
Assignment 5: Data Sagas
YEAH Hours

Avery	Wang



Last week



Searching

4 7 3 9 6 2 5 1



Sorting

1 2 3 4 5 6 7 8



Runtime
Complexity



Time for Assignment 5!



Child Mortality



Earthquakes



Women’s 800m Freestyle



National Parks



Data Sagas

Child Mortality Earthquakes
Women’s 800m 

Freestyle
National Parks

Demos



Data Sagas

Multiway merge
Lower bound 

search
Priority Queue Streaming top-k

Child Mortality Earthquakes
Women’s 800m 

Freestyle
National Parks

Demos

Code



Data Sagas

Multiway merge
Lower bound 

search
Priority Queue Streaming top-k

Child Mortality Earthquakes
Women’s 800m 

Freestyle
National Parks

Demos

Testing Utilities

Run Tests Time Tests
Interactive 
PQueue

Code



Data Points

struct DataPoint {
string name;
int weight;

};

name

weight



Data Points

Various per problem.
Don’t have to worry about it.

struct DataPoint {
string name;
int weight;

};

name

weight



Data Points

Use this field during
search/sort/comparison.

struct DataPoint {
string name;
int weight;

};

name

weight



Ties

Keep all data points, their order 
doesn’t matter.

Leslie

5

Ron

7

Tom

7

April

5

Andy

7



Ties

Suppose we wanted to sort 
this in non-decreasing order.

Leslie

5

Ron

7

Tom

7

April

5

Andy

7



Ties

This is valid!

Leslie

5

Ron

7

Tom

7

April

5

Andy

7



Ties

This is also valid!

April

5

Tom

7

Andy

7

Leslie

5

Ron

7



Data Sagas

Multiway merge
Lower bound 

search
Priority Queue Streaming top-k

Child Mortality Earthquakes
Women’s 800m 

Freestyle
National Parks

Demos

Testing Utilities

Run Tests Time Tests
Interactive 
PQueue

Code



Recall: Merge

2 3 5 7 8 9 1 4 6 10 11 12

Goal: merge two sorted sequences.



Recall: Merge

2 3 5 7 8 9 1 4 6 10 11 12



Recall: Merge

1

2 3 5 7 8 9 1 4 6 10 11 12



Recall: Merge

1 2

2 3 5 7 8 9 1 4 6 10 11 12



Recall: Merge

1 2 3

2 3 5 7 8 9 1 4 6 10 11 12



Recall: Merge

1 2 3 4

2 3 5 7 8 9 1 4 6 10 11 12



Recall: Merge

1 2 3 4 5

2 3 5 7 8 9 1 4 6 10 11 12



Recall: Merge

1 2 3 4 5 6

2 3 5 7 8 9 1 4 6 10 11 12



Recall: Merge

1 2 3 4 5 6 7

2 3 5 7 8 9 1 4 6 10 11 12



Recall: Merge

1 2 3 4 5 6 7 8

2 3 5 7 8 9 1 4 6 10 11 12



Recall: Merge

1 2 3 4 5 6 7 8 9

2 3 5 7 8 9 1 4 6 10 11 12



Recall: Merge

1 2 3 4 5 6 7 8 9 10

2 3 5 7 8 9 1 4 6 10 11 12



Recall: Merge

1 2 3 4 5 6 7 8 9 10 11

2 3 5 7 8 9 1 4 6 10 11 12



Recall: Merge

1 2 3 4 5 6 7 8 9 10 11 12

2 3 5 7 8 9 1 4 6 10 11 12



Recall: Merge

1 2 3 4 5 6 7 8 9 10 11 12



Recall: Merge

1 2 3 4 5 6 7 8 9 10 11 12

Time Complexity: O(n).



Your Task

4 5 6 10
2 8

Merge k sorted sequences together to form 
list of n data points.

1 12

11

3 7 9



Your Task

4 5 6 10
2 8

Here, k = 5, n = 12.

1 12

11

3 7 9



4 5 6 10
2 8

1 12

11

3 7 9

1. Split into two groups of roughly k/2 sequences



4 5 6 10

2 8

1 12

11

3 7 9

1. Split into two groups of roughly k/2 sequences

Group 1 Group 2



4 5 6 10

2 8

1 12

11

3 7 9

Group 1 Group 2

2. Recursively merge each group to form a large 
sorted sequence.



2 8

11

3 7 9

Group 1 Group 2

2. Recursively merge each group to form a large 
sorted sequence.



1 4 5 6 10 12
2 8

11

3 7 9

2. Recursively merge each group to form a large 
sorted sequence.

Group 1 [Sorted] Group 2



1 4 5 6 10 12

Group 1 [Sorted] Group 2

2. Recursively merge each group to form a large 
sorted sequence.



1 4 5 6 10 12

Group 1 [Sorted] Group 2 [Sorted]

2 3 7 8 9 11

2. Recursively merge each group to form a large 
sorted sequence.



1 4 5 6 10 12

3. Use merge algorithm to merge the two 
sequences together.

Group 1 [Sorted] Group 2 [Sorted]

2 3 7 8 9 11



Final Result

1 2 3 4 5 6 7 8 9 10 11 12

3. Use merge algorithm to merge the two 
sequences together.



12

Tip 1: Read up on the edge cases 
before you start!



Tip 2: Be careful about using 
Vector::subList!

v.subList(0, subList.size()/2);

What is its Big-Oh?
Will this degrade performance?



Data Sagas

Multiway merge
Lower bound 

search
Priority Queue Streaming top-k

Child Mortality Earthquakes
Women’s 800m 

Freestyle
National Parks

Demos

Testing Utilities

Run Tests Time Tests
Interactive 
PQueue

Code



Recall: Binary Search

1 3 6 10 15 21 28 35 45 55 66 78

Where is 6?



Recall: Binary Search

1 3 6 10 15 21 28 35 45 55 66 78

Where is 6?



Recall: Binary Search

1 3 6 10 15 21 28 35 45 55 66 78

Where is 6?



Recall: Binary Search

1 3 6 10 15 21 28 35 45 55 66 78

Where is 6?



Recall: Binary Search

1 3 6 10 15 21 28 35 45 55 66 78

Where is 6?



Recall: Binary Search

1 3 6 10 15 21 28 35 45 55 66 78

Where is 6?



Recall: Binary Search

1 3 6 10 15 21 28 35 45 55 66 78

Where is 6?



Recall: Binary Search

1 3 6 10 15 21 28 35 45 55 66 78

Where is 6?



Recall: Binary Search

1 3 6 10 15 21 28 35 45 55 66 78

Where is 6?



Recall: Binary Search

1 3 6 10 15 21 28 35 45 55 66 78

Found 6! Index: 2



Your task:
Find the index of the first element greater 

than or equal to a lower bound.

1 3 3 10 15 15 15 35 45 45 66 78



Your task:

Lower bound: 38

Find the index of the first element greater 
than or equal to a lower bound.

1 3 3 10 15 15 15 35 45 45 66 78



Your task:

Lower bound: 38

Find the index of the first element greater 
than or equal to a lower bound.

1 3 3 10 15 15 15 35 45 45 66 78



Your task:

Index: 8

Find the index of the first element greater 
than or equal to a lower bound.

1 3 3 10 15 15 15 35 45 45 66 78



Your task:

Lower bound: 2 

Find the index of the first element greater 
than or equal to a lower bound.

1 3 3 10 15 15 15 35 45 45 66 78



Your task:

Lower bound: 2 

Find the index of the first element greater 
than or equal to a lower bound.

1 3 3 10 15 15 15 35 45 45 66 78



Your task:

Index: 1

Find the index of the first element greater 
than or equal to a lower bound.

1 3 3 10 15 15 15 35 45 45 66 78



Your task:

Lower bound: 79

Find the index of the first element greater 
than or equal to a lower bound.

1 3 3 10 15 15 15 35 45 45 66 78



Your task:

Lower bound: 79

Find the index of the first element greater 
than or equal to a lower bound.

1 3 3 10 15 15 15 35 45 45 66 78



Your task:

Index: 12

Find the index of the first element greater 
than or equal to a lower bound.

If lower bound greater than all 
elements in list, index is the end 

of the list.

1 3 3 10 15 15 15 35 45 45 66 78



Your task:

Lower bound: -30

Find the index of the first element greater 
than or equal to a lower bound.

1 3 3 10 15 15 15 35 45 45 66 78



Your task:

Lower bound: -30

Find the index of the first element greater 
than or equal to a lower bound.

1 3 3 10 15 15 15 35 45 45 66 78



Your task:

Index: 0

Find the index of the first element greater 
than or equal to a lower bound.

1 3 3 10 15 15 15 35 45 45 66 78



Your task:

Expected runtime: O(log n)

Find the index of the first element greater 
than or equal to a lower bound.

1 3 3 10 15 15 15 35 45 45 66 78



Tips

Expected runtime: O(log n)

What is wrong with this approach?

1 3 3 10 15 15 15 35 45 45 66 78



Tips

What is wrong with this approach?

1 3 3 10 15 15 15 35 45 45 66 78

Lower bound: 15



Tips

What is wrong with this approach?

1 3 3 10 15 15 15 35 45 45 66 78

Use binary search to find 15.



Tips

What is wrong with this approach?

1 3 3 10 15 15 15 35 45 45 66 78

Move backwards to find the first 15.



Tips

What is wrong with this approach?

15 15 15 15 15 15 15 15 15 15 15 15

Try finding 15 again!



Tips

What is wrong with this approach?

15 15 15 15 15 15 15 15 15 15 15 15

Try finding 15 again!



Tips

What is wrong with this approach?

15 15 15 15 15 15 15 15 15 15 15 15

Try finding 15 again!



Tips

What is wrong with this approach?

15 15 15 15 15 15 15 15 15 15 15 15

Try finding 15 again!



Tips

What is wrong with this approach?

15 15 15 15 15 15 15 15 15 15 15 15

Try finding 15 again!



Tips

What is wrong with this approach?

15 15 15 15 15 15 15 15 15 15 15 15

Try finding 15 again!



Tips

What is wrong with this approach?

15 15 15 15 15 15 15 15 15 15 15 15

Try finding 15 again!



Tips

What is wrong with this approach?

15 15 15 15 15 15 15 15 15 15 15 15

Runtime: O(n)



Data Sagas

Multiway merge
Lower bound 

search
Priority Queue Streaming top-k

Child Mortality Earthquakes
Women’s 800m 

Freestyle
National Parks

Demos

Testing Utilities

Run Tests Time Tests
Interactive 
PQueue

Code



Priority Queue Interface
class HeapPQueue { 
public: 

HeapPQueue(); 
~HeapPQueue(); 
void enqueue(const DataPoint& data); 
DataPoint dequeue();
DataPoint peek() const; 
bool isEmpty() const; 
int size() const; 

private:
/* Up to you! */ 

}; 



Priority Queue Behavior
HeapPQueue hbp;



Priority Queue Behavior
HeapPQueue hbp;
hpq.enqueue({Leslie, 3});

Leslie

3



Priority Queue Behavior
HeapPQueue hbp;
hpq.enqueue({Leslie, 3});
hpq.enqueue({Ron, 5});

Leslie

3

Ron

5



Priority Queue Behavior
HeapPQueue hbp;
hpq.enqueue({Leslie, 3});
hpq.enqueue({Ron, 5});
hpq.enqueue({April, 1});

Leslie

3

Ron

5

April

1



Priority Queue Behavior

Leslie

3

Ron

5

April

1



Priority Queue Behavior
hpq.dequeue(); // return {April, 1}

Leslie

3

Ron

5



Priority Queue Behavior
hpq.dequeue(); // return {April, 1} 
hpq.dequeue(); // return {Leslie, 3} 

Ron

5



Priority Queue Behavior
hpq.dequeue(); // return {April, 1} 
hpq.dequeue(); // return {Leslie, 3}
hpq.dequeue(); // return {Ron, 5}  



Implementation: Binary Heap
April

1

Ron

3

Leslie

7

Donna

5

Gary

9

Ben

9

Andy

7

Ann

5

Chris

8

Each node has 
0, 1, or 2 children.



Implementation: Binary Heap
April

1

Ron

3

Leslie

7

Donna

5

Gary

9

Ben

9

Andy

7

Ann

5

Chris

8

Complete
All rows filled, except

last row, filled left to right.



Implementation: Binary Heap
April

1

Ron

3

Leslie

7

Donna

5

Gary

9

Ben

9

Andy

7

Ann

5

Chris

8

Heap Property
Parent is less than 
or equal to child



Implementation: Binary Heap
[1]

1

[2]

3

[3]

7

[4]

5

[5]

9

[6]

9

[7]

7

[8]

5

[9]

8 [0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10]

1 3 7 5 9 9 7 5 8



Implementation: Binary Heap
[1]

1

[2]

3

[3]

7

[4]

5

[5]

9

[6]

9

[7]

7

[8]

5

[9]

8 [0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10]

1 3 7 5 9 9 7 5 8

For each node i
parent is at node i/2



Implementation: Binary Heap
[1]

1

[2]

3

[3]

7

[4]

5

[5]

9

[6]

9

[7]

7

[8]

5

[9]

8 [0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10]

1 3 7 5 9 9 7 5 8

For each node i
parent is at node i/2



Implementation: Binary Heap
[1]

1

[2]
3

[3]

7

[4]
5

[5]
9

[6]

9

[7]

7

[8]

5

[9]

8 [0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10]

1 3 7 5 9 9 7 5 8

For each node i
children are at 2*i and 2*i+1



Implementation: Binary Heap
April

1

Ron

3

Leslie

7

Donna

5

Gary

9

Ben

9

Andy

7

Ann

5

Chris

8 [0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10]

1 3 7 5 9 9 7 5 8

Tom
2

1. Insert at end
2. Swap with parent 

until heap is correct.



Implementation: Binary Heap
April

1

Ron

3

Leslie

7

Donna

5

Gary

9

Ben

9

Andy

7

Ann

5

Chris

8 [0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10]

1 3 7 5 9 9 7 5 8 2

Tom
2

1. Insert at end
2. Swap with parent 

until heap is correct.



Implementation: Binary Heap
April

1

Ron

3

Leslie

7

Donna

5

Gary
9

Ben

9

Andy

7

Ann

5

Chris

8 [0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10]

1 3 7 5 9 9 7 5 8 2

Tom
2

1. Insert at end
2. Swap with parent 

until heap is correct.



Implementation: Binary Heap
April

1

Ron

3

Leslie

7

Donna

5

Tom
2

Ben

9

Andy

7

Ann

5

Chris

8 [0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10]

1 3 7 5 2 9 7 5 8 9

Gary
9

1. Insert at end
2. Swap with parent 

until heap is correct.



Implementation: Binary Heap
April

1

Ron

3

Leslie

7

Donna

5

Tom
2

Ben

9

Andy

7

Ann

5

Chris

8 [0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10]

1 3 7 5 2 9 7 5 8 9

Gary
9

1. Insert at end
2. Swap with parent 

until heap is correct.



Implementation: Binary Heap
April

1

Ron
3

Leslie

7

Donna

5

Tom
2

Ben

9

Andy

7

Ann

5

Chris

8 [0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10]

1 3 7 5 2 9 7 5 8 9

Gary
9

1. Insert at end
2. Swap with parent 

until heap is correct.



Implementation: Binary Heap
April

1

Tom
2

Leslie

7

Donna

5

Ron
3

Ben

9

Andy

7

Ann

5

Chris

8 [0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10]

1 2 7 5 3 9 7 5 8 9

Gary
9

1. Insert at end
2. Swap with parent 

until heap is correct.



Implementation: Binary Heap
April
1

Tom
2

Leslie

7

Donna

5

Ron
3

Ben

9

Andy

7

Ann

5

Chris

8 [0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10]

1 2 7 5 3 9 7 5 8 9

Gary
9

1. Insert at end
2. Swap with parent 

until heap is correct.



Implementation: Binary Heap
April

1

Tom
2

Leslie

7

Donna

5

Ron
3

Ben

9

Andy

7

Ann

5

Chris

8 [0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10]

1 2 7 5 3 9 7 5 8 9

Gary
9

1. Insert at end
2. Swap with parent 

until heap is correct.



Implementation: Binary Heap
April

1

Tom
2

Leslie

7

Donna

5

Ron
3

Ben

9

Andy

7

Ann

5

Chris

8 [0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10]

1 2 7 5 3 9 7 5 8 9

Gary
9

1. Insert at end
2. Swap with parent 

until heap is correct.



Implementation: Binary Heap
April
1

Tom
2

Leslie

7

Donna

5

Ron
3

Ben

9

Andy

7

Ann

5

Chris

8 [0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10]

1 2 7 5 3 9 7 5 8 9

Gary
9

1. Move last to top.
2. Swap with smaller 

child until heap is 
correct.



Implementation: Binary Heap

Tom
2

Leslie

7

Donna

5

Ron
3

Ben

9

Andy

7

Ann

5

Chris

8 [0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10]

2 7 5 3 9 7 5 8 9

Gary
9

1. Move last to top.
2. Swap with smaller 

child until heap is 
correct.

April
1



Implementation: Binary Heap

Tom
2

Leslie

7

Donna

5

Ron
3

Ben

9

Andy

7

Ann

5

Chris

8 [0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10]

9 2 7 5 3 9 7 5 8

Gary
9 1. Move last to top.

2. Swap with smaller 
child until heap is 

correct.

April
1



Implementation: Binary Heap

Tom
2

Leslie
7

Donna

5

Ron
3

Ben

9

Andy

7

Ann

5

Chris

8 [0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10]

9 2 7 5 3 9 7 5 8

Gary
9 1. Move last to top.

2. Swap with smaller 
child until heap is 

correct.

April
1



Implementation: Binary Heap

Gary
9

Leslie
7

Donna

5

Ron
3

Ben

9

Andy

7

Ann

5

Chris

8 [0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10]

2 9 7 5 3 9 7 5 8

Tom
2 1. Move last to top.

2. Swap with smaller 
child until heap is 

correct.

April
1



Implementation: Binary Heap

Gary
9

Leslie
7

Donna

5

Ron
3

Ben

9

Andy

7

Ann

5

Chris

8 [0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10]

2 9 7 5 3 9 7 5 8

Tom
2 1. Move last to top.

2. Swap with smaller 
child until heap is 

correct.

April
1



Implementation: Binary Heap

Gary
9

Leslie
7

Donna

5

Ron
3

Ben

9

Andy

7

Ann

5

Chris

8 [0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10]

2 9 7 5 3 9 7 5 8

Tom
2 1. Move last to top.

2. Swap with smaller 
child until heap is 

correct.

April
1



Implementation: Binary Heap

Ron
3

Leslie
7

Donna

5

Gary
9

Ben

9

Andy

7

Ann

5

Chris

8 [0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10]

2 3 7 5 9 9 7 5 8

Tom
2 1. Move last to top.

2. Swap with smaller 
child until heap is 

correct.

April
1



Implementation: Binary Heap

Ron
3

Leslie
7

Donna

5

Gary
9

Ben

9

Andy

7

Ann

5

Chris

8 [0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10]

2 3 7 5 9 9 7 5 8

Tom
2 1. Move last to top.

2. Swap with smaller 
child until heap is 

correct.

April
1



Implementation: Binary Heap

Ron
3

Leslie
7

Donna

5

Gary
9

Ben

9

Andy

7

Ann

5

Chris

8 [0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10]

2 3 7 5 9 9 7 5 8

Tom
2 1. Move last to top.

2. Swap with smaller 
child until heap is 

correct.

April
1



Tips

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10]

2 3 7 5 9 9 7 5 8

You have to allocate memory yourself!



Tips

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10]

2 3 7 5 9 9 7 5 8

Try 1-indexing to make the math easier!



Demo



Data Sagas

Multiway merge
Lower bound 

search
Priority Queue Streaming top-k

Child Mortality Earthquakes
Women’s 800m 

Freestyle
National Parks

Demos

Testing Utilities

Run Tests Time Tests
Interactive 
PQueue

Code



Streaming Top-K

stream: you can read each 
DataPoint one at a time.



Streaming Top-K

Goal: find the k DataPoints in the 
stream with the highest weight.



April
1

Tom
2

Leslie

7

Donna

5

Ron
3

Ben

9

Andy

7

Ann
5

Chris

8

Gary
9

Streaming

front of stream

Find top 5!



April
1

Tom
2

Leslie
7

Donna

5

Ron
3

Ben
9

Andy
7

Ann
5

Chris
8

Gary
9

Streaming

front of stream

Find top 4!



Streaming Top-K

for (DataPoint pt; stream >> pt; ) {
// each iteration of the loop
// gives you the next DataPoint
// which is stored in pt.

}



Streaming Top-K

Time: O(n log k)
Space: O(k)

stream has n elements,
k is much smaller than n.



Streaming Top-K

Time: O(n log k)
Space: O(k)

Can’t just store all n elements!



Tips

Time: O(n log k)

Stream has n elements.
Should do O(log k) work per element.



Tips

PQueue might be helpful!



Questions


