this:

delete list;

● Why not?

list

Quokka PuduGerenuk
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Dynamic

Deallocation!
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...an empty list,
represented by
nullptr, or...

a single linked list
cell that points...

... at another linked 
list.

A Linked List is Either...



  

void deleteList(Cell* list) {
   if (list == nullptr) return;

   delete list;
   deleteList(list->next);
}

void deleteList(Cell* list) {
   if (list == nullptr) return;

   delete list;
   deleteList(list->next);
}

list

Quokka PuduGerenuk

Watch Out!
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void deleteList(Cell* list) {
   if (list == nullptr) return;

   delete list;
   deleteList(list->next);
}

void deleteList(Cell* list) {
   if (list == nullptr) return;

   delete list;
   deleteList(list->next);
}

list

Quokka Pudu

Watch Out!

Undefined

behavior!



  

In the Land of C++, we
do not speak to the dead.

 

What should we do instead?



  

void deleteList(Cell* list) {
   if (list == nullptr) return;
 

   Cell* next = list->next;
   delete list;
   deleteList(next);
}

void deleteList(Cell* list) {
   if (list == nullptr) return;
 

   Cell* next = list->next;
   delete list;
   deleteList(next);
}

list

Quokka PuduGerenuk

One Option
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void deleteList(Cell* list) {
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Your Action Items

● Read Chapter 12.1 – 12.3.
● There’s lots of useful information in there 

about how to work with linked lists.
● Work on Assignment 6.

● Aim to complete Linear Probing and to have 
started Robin Hood hashing by Wednesday.



  

Next Time

● Linked Lists, Iteratively
● How do you manually walk a linked list?

● Pointers by Reference
● Combining two methods of indirection!
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