

Big-O Notation

Estimating Quantities

These two square plates are made of the same material.
They have the same thickness.

What’s your best guess for the mass of the second square?

10m 10m

20m20m

Mass: 100kg

These two figures are made of the same material.
They have the same thickness.

What’s your best guess for the mass of the second figure?

10m 10m

20m20m

Mass: 60kg

These two figures are made of the same material.
They have the same thickness.

What’s your best guess for the mass of the second figure?

10m 10m

20m20m

Mass: 60kg

These two figures are made of the same material.
They have the same thickness.

What’s your best guess for the mass of the second figure?

10m 10m

20m20m

Mass: 60kg

These two cubes are made of the same material.

What’s your best guess for the mass of the second cube?

10m

Mass: 100kg

20m

These two statues are made of the same material.

What’s your best guess for the mass of the second statue?

Mass: 1,000kg
3
0
m

1
0
m

How much paint is needed to paint the surface of
the larger icosahedron?

All sides of each triangle
are 10m long.

All sides of each triangle
are 40m long.

Image Credit

Paint required:
90L

https://commons.wikimedia.org/wiki/File:Icosahedron.gif

Knowing the rate at which some quantity
scales allows you to predict its value in the

future, even if you don’t have an exact
formula.

Big-O Notation

● Big-O notation is a way of quantifying the
rate at which some quantity grows.

● For example:
● A square of side length r has area O(r2).
● A circle of radius r has area O(r2).
● A sphere of radius r has surface area O(r2).
● A cube of side length r has surface area O(r2).
● A cube of side length r has volume O(r3).
● A sphere of radius r has volume O(r3).

Doubling r increases area 4×.
Tripling r increases area 9×.

Doubling r increases area 4×.
Tripling r increases area 9×.

r
2r

3r

Doubling r increases area 4×.
Tripling r increases area 9×.

Doubling r increases area 4×.
Tripling r increases area 9×.

r
2r

3r

A 4A 9A A’ 4A’ 9A’

Big-O Notation

● Big-O notation is a way of quantifying the
rate at which some quantity grows.

● For example:
● A square of side length r has area O(r2).
● A circle of radius r has area O(r2).
● A sphere of radius r has surface area O(r2).
● A cube of side length r has surface area O(r2).
● A cube of side length r has volume O(r3).
● A sphere of radius r has volume O(r3).

Doubling r increases area 4×.
Tripling r increases area 9×.

Doubling r increases area 4×.
Tripling r increases area 9×.

r
2r

3r

Doubling r increases area 4×.
Tripling r increases area 9×.

Doubling r increases area 4×.
Tripling r increases area 9×.

r
2r

3r

A 4A 9A A’ 4A’ 9A’

This just says that these
quantities grow at the same

relative rates. It does not
say that they’re equal!

This just says that these
quantities grow at the same

relative rates. It does not
say that they’re equal!

Big-O Notation

● Big-O notation is a way of quantifying the
rate at which some quantity grows.

● For example:
● A square of side length r has area O(r2).
● A circle of radius r has area O(r2).
● A cube of side length r has volume O(r3).
● A sphere of radius r has volume O(r3).
● A sphere of radius r has surface area O(r2).
● A cube of side length r has surface area O(r2).

Example: Network Value

● Metcalfe’s Law says that

The value of a communications
network with n users is O(n2).

● Imagine a social network has 10,000,000
users and is worth $10,000,000. Estimate
how many users it needs to have to be worth
$1,000,000,000.

● Reasonable guess: The network needs to
grow its value 100×. Since value grows
quadratically with size, it needs to grow its
user base 10×, requiring 100,000,000 users.

Example: Biomechanics

● Kleiber’s Law says that

An animal of mass m has
metabolic rate O(m¾).

● Assume a 50kg human has a metabolic rate
of 100W. Estimate the metabolic rate of a
5000kg elephant.

● Reasonable guess: We’ve increased our
scale by a factor of 100, so the metabolic
rate should scale by 100¾ ≈ 31.62. A good
guess is 3,162W.

Example: Biology

● Question: Why are cells tiny?
● Assume, for now, that cells are spheres.
● A cell absorbs nutrients from its environment

through its surface area.
● Surface area of the cell: O(r2).

● A cell needs to provide nutrients throughout its
volume.
● Volume of the cell: O(r3).

● As a cell gets bigger, its resource intake grows
slower than its resource consumption, so each part
of the cell gets less energy.

Example: Manufacturing

● You’re working at a company producing
widgets. It costs you some amount of money to
produce a widget, and there was some one-time
cost to set up the factory.

● What data would you need to gather to estimate
the cost of producing ten million widgets?

Cost(n)= n × costPerWidget + startupCostCost(n)= n × costPerWidget + startupCost

This term grows as a
function of n.

This term does
not grow.

= O(n).

Nuances of Big-O Notation

● Big-O notation is designed to capture the
rate at which a quantity grows.

● It does not capture information about
● leading coefficients: the area of a square and

a circle are both O(r2).
● lower-order terms: there may be other

factors contributing to growth that get
glossed over.

● However, it’s still a powerful tool for
predicting behavior.

Time-Out for Announcements!

Midterm Exam Logistics

● Our midterm exam is next Tuesday, February 11th from
7:00PM – 10:00PM. Locations are divvied up by last
(family) name:
● A – L: Go to Cubberley Auditorium.
● M – V: Go to Bishop Auditorium.
● W – Z: Go to 320-105.

● You’re responsible for Lectures 00 – 09 and topics covered
in Assignments 0 – 3. The topic coverage goes up through
but not including recursive backtracking.

● The exam is closed-book, closed-computer, and limited-note.
You can bring a double-sided, 8.5” × 11” sheet of notes with
you to the exam, decorated however you’d like.

● Students with OAE accommodations: Please contact us
immediately if we don’t yet have your OAE letter.

Midterm Exam

● We want you to do well on this exam.
We're not trying to weed out weak students.
We're not trying to enforce a curve where
there isn't one. We want you to show what
you've learned up to this point so that you get
a sense for where you stand and where you
can improve.

● The purpose of this midterm is to give you a
chance to show what you've learned in the
past few weeks. It is not designed to assess
your “programming potential” or “innate
coding ability.”

Preparing for the Exam

● We've released a handout (Handout 16
containing advice about how to prepare
for the exam. In particular:
● There’s advice about how to prepare for

exams that require writing code on paper.
● There’s advice about how to best study for the

exam.
● There’s advice about what you do and don’t

need to write on a coding exam.
● Please take the time to read over this

handout – it’s there for a reason!

Practice Exams

● Up on the course website, you’ll find
three practice midterm exams, each of
which contains questions really used in
past CS106B midterms.

● Take the time to work through some of
these problems. This is, perhaps, the best
way to study.

fg
(The Unix command that takes a paused

program and starts it up again.)

What does big-O notation have to
do with computer science?

Fundamental Question:

How do we measure efficiency?

One Idea: Runtime

Why Runtime Isn’t Enough

● Measuring wall-clock runtime is less than
ideal, since
● it depends on what computer you’re using,
● what else is running on that computer,
● whether that computer is conserving power,
● etc.

● Worse, individual runtimes can’t
predict future runtimes.

Assume any individual statement takes one unit
of time to execute. If the input Vector has n elements,

how many time units will this code take to run?

double averageOf(const Vector<int>& vec) {
 double total = 0.0;

 for (int i = 0; i < vec.size(); i++) {
 total += vec[i];
 }

 return total / vec.size();
}

Assume any individual statement takes one unit
of time to execute. If the input Vector has n elements,

how many time units will this code take to run?

double averageOf(const Vector<int>& vec) {
 double total = 0.0;

 for (int i = 0; i < vec.size(); i++) {
 total += vec[i];
 }

 return total / vec.size();
}

1

1 n+1 n

n

1

One possible answer: 3n + 4.

double averageOf(const Vector<int>& vec) {
 double total = 0.0;

 for (int i = 0; i < vec.size(); i++) {
 total += vec[i];
 }

 return total / vec.size();
}

1

1 n+1 n

n

1

Is this useful?

What does that
tell us?

Is this useful?

What does that
tell us?

One possible answer: 3n + 4.
More useful answer: O(n).

double averageOf(const Vector<int>& vec) {
 double total = 0.0;

 for (int i = 0; i < vec.size(); i++) {
 total += vec[i];
 }

 return total / vec.size();
}

1

1 n+1 n

n

1
Doubling the size of the

input roughly doubles the
runtime.

If we get some data points,
we can extrapolate

runtimes to good precision.

Doubling the size of the
input roughly doubles the

runtime.

If we get some data points,
we can extrapolate

runtimes to good precision.

How much time will it take for this code to run,
as a function of n? Answer using big-O notation.

void printStars(int n) {
 for (int i = 0; i < n; i++) {
 for (int j = 0; j < n; j++) {
 cout << '*' << endl;
 }
 }
}

How much time will it take for this code to run,
as a function of n? Answer using big-O notation.

void printStars(int n) {
 for (int i = 0; i < n; i++) {
 for (int j = 0; j < n; j++) {
 cout << '*' << endl;
 }
 }
}

How much time will it take for this code to run,
as a function of n? Answer using big-O notation.

void printStars(int n) {
 for (int i = 0; i < n; i++) {
 for (int j = 0; j < n; j++) {
 do a fixed amount of work;
 }
 }
}

How much time will it take for this code to run,
as a function of n? Answer using big-O notation.

void printStars(int n) {
 for (int i = 0; i < n; i++) {
 for (int j = 0; j < n; j++) {
 do a fixed amount of work;
 }
 }
}

How much time will it take for this code to run,
as a function of n? Answer using big-O notation.

void printStars(int n) {
 for (int i = 0; i < n; i++) {

 do O(n) time units of work

 }
}

How much time will it take for this code to run,
as a function of n? Answer using big-O notation.

void printStars(int n) {
 for (int i = 0; i < n; i++) {

 do O(n) time units of work

 }
}

How much time will it take for this code to run,
as a function of n? Answer using big-O notation.

void printStars(int n) {

 do O(n2) time units of work

}

Answer: O(n2).

void printStars(int n) {
 for (int i = 0; i < n; i++) {
 for (int j = 0; j < n; j++) {
 cout << '*' << endl;
 }
 }
}

If we time this code on
input n, how much longer
will it take to run on the

input 2n?

If we time this code on
input n, how much longer
will it take to run on the

input 2n?

How much time will it take for this code to run,
as a function of n? Answer using big-O notation.

void hmmThatsStrange(int n) {
 cout << "Mirth and Whimsy" << endl;
}

The runtime is
completely

independent of the
value of n.

The runtime is
completely

independent of the
value of n.

Answer: O(1).

void hmmThatsStrange(int n) {
 cout << "Mirth and Whimsy" << endl;
}

The runtime is
completely

independent of the
value of n.

The runtime is
completely

independent of the
value of n.

Next Time

● Sorting Algorithms
● How do we get things in order?

● Designing Better Algorithms
● Using predictions from big-O notation.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43

