Thinking Recursively Part I

Outline for Today

- Self-Similarity
- Recursive patterns are everywhere!
- Recursive Trees
- Elegant structures from simple code.
- Information Flow
- How to send information around in recursion.

Self-Similarity

An object is self-similar if it contains a smaller copy of itself.

Hey, it's that thing from Assignment 1!

happy
 holidays

An object is self-similar if it contains a smaller copy of itself.

Drawing Self-Similar Shapes

What differentiates the smaller tree from the bigger one?

1. It's at a different position.
2. It's at a different size.
3. It has a different orientation.
4. It has a different order.

Self-similar structures are often described in terms of some parameter called the order.

An order-0 tree.

What differentiates the smaller tree from the bigger one?
1. It's at a different position.
2. It's at a different size.

Self-similar structures are often described in terms of some parameter called the order.

An order-1 tree.

What differentiates the smaller tree from the bigger one?

1. It's at a different position.

Self-similar structures are
2. It's at a different size. often described in terms of
3. It has a different orientation.
4. It has a different order. some parameter called the order.

An order-2 tree.

What differentiates the smaller tree from the bigger one?

1. It's at a different position.

Self-similar structures are
2. It's at a different size. often described in terms of
3. It has a different orientation.
4. It has a different order.
some parameter called the order.

An order-3 tree.

What differentiates the smaller

 tree from the bigger one?1. It's at a different position.

Self-similar structures are
2. It's at a different size. often described in terms of
3. It has a different orientation.
4. It has a different order. some parameter called the order.

What differentiates the smaller tree from the bigger one?

1. It's at a different position.
2. It's at a different size.
3. It has a different orientation.
4. It has a different order.

Self-similar structures are often described in terms of some parameter called the order.

What differentiates the smaller tree from the bigger one?

1. It's at a different position.
2. It's at a different size.
3. It has a different orientation.
4. It has a different order.

Self-similar structures are often described in terms of some parameter called the order.

An order-3 tree.

What differentiates the smaller

 tree from the bigger one?1. It's at a different position.

Self-similar structures are
2. It's at a different size. often described in terms of
3. It has a different orientation.
4. It has a different order. some parameter called the order.

An order-0 tree is nothing at all.
An order- n tree is a line with two smaller order-($n-1$) trees starting at the end of that line.

What differentiates the smaller tree from the bigger one?

1. It's at a different position.
2. It's at a different size.
3. It has a different orientation.
4. It has a different order.

Self-similar structures are often described in terms of some parameter called the order.

An order-0 tree is nothing at all.
An order- n tree is a line with two smaller order-($n-1$) trees starting at the end of that line.

What differentiates the smaller

 tree from the bigger one?1. It's at a different position.
2. It's at a different size.

Self-similar structures are
3. It has a different orientation. often described in terms of
4. It has a different order. some parameter called the order.

An order-0 tree is nothing at all.

An order- n tree is a line with two smaller order-($n-1$) trees starting at the end of that line.

An order-3 tree.

We can call the function drawPolarLine(window, x, y, r, θ)
to draw a line of radius r and angle θ starting at (x, y). It then returns the endpoint of the line so we don't need to calculate it ourselves!

Self-similar structures are often described in terms of some parameter called the order.

To Summarize

An Amazing Website

http://recursivedrawing.com/

Time-Out for Announcements!

Assignment 2

- Assignment 2 is due on Friday.
- If you're following our suggested timetable, you should be done with Rising Tides at this point and should be working on You Got Hufflepuff!
- Have questions?
- Stop by the LaIR!
- Email your section leader!
- Ask on Piazza!
- Visit Keith's or Katherine’s office hours!

Submitting Your Work

- Each assignment handout has a "Submission Instructions" section at the end with information about what files to submit.
- Please submit all the files listed there. Otherwise, we can't grade your work.
- Thanks!

Onward and Forward!

How many lines make up each tree?

Communicating Across Calls

- Each copy of a recursive call gets its own copy of each local variable.
- Changing a local variable in one recursive call does not change other copies of those variables across calls.
- How do we aggregate information across multiple recursive calls?

A Practical Application

Your Action Items

- Read Chapter 8.
- There's a ton of goodies in there! It'll help you solidify your understanding.
- Finish Assignment 2.
- Best of luck! Reach out to us when you need help.

Next Time

- Recursive Enumeration
- Finding all objects of a given type.
- Enumerating Subsets
- A classic combinatorial problem!

