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New Stuff!



  

Running out of Space

● Our current implementation very quickly 
runs out of space to store elements.

● What should we do when this happens?
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Ready... set... grow!



  

class OurStack {
public:
    OurStack();
    ~OurStack();

    void push(int value);
    int  pop();
    int  peek() const;

    int  size() const;
    bool isEmpty() const;

private:
    void grow();

    int* elems;
    int  allocatedSize;
    int  logicalSize;
};
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void OurStack::grow() {
    allocatedSize++;
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    delete[] elems;
    elems = newElems;
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Analyzing Our Approach

● We now have a working solution, but is it an 
efficient solution?

● Let's analyze the big-O complexity of the five 
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performed.
● size: O(1)
● isEmpty: O(1)
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● pop: O(1)
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Speeding up the Stack



  

Key Idea: Plan for the Future
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What Just Happened?

● Half of our pushes are now “easy” 
pushes, and half of our pushes are now 
“hard” pushes.

● Hard pushes still take time O(n).
● Easy pushes only take time O(1).
● Worst-case is still O(n).
● What about the average case?
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How does it stack up?
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Let's Give it a Try!



  

How do we analyze this?
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Spreading the Work

On average, we do 
just 3 units of work!

This is O(1) work on 
average!

On average, we do 
just 3 units of work!

This is O(1) work on 
average!



  

Sharing the Burden

● We still have “heavy” pushes taking time O(n) 
and “light” pushes taking time O(1).

● Heavy pushes become so rare that the average 
time for a push is O(1).

● Cost of n pushes:
● 1 + 1 + 1 + … + 1 = O(n).

● Cost of n pops:
● 1 + 1 + 1 + … + 1 = O(n).

● Total work done: O(n).
● Can we confirm this?



  

Amortized Analysis

● The analysis we have just done is called an 
amortized analysis.

● We reason about the total work done, not 
the work done per operation.

● In an amortized sense, our implementation 
of the stack is extremely fast!

● This is one of the most common 
approaches to implementing Stack.



  

Your Action Items

● Keep working on Assignment 5
● Haven’t started yet? Not a problem! You’ve 

got time if you make slow and steady 
progress from here on out.

● Need help? Stop by the LaIR!



  

Next Time

● Hash Functions
● A magical and wonderful gift from the world 

of mathematics.
● Hash Tables

● How do we implement HashMap and HashSet?
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