Strings in C++

Recap from Last Time

Another View of Factorials

ol = 1 ifn=20
' nxX(n-1)! otherwise

int factorial(int n) {
if (n == 0) {
return 1;

} else {
return n * factorial(n - 1);
}

Another View of Factorials

ol = 1 ifn=20
' nxX(n-1)! otherwise

int factorial(int n) {

return n * factorial(n - 1);

New Stuff!

Thinking Recursively

* Solving a problem with recursion
requires two steps.

 First, determine how to solve the
problem for simple cases.

 This is called the base case.

 Second, determine how to break down
larger cases into smaller instances.

* This is called the recursive step.

Thinking Recursively

if (The problem is very simple) { These simple cases

Directly solve the problem. are called base

Cases,

Return the solution.

} else {

Split the problem into one or more
smaller problems with the same
structure as the original.

Solve each of those smaller problems.

Combine the results to get the overall
solution.

Return the overall solution. y These are the
} recursive cases,

Summing Up Digits

 On Wednesday, we wrote this function to
sum up the digits of a nonnegative integer:
int sumOfDigitsOf(int n) {
int result = 0;

while (n > 0) {
result += (n % 10);
n /= 10;

}

return result;

}
» Let’s rewrite this function recursively!

Summing Up Digits
The sum of the digifs of
This number is equal fo.
the sum ot the digits of
this number.. ‘ plus this number, I

1 2 5 8

Summing Up Digits
sumofDigitsof (n)
is equal To..
the sum ot the digits of
thic number. ‘ plus this number, I

1 2 5 8

Summing Up Digits
1 2 5 8
sumof Digitsof (n) I /

is equal fo.

sumot Digitsot(n / 10) ‘ plus this number, I

Summing Up Digits
1 2 5 8
sumof Digitsof (n) I /

is equal fo.

sumof Digitsot(n / 10) ‘ + (n « 10) I

Thinking Recursively

if (The problem is very simple) { These simple cases

Directly solve the problem. are called base

Cases,

Return the solution.

} else {

Split the problem into one or more
smaller problems with the same
structure as the original.

Solve each of those smaller problems.

Combine the results to get the overall
solution.

Return the overall solution. y These are the
} recursive cases,

Tracing the Recursion

int main() {
int sum = sumOfDigitsOf(137);
cout << "Sum i1s " << sum << endl;

}

Tracing the Recursion

int main() {

int sum =] sumOfDigitsOf(137);
cout << "Sum 1S " << sum << endl;

}

Tracing the Recursion

int main() { |

int sumOfDigitsOf(int n) { .
if (n < 10) { int n ‘ 137 ‘
] return n;
} else {
return sumOfDigitsOf(n / 10) + (n % 10);
}

}

Tracing the Recursion

int main() { |
int _sum0fDigitsQf(int n) { ,
tnt n | 137 |
] recarn n,
} else {
return sumOfDigitsOf(n / 10) + (n % 10);
}

}

Tracing the Recursion

int main() { I

int sumOfDigitsOf(int n) {]
if (n < 10) { ‘“t“‘ Ll ‘

] n;
return sumOfDigitsOf(n / 10) + (n % 10);

}
}

Tracing the Recursion

int main() { |
int sumOfDigitsOf(int n) { .
if (n < 10) { int n ‘ 137 ‘
] return n;
} else
return sumOfDigitsOf(n / 10) + (n % 10);
}

}

Tracing the Recursion

int main() { |
int sumOfDigitsOf(int n) { .
if (n < 10) { int n ‘ 137 ‘
] return n;
} else {
return| sun0fDigitsOf(n / 10)|+ (n % 10);
}

}

Tracing the Recursion

int main() { I
int _sumOfDigitsOf(int n) { . |
int sumOfDigitsOf(int n) { ,

] if (n < 10) { int n‘ 13 ‘

return n;

} else {
return sumOfDigitsOf(n / 10) + (n % 10);
}

}

Tracing the Recursion

int main() { I
int _sumOfDigitsOf(int n) { . |
int mOfDigitsQf(int n) { .
} if (n < 10) { int n‘ 13 ‘
recarn n;
} else {
return sumOfDigitsOf(n / 10) + (n % 10);
}

}

Tracing the Recursion

int main() { I
int _sumOfDigitsOf(int n) { . |
int sumOfDigitsOf(int n) { ,
] if (n<1@){ 1.ntn‘ 13 ‘
& n;
return sumOfDigitsOf(n / 10) + (n % 10);
}

}

Tracing the Recursion

int main() { I
int _sumOfDigitsOf(int n) { . |
] int sumOfDigitsOf(int n) { ,
if (n < 1@){ int n‘ 13 ‘
return n;
} else
return sumOfDigitsOf(n / 10) + (n % 10)
}

}

Tracing the Recursion

int main() { I
int _sumOfDigitsOf(int n) { . |

int sumOfDigitsOf(int n) {]
] if (n < 10) { int n‘ 13 ‘
return n;
} else {

return|sumOfDigitsOf(n / 10) |+ (n % 10);
}

}

Tracing the Recursion

int main() { I
int _sumOfDigitsOf(int n) { . |
] int _sumOfDigitsOf(int n) {
int sumOfDigitsOf(int n) {

if (n<1@){ intn‘ 1 ‘

return n;

} else {
return sumOfDigitsOf(n / 10) + (n % 10);

}

}

Tracing the Recursion

int main() { I
int _sumOfDigitsOf(int n) { . |
] int _sumOfDigitsOf(int n) {

int _sum0fDigitsOf(int n) {
if (n < 10) {
return n,

} } else {
return sumOfDigitsOf(n / 10) + (n % 10);

}

}

Tracing the Recursion

int main() { I
int _sumOfDigitsOf(int n) { . |
] int _sumOfDigitsOf(int n) {

int sumOfDigitsOf(int n) {

1f (o) int n ‘ 1 ‘
} else

return sumOfDigitsOf(n / 10) + (n % 10);
}

}

Tracing the Recursion

int main() { I
int _sumOfDigitsOf(int n) { . |
int sumOfDigitsOf(int n) { ,
] if (n<1@){ 1.ntn‘ 13 ‘
return n;
} else {
return|sumOfDigitsOf(n / 10)|+ (n % 10);
}

) 1

Tracing the Recursion

int main() { I
int _sumOfDigitsOf(int n) { . |

int sumOfDigitsOf(int n) {]
] if (n < 10) { int n‘ 13 ‘
return n;
} else {

return sumOfDigitsOf(n / 10) + m
}
} 1

Tracing the Recursion

int main() { I
int _sumOfDigitsOf(int n) { . |

int sumOfDigitsOf(int n) {]
] if (n < 10) { int n‘ 13 ‘
return n;
} else {

return sumOfDigitsOf(n / 10) + m
}
} 1 — 3

Tracing the Recursion

int main() { I
int _sumOfDigitsOf(int n) { . |

int sumOfDigitsOf(int n) {]
] if (n < 10) { int n‘ 13 ‘
return n;
} else {

return sumOfDigitsOf(n / 10) + m
}
} 4L

Tracing the Recursion

int main() { |

int sumOfDigitsOf(int n) {]

if (n < 10) { ‘“t“‘ Ll ‘
] return n;
} else {

return| sumOfDigitsOf(n / 10)|+ (n % 10);
}
} 4.

Tracing the Recursion

int main() { |

int sumOfDigitsOf(int n) {]

if (n < 10) { ‘“t“‘ Ll ‘
] return n;
} else {

return sumOfDigitsOf(n / 10) +
}
} 4L

Tracing the Recursion

int main() { |

int sumOfDigitsOf(int n) {]

if (n < 10) { ‘“t“‘ Ll ‘
] return n;
} else {

return sumOfDigitsOf(n / 10) +
}
} 4 — 7

Tracing the Recursion

int main() { |

int sumOfDigitsOf(int n) {]

if (n < 10) { ‘“t“‘ Ll ‘
] return n;
} else {

return sumOfDigitsOf(n / 10) +
}
} 11

Tracing the Recursion

int main() {

int sum =] sumOfDigitsOf(137);
cout << "Sum 1S " << sum << endl;

}

11

Thinking Recursively

if (The problem is very simple) { These simple cases

Directly solve the problem. are called base

Cases,

Return the solution.

} else {

Split the problem into one or more
smaller problems with the same
structure as the original.

Solve each of those smaller problems.

Combine the results to get the overall
solution.

Return the overall solution. y These are the
} recursive cases,

Example: Digital Roots

Digital Roots

The digital root is the number you get by repeatedly
summing the digits of a number until you’re down to a
single digit.

What is the digital root of 5?

What is the digital root of 277

What is the digital root of 1377

Digital Roots

The digital root is the number you get by repeatedly
summing the digits of a number until you’re down to a
single digit.

What is the digital root of 5?

» 5 is a single digit, so the answer is 5.
What is the digital root of 277

What is the digital root of 1377

Digital Roots

The digital root is the number you get by repeatedly
summing the digits of a number until you’re down to a
single digit.

What is the digital root of 5?

» 5 is a single digit, so the answer is 5.
What is the digital root of 277

« 2+ 7=0.

What is the digital root of 1377

Digital Roots

The digital root is the number you get by repeatedly
summing the digits of a number until you’re down to a
single digit.

What is the digital root of 5?

» 5 is a single digit, so the answer is 5.
What is the digital root of 277

« 2+ 7 =0,

 The answer is 9.

What is the digital root of 1377

Digital Roots

The digital root is the number you get by repeatedly
summing the digits of a number until you’re down to a
single digit.

What is the digital root of 5?

» 5 is a single digit, so the answer is 5.
What is the digital root of 277

« 2+ 7 =0,

 The answer is 9.

What is the digital root of 1377

e 1 +3+7=11.

Digital Roots

The digital root is the number you get by repeatedly
summing the digits of a number until you’re down to a
single digit.

What is the digital root of 5?

» 5 is a single digit, so the answer is 5.
What is the digital root of 277

« 2+ 7 =0,

 The answer is 9.

What is the digital root of 1377

e 1 +3+7=11.

e 1 +1=2.

Digital Roots

The digital root is the number you get by repeatedly
summing the digits of a number until you’re down to a
single digit.

What is the digital root of 5?

» 5 is a single digit, so the answer is 5.
What is the digital root of 277

« 2+ 7 =0,

 The answer is 9.

What is the digital root of 1377

e 1 +3+7=11.

e 1 +1=2.

« The answer is 2.

Digital Roots

Digital Roots

The digital root of 9 2 5 8

Digital Roots

The digital root of 9 2 5 8 IS the same as

Digital Roots

The digital root of 9 2 5 8 is the same as
The digital root of 9 -4 2 -4 5 - 8

Digital Roots

The digital root of 9 2 5 8 IS the same as
The digital root of 2 4

Digital Roots

The digital root of 9 2 5 8 IS the same as

The digital root of 2 4 which is the same as

Digital Roots

The digital root of 9 2 5 8 IS the same as

The digital root of 2 4 which is the same as

The digital root of 2 -4 4

Digital Roots

The digital root of 9 2 5 8 IS the same as

The digital root of 2 4 which is the same as

The digital root of 6

Thinking Recursively

if (The problem is very simple) { These simple cases

Directly solve the problem. are called base

Cases,

Return the solution.

} else {

Split the problem into one or more
smaller problems with the same
structure as the original.

Solve each of those smaller problems.

Combine the results to get the overall
solution.

Return the overall solution. y These are the
} recursive cases,

Time-Out for Announcements!

Section Signups

* Section signups are open right now.
They close Sunday at SPM.

* Sign up for section at
https://cs198.stanford.edu/

* Click on “CS106 Sections Login,” then
choose “Section Signup.”

https://cs198.stanford.edu/

Assignment 1

« Assignment O was due today at the start of class.

« Assignment 1: Welcome to C++ goes out today. It’s due on
Friday, January 17t at the start of class.

Play around with C++ and the Stanford libraries!
Get some practice with recursion!

Explore the debugger!

See some pretty pictures!

« We recommend making slow and steady progress on this
assignment throughout the course of the week. There’s a
recommended timetable on the front page of the handout.

 We’ve posted two handouts online. We strongly recommend
reading over them before starting.

« Handout 06: Debugging Your Code
« Handout 07: Assignment Submission Checklist

[.ate Periods

* Everyone has two free “late periods” to
use as needed.

« A “late period” is an automatic extension
for one class period (Monday to
Wednesday, Wednesday to Friday, or
Friday to Monday).

* If you need an extension beyond late
periods, please talk to Katherine. Your
section leader cannot grant extensions.

Assignment Grading

* Your coding assignments are graded on both functionality
and on coding style.

* The functionality score is based on correctness.
* Do your programs produce the correct output?

* Do they work on all inputs?
* etc.

 The style score is based on how well your program is
written.

* Are your programs well-structured?
Do you decompose problems into smaller pieces?

« Do you use variable naming conventions consistently?
* etc.

Getting Help

Getting Help

e .alR Hours!

 Sunday - Thursday, 7PM - 11PM on the first floor of
Tresidder Student Union.

 L.alR hours start this weekend.
« Katherine’s Office Hours

 Tuesdays and Thursdays, 3:00PM - 4:15PM, Gates
BO2.

 Keith's Office Hours

 Tuesdays, 10:00AM - 12:00PM, Gates 172,

« Stop on by! I'm happy to chat about just about
anything.

One More Unto the Breach!

Strings in C++

C++ Strings

 C++ strings are represented with the string type.
* To use string, you must
#include <string>
at the top of your program.

* You can get the number of characters in a string
by calling either of these functions:

str.length() str.size()
* You can read a single character in a string by
writing
str[index]

Strings and Characters

* In C++, there are two types for representing
text:

* The char type (character) represents a single glyph
(letter, punctuation symbol, space, etc.)

« The string type represents a sequence of zero or more
characters.

« Keep this in mind if you’re transitioning to C++
from Python or JavaScript.

 Check out Chapter 1.5 for more on the difference
between strings and characters.

Strings are Mutable

« Unlike strings in Python, Java, and JavaScript,
in C++ strings are mutable and their contents
can be changed.

» To change an individual character of a string,
write

str[index] = ch;
 To append more text, you can write
str += text;

 These operations directly change the string
itself, rather than making a copy of the string.

Other Important Differences

« In C++, the == operator can directly be used to compare
strings:

if (str1 == str2) {
/* strings match */
}

* You can get a substring of a string by calling the substr
method. substr takes in a start position and optional length
(not an end position!)

string allButFirstChar = Str.substr(1);
P r a i1 s 1 n g
0 1 2 3 4 5 6 7

Other Important Differences

« In C++, the == operator can directly be used to compare
strings:

if (str1 == str2) {
/* strings match */
}

* You can get a substring of a string by calling the substr
method. substr takes in a start position and optional length
(not an end position!)

string allButFirstChar = Str.substr(1);

Other Important Differences

« In C++, the == operator can directly be used to compare
strings:

if (str1 == str2) {
/* strings match */
}

* You can get a substring of a string by calling the substr
method. substr takes in a start position and optional length
(not an end position!)

string allButFirstChar
string allButFirstAndLast

str.substr(1);
str.substr(1, str.length() - 2);

Other Important Differences

« In C++, the == operator can directly be used to compare
strings:

if (str1 == str2) {
/* strings match */
}

* You can get a substring of a string by calling the substr
method. substr takes in a start position and optional length
(not an end position!)

string allButFirstChar
string allButFirstAndLast

str.substr(1);
str.substr(1, str.length() - 2);

Even More Differences

* In Java and JavaScript you can
concatenate just about anything with a
string.

 In C++, you can only concatenate strings
and characters onto other strings.

 Use the to_string function to convert
things to strings:

string s = "He really likes " + to_string(137);
s += "And also apparently " + to _string(2.718);

Recursion and Strings

Thinking Recursively

1 2 5 8

125 8

Thinking Recursively

Il BE X

I BEX

Reversing a String

1 a

Il

X

e

Reversing a String

N ub 1 an I b e x

x ebl maibu

Reversing a String

N ub 1 an I b e x

x eb Il maibuN

Reversing a String

u

b

1

d

Il

|

b

e

X

x eb I mnaibu

Reversing a String

u

b

1

d

Il

I

b

e

X

x eb I mnaibu

Reversing a String Recursively

reverse0f ("' T O P ")

Reversing a String Recursively

reverse0f (" T QP ") = reverseof(" QP ") + T

Reversing a String Recursively

reverse0f (" T QP ") = reverseof(" QP ") + T

reverse0f ("O P ")

Reversing a String Recursively

reverse0f (" T QP ") = reverseof(" QP ") + T

reverseOf("OQ P ") = reverse0f (" [P ") + O

Reversing a String Recursively

reverse0f (" T QP ") = reverseof(" QP ") + T

reverseOf("OQ P ") = reverse0f (" [P ") + O

reve rseOf("@ ")

Reversing a String Recursively

reverse0f (" T QP ") = reverseof(" QP ") + T

reverseOf("OQ P ") = reverse0f (" [P ") + O

reverseOf("@ ") = reverse0f("") + P

Reversing a String Recursively

reverse0f (" T QP ") = reverseof(" QP ") + T

reverse0Of("O P ") = reverse0f(" P ") + O

reverseOf("@ ") = reverse0f("") + P

reverseOf("") = "*"

Reversing a String Recursively

reverse0f (" T QP ") = reverseof(" QP ") + T

reverseOf("OQ P ") = reverse0f (" [P ") + O

reverseOf("@ ") = +®

reverseQf("") = ""

Reversing a String Recursively

reverse0f (" T QP ") = reverseof(" QP ") + T

reverseOf("OQ P ") = reverse0f (" [P ") + O

reverseOf("[‘") = [

reverseOf("") = "*"

Reversing a String Recursively

reverse0f (" T QP ") = reverseof(" QP ") + T
reverse0f("O P ") = P +0
reverseOf("[‘") = [

reverseQf("") = ""

Reversing a String Recursively

reverse0f (" T QP ") = reverseof(" QP ") + T

reverse0f ("OQO P ") = PO
reverseOf("@ ") = @

reverseOf("") = "*"

Reversing a String Recursively

reverse0Of ("' T O P ") = PO + T
reverse0f ("OQO P ") = PO
reverseOf("[‘") = [

reverseQf("") = ""

Reversing a String Recursively

reverse0f (" T O P ") = POT
reverse0f ("OQO P ") = PO
reverseOf("[‘") = [

reverseQf("") = ""

Reversing a String Recursively

reverse0f (" T QP ") = reverseof(" QP ") + T

reverse0Of("O P ") = reverse0f(" P ") + O

reverseOf("@ ") = reverse0f("") + P

reverseOf("") = "*"

Thinking Recursively

if (The problem is very simple) { These simple cases

Directly solve the problem. are called base

Cases,

Return the solution.

} else {

Split the problem into one or more
smaller problems with the same
structure as the original.

Solve each of those smaller problems.

Combine the results to get the overall
solution.

Return the overall solution. y These are the
} recursive cases,

Recap from Today

» Recursion works by identifying

* one or more base cases, simple cases that can be
solved directly, and

* One or more recursive cases, where a larger problem
is turned into a smaller one.

 C++ strings have some endearing quirks
compared to other languages. Importantly,
they’re mutable.

« Recursion is everywhere! And you can use it on
strings.

Your Action Items

* Read Chapter 3.

* This chapter is all about strings and string
processing, and it has some real winners.

* Start working on Assignment 1.

 Aim to complete Stack Overflows and one or
two of the recursion problems by Monday.

Next Time

 The Vector Type
e Storing sequences in C++!
* Recursion on Vectors.

e Of course. ©

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	After this slide, do a quick char-by-char printing example.
	Slide 67
	Do "convertToUpperCase"
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99

