

Thinking Recursively
Part V

Recap from Last Time

A Little Word Puzzle

“What nine-letter word can be reduced to a
single-letter word one letter at a time by

removing letters, leaving it a legal word at
each step?”

One Solution

S T A R T L I N G

One Solution

S T A R T I N G

One Solution

S T A R I N G

One Solution

S T R I N G

One Solution

S T I N G

One Solution

S I N G

One Solution

S I N

One Solution

I N

One Solution

I

New Stuff!

Our Solution, In Action

The Incredible Shrinking Word

CART

RT

T R

AT

T A

AR

R A

ART

RT

T R

CT

T C

CR

R C

CRT

AT

T A

CT

T C

CA

A C

CAT

AR

R A

CR

R C

CA

A C

CAR

bool isShrinkableWord(const string& word,
 const Lexicon& english) {
 if (!english.contains(word)) {
 return false;
 }
 if (word.length() == 1) {
 return true;
 }

 for (int i = 0; i < word.length(); i++) {
 string shrunken = word.substr(0, i) + word.substr(i + 1);
 if (isShrinkable(shrunken, english)) {
 return true;
 }
 }
 return false;
}

bool isShrinkableWord(const string& word,
 const Lexicon& english) {
 if (!english.contains(word)) {
 return false;
 }
 if (word.length() == 1) {
 return true;
 }

 for (int i = 0; i < word.length(); i++) {
 string shrunken = word.substr(0, i) + word.substr(i + 1);
 if (isShrinkable(shrunken, english)) {
 return true;
 }
 }
 return false;
}

bool isShrinkableWord(const string& word,
 const Lexicon& english) {
 if (!english.contains(word)) {
 return false;
 }
 if (word.length() == 1) {
 return true;
 }

 for (int i = 0; i < word.length(); i++) {
 string shrunken = word.substr(0, i) + word.substr(i + 1);
 if (isShrinkable(shrunken, english)) {
 return true;
 }
 }
 return false;
}

bool isShrinkableWord(const string& word,
 const Lexicon& english) {
 if (!english.contains(word)) {
 return false;
 }
 if (word.length() == 1) {
 return true;
 }

 for (int i = 0; i < word.length(); i++) {
 string shrunken = word.substr(0, i) + word.substr(i + 1);
 if (isShrinkable(shrunken, english)) {
 return true;
 }
 }
 return false;
}

bool isShrinkableWord(const string& word,
 const Lexicon& english) {
 if (!english.contains(word)) {
 return false;
 }
 if (word.length() == 1) {
 return true;
 }

 for (int i = 0; i < word.length(); i++) {
 string shrunken = word.substr(0, i) + word.substr(i + 1);
 return isShrinkable(shrunken, english)); // Bad idea!
 }
 return false;
}

bool isShrinkableWord(const string& word,
 const Lexicon& english) {
 if (!english.contains(word)) {
 return false;
 }
 if (word.length() == 1) {
 return true;
 }

 for (int i = 0; i < word.length(); i++) {
 string shrunken = word.substr(0, i) + word.substr(i + 1);
 return isShrinkable(shrunken, english)); // Bad idea!
 }
 return false;
}

bool isShrinkableWord(const string& word,
 const Lexicon& english) {
 if (!english.contains(word)) {
 return false;
 }
 if (word.length() == 1) {
 return true;
 }

 for (int i = 0; i < word.length(); i++) {
 string shrunken = word.substr(0, i) + word.substr(i + 1);
 return isShrinkable(shrunken, english)); // Bad idea!
 }
 return false;
}

bool isShrinkableWord(const string& word,
 const Lexicon& english) {
 if (!english.contains(word)) {
 return false;
 }
 if (word.length() == 1) {
 return true;
 }

 for (int i = 0; i < word.length(); i++) {
 string shrunken = word.substr(0, i) + word.substr(i + 1);
 return isShrinkable(shrunken, english)); // Bad idea!
 }
 return false;
}

Tenacity is a Virtue

CART

RT

T R

AT

T A

AR

R A

ART

RT

T R

CT

T C

CR

R C

CRT

AT

T A

CT

T C

CA

A C

CAT

AR

R A

CR

R C

CA

A C

CAR

When backtracking recursively,
don’t give up if your first try fails!

Hold out hope that something else will
work out. It very well might!

Recursive Backtracking

if (problem is sufficiently simple) {

 return whether the problem is solvable

} else {

 for (each choice) {

 try out that choice

 if (that choice leads to success) {

 return success;

 }

 }

 return failure;

}

Note that if the recursive call
succeeds, then we return success. If
it doesn't succeed, that doesn't mean
we've failed – it just means we need

to try out the next option.

Note that if the recursive call
succeeds, then we return success. If
it doesn't succeed, that doesn't mean
we've failed – it just means we need

to try out the next option.

How do we know we’re correct?

Output Parameters

● An output parameter (or outparam) is a
parameter to a function that stores the
result of that function.

● Caller passes the parameter by reference,
function overwrites the value.

● Often used with recursive backtracking:
● The return value says whether a solution

exists.
● If one does, it’s loaded into the outparameter.

Generating the Answer

CART

RT

T R

AT

T A

AR

R A

ART

RT

T R

CT

T C

CR

R C

CRT

AT

T A

CT

T C

CA

A C

CAT

AR

R A

CR

R C

CA

A C

CAR

Generating the Answer

CART

RT

T R

AT

T A

AR

R A

ART

RT

T R

CT

T C

CR

R C

CRT

AT

T A

CT

T C

CA

A C

CAT

AR

R A

CR

R C

CA

A C

CAR

Generating the Answer

CART

RT

T R

AT

T A

AR

R A

ART

RT

T R

CT

T C

CR

R C

CRT

AT

T A

CT

T C

CA

A C

CAT

AR

R A

CR

R C

CA

A C

CAR

Generating the Answer

CART

RT

T R

AT

T A

AR

R A

ART

RT

T R

CT

T C

CR

R C

CRT

AT

T A

CT

T C

CA

A C

CAT

AR

R A

CR

R C

CA

A C

CAR

Generating the Answer

CART

RT

T R

AT

T A

AR

R A

ART

RT

T R

CT

T C

CR

R C

CRT

AT

T A

CT

T C

CA

A C

CAT

AR

R A

CR

R C

CA

A C

CAR

Generating the Answer

CART

RT

T R

AT

T A

AR

R A

ART

RT

T R

CT

T C

CR

R C

CRT

AT

T A

CT

T C

CA

A C

CAT

AR

R A

CR

R C

CA

A C

CAR

Generating the Answer

CART

RT

T R

AT

T A

AR

R A

ART

RT

T R

CT

T C

CR

R C

CRT

AT

T A

CT

T C

CA

A C

CAT

AR

R A

CR

R C

CA

A C

CAR

Generating the Answer

CART

RT

T R

AT

T A

AR

R A

ART

RT

T R

CT

T C

CR

R C

CRT

AT

T A

CT

T C

CA

A C

CAT

AR

R A

CR

R C

CA

A C

CAR

Generating the Answer

CART

RT

T R

AT

T A

AR

R A

ART

RT

T R

CT

T C

CR

R C

CRT

AT

T A

CT

T C

CA

A C

CAT

AR

R A

CR

R C

CA

A C

CAR

Generating the Answer

CART

RT

T R

AT

T A

AR

R A

ART

RT

T R

CT

T C

CR

R C

CRT

AT

T A

CT

T C

CA

A C

CAT

AR

R A

CR

R C

CA

A C

CAR

Generating the Answer

CART

RT

T R

AT

T A

AR

R A

ART

RT

T R

CT

T C

CR

R C

CRT

AT

T A

CT

T C

CA

A C

CAT

AR

R A

CR

R C

CA

A C

CAR

Generating the Answer

CART

RT

T R

AT

T A

AR

R A

ART

RT

T R

CT

T C

CR

R C

CRT

AT

T A

CT

T C

CA

A C

CAT

AR

R A

CR

R C

CA

A C

CAR

A

A

Generating the Answer

CART

RT

T R

AT

T A

AR

R A

ART

RT

T R

CT

T C

CR

R C

CRT

AT

T A

CT

T C

CA

A C

CAT

AR

R A

CR

R C

CA

A C

CAR

A

A

Generating the Answer

CART

RT

T R

AT

T A

AR

R A

ART

RT

T R

CT

T C

CR

R C

CRT

AT

T A

CT

T C

CA

A C

CAT

AR

R A

CR

R C

CA

A C

CAR

A
AT

A
AT

Generating the Answer

CART

RT

T R

AT

T A

AR

R A

ART

RT

T R

CT

T C

CR

R C

CRT

AT

T A

CT

T C

CA

A C

CAT

AR

R A

CR

R C

CA

A C

CAR

A
AT

A
AT

Generating the Answer

CART

RT

T R

AT

T A

AR

R A

ART

RT

T R

CT

T C

CR

R C

CRT

AT

T A

CT

T C

CA

A C

CAT

AR

R A

CR

R C

CA

A C

CAR

A
AT
ART

A
AT
ART

Generating the Answer

CART

RT

T R

AT

T A

AR

R A

ART

RT

T R

CT

T C

CR

R C

CRT

AT

T A

CT

T C

CA

A C

CAT

AR

R A

CR

R C

CA

A C

CAR

A
AT
ART

A
AT
ART

Generating the Answer

CART

RT

T R

AT

T A

AR

R A

ART

RT

T R

CT

T C

CR

R C

CRT

AT

T A

CT

T C

CA

A C

CAT

AR

R A

CR

R C

CA

A C

CAR

A
AT
ART
CART

A
AT
ART
CART

Generating the Answer

CART

RT

T R

AT

T A

AR

R A

ART

RT

T R

CT

T C

CR

R C

CRT

AT

T A

CT

T C

CA

A C

CAT

AR

R A

CR

R C

CA

A C

CAR

A
AT
ART
CART

A
AT
ART
CART

Question to ponder: How
would you update the

function so that it generates
the sequence in reverse

order?

Question to ponder: How
would you update the

function so that it generates
the sequence in reverse

order?

Dense Crosswords

New York Times Mini Crossword, January 24, 2020

s t r a w
i r i s h
m a s s e
o c e a
n e r d

New York Times Mini Crossword, January 24, 2020

n
s

p r o g r a m
l a d r o n e
a v i a t o r
c e s t o d e
e n t e r e r

ScoundrelScoundrel
TapewormTapeworm

Person who
writes odes

Person who
writes odes

Where current
flows in

Where current
flows in

More than mere,
less than merest

More than mere,
less than merest

d i k d i k
i o n o n e
k n o l l y
d o l m a s
i n l a c e
k e y s e t

Rose-
scented
molecule

Rose-
scented
molecule

HillyHilly

Stuffed
grape
leaves

Stuffed
grape
leaves

Bind with
lace

Bind with
lace

Synonym
for

keyboard

Synonym
for

keyboard

Thanks for former CS106B student Jose Francisco!

s p l i t
e r o d e
a e r o s
s p e l t

Thanks for former CS106B student Jose Francisco!

Type of
wheat

Type of
wheat

Short version
of

“aerodynamics”

Short version
of

“aerodynamics”

Try all words
that can go in

this row.

Try all words
that can go in

this row.

Same here.Same here.

And here.And here.

Here too.Here too.

Same.Same.

Idea: Fill this in using recursive backtracking.

There are 8,636
words that can
go in this row.

There are 8,636
words that can
go in this row.

Same here.Same here.

And here.And here.

Here too.Here too.

Same.Same.

8,636⁵ = 48,035,594,312,821,554,176

At one billion grids per second, this will
take about three hundred years to complete.

Speeding Things Up

Generating Dense Crosswords

Generating Dense Crosswords

A A H E D

Generating Dense Crosswords

A A H E D
A A H E D

Generating Dense Crosswords

A A H E D
A A H E D
A A H E D

Generating Dense Crosswords

A A H E D
A A H E D
A A H E D
A A H E D

Generating Dense Crosswords

A A H E D
A A H E D
A A H E D
A A H E D
A A H E D

Generating Dense Crosswords

A A H E D
A A H E D
A A H E D
A A H E D
A A H E D

Generating Dense Crosswords

A A H E D
A A H E D
A A H E D
A A H E D
A A L I I

Generating Dense Crosswords

A A H E D
A A H E D
A A H E D
A A H E D
A A L I I

Generating Dense Crosswords

A A H E D
A A H E D
A A H E D
A A H E D
A A R G H

Generating Dense Crosswords

A A H E D
A A H E D
A A H E D
A A H E D
A A R G H

Generating Dense Crosswords

A A H E D
A A H E D
A A H E D
A A H E D
A A R G H

These columns are silly. No
words start with three A’s,

or three H’s, etc.

These columns are silly. No
words start with three A’s,

or three H’s, etc.

Generating Dense Crosswords

Generating Dense Crosswords

A A H E D

Generating Dense Crosswords

A A H E D
A A H E D

Generating Dense Crosswords

A A H E D
A A H E D

Generating Dense Crosswords

A A H E D
A A H E D

Generating Dense Crosswords

A A H E D
A A H E D

We just skipped checking
8,636³ = 644,077,163,456

combinations of words.

We just skipped checking
8,636³ = 644,077,163,456

combinations of words.

Generating Dense Crosswords

A A H E D
A A H E D

The Lexicon has a fast
function containsPrefix
that’s perfect for this.

The Lexicon has a fast
function containsPrefix
that’s perfect for this.

Generating Dense Crosswords

A A H E D
A A L I I

Generating Dense Crosswords

A A H E D
A A L I I

Generating Dense Crosswords

A A H E D
A A L I I

Generating Dense Crosswords

A A H E D
A B A C A

Generating Dense Crosswords

A A H E D
A B A C A
A A H E D

Generating Dense Crosswords

A A H E D
A B A C A
A A H E D

Generating Dense Crosswords

A A H E D
A B A C A
A A H E D

Generating Dense Crosswords

A A H E D
A B A C A
A A L I I

Generating Dense Crosswords

A A H E D
A B A C A
A A L I I

Generating Dense Crosswords

A A H E D
A B A C A
A A L I I

Let’s Code it Up!

p r o g r a m

This word’s length is the
number of columns.

This word’s length is the
number of columns.

p
l
a
c
e

This word’s length is the
number of rows.

This word’s length is the
number of rows.

bool canMakeCrosswordRec(Grid<char>& crossword,
 int nextRow,
 const Lexicon& rowWords,
 const Lexicon& colWords);

bool canMakeCrosswordRec(Grid<char>& crossword,
 int nextRow,
 const Lexicon& rowWords,
 const Lexicon& colWords);

Can we make a
dense crossword…
Can we make a

dense crossword… …that starts with
the first few rows

of this grid…

…that starts with
the first few rows

of this grid…

… given only these
words?

… given only these
words?

Recursive Backtracking

if (problem is sufficiently simple) {

 return whether the problem is solvable

} else {

 for (each choice) {

 try out that choice

 if (that choice leads to success) {

 return success;

 }

 }

 return failure;

}

a a r r g h h
a b o u l i a
h y m n i s t
s e p t a t e

Lack of
willpower

Lack of
willpower

Having a
septum

Having a
septum

Person who
writes hymns

Person who
writes hymns

Expressions
of surprise

Expressions
of surprise

Small
animal

Small
animal

Atone
for

Atone
for

Play
roughly

Play
roughly

Brain
cells

Brain
cells

“Be
quiet!”

“Be
quiet!”

Going Deeper

● You can speed this up even more if you’re more
clever. Here are some thoughts to get you started:
● Once you’ve placed a few rows down, the columns will

be very constrained. Consider switching to going one
column at a time versus one row at a time at that point.

● Figure out which row or column is most constrained at
each point, and only focus on that row/column.

● Completely optional challenge: Make this
program run faster, and find a cool dense
crossword. If you find something interesting (and
PG-13), we’ll share it with the rest of the class!

Closing Thoughts on Recursion

You now know how to use recursion to
view problems from a different

perspective that can lead to short and
elegant solutions.

You’ve seen how to use recursion to
enumerate all objects of some type,

which you can use to find the
optimal solution to a problem.

You’ve seen how to use recursive
backtracking to determine whether

something is possible and, if so to find
some way to do it.

Congratulations on making it this far!

Your Action Items

● Finish Chapter 9.
● It’s all about backtracking, and there are

some great examples in there!
● Start Assignment 4.

● Aim to complete the debugging exercise and
Doctors Without Orders by Monday.

Next Time

● Algorithmic Analysis
● How do we formally analyze the complexity

of a piece of code?
● Big-O Notation

● Quantifying efficiency!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101

