Assignment 5: Data Sagas YEAH Hours

Avery Wang

Last week

Searching

Sorting

$$
\begin{array}{l|l|l|l|l|l|l|l|}
\hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline
\end{array}
$$

All Together Now!

Runtime Complexity

Time for Assignment 5!

Child Mortality

Tonga

■ South Sudan

- Togo

Malawi
Georgia

- Cuba

Earthquakes

This tool displays the strongest recent earthquakes reported by the US Geological Survey. You can use the controls on the side of the window to select the time interval you're interested in. This visualizer will show the 5 strongest earthquakes within that interval.

Remember that the earthquake magnitude scale is logarithmic. An earthquake that is one magnitude in strength higher than another releases around 32 times as much energy.

- Magnitude 6.2 Northern Mid-Atlantic Ridge at 11:57:05 AM on Feb 14, 2019

■ Magnitude 5.9 41km E of General Luna, Philippines at 03:55:08 AM on Feb 08, 2019
Magnitude 5.935 km NNE of Agrihan, Northern Mariana Islands at 04:34:15 AM on Feb 12, 2019
Magnitude 5.4 66km ENE of Pampas, Peru at 06:33:16 AM on Feb 14, 2019
Magnitude 5.3 187km W of Port Hardy, Canada at 04:34:43 PM on Feb 13, 2019

Women's 800m Freestyle

[^0]
Data Sagas

Demos

Women's 800 m Freestyle

Data Sagas

Demos
Child Mortality

Earthquakes
Women's 800 m Freestyle

National Parks

Code

Multiway merge
Lower bound search

Priority Queue
Streaming top-k

Data Sagas

Demos
Child Mortality

Women's 800 m Freestyle

Testing Utilities
Run Tests

Interactive PQueue

Code

Multiway merge

Streaming top-k

Data Points

struct DataPoint \{ string name; int weight;
\};

name

weight

Data Points

struct DataPoint \{ string name; int weight;

name

weight

Various per problem.
Don't have to worry about it.

Data Points

struct DataPoint \{ string name; int weight;

name

weight

Use this field during
search/sort/comparison.

Ties

Leslie	Ron	Tom	April	Andy
5	7	7	5	7
		7		

Keep all data points, their order doesn't matter.

Ties

Leslie	Ron	Tom	April	Andy
5	7	7	5	7
		7		

Suppose we wanted to sort this in non-decreasing order.

Ties

This is valid!

Ties

This is also valid!

Data Sagas

Demos

Child Mortality

Earthquakes

Women's 800m
 Freestyle

Testing Utilities

Run Tests

> Time Tests

Interactive
PQueue
Code

Multiway merge | Lower bound |
| :---: |
| search |\quad Priority Queue Streaming top-k

Recall: Merge

Goal: merge two sorted sequences.

| 2 | 3 | 5 | 7 | 8 | 9 |
| :--- | :--- | :--- | :--- | :--- | :--- |\quad| 1 | 4 | 6 | 10 | 11 | 12 |
| :--- | :--- | :--- | :--- | :--- | :--- |

Recall: Merge

Recall: Merge

1	2	3	4	5	6						

Recall: Merge

1	2	3	4	5	6	7					

Recall: Merge

1	2	3	4	5	6	7	8				

Recall: Merge

1	2	3	4	5	6	7	8	9			

| 2 | 3 | 5 | 7 | 8 | 9 |
| :--- | :--- | :--- | :--- | :--- | :--- |\quad| 1 | 4 | 6 | 10 | 11 | 12 |
| :--- | :--- | :--- | :--- | :--- | :--- |

Recall: Merge

1	2	3	4	5	6	7	8	9	10		

| 2 | 3 | 5 | 7 | 8 | 9 |
| :--- | :--- | :--- | :--- | :--- | :--- |\quad| 1 | 4 | 6 | 10 | 11 | 12 |
| :--- | :--- | :--- | :--- | :--- | :--- |

Recall: Merge

1	2	3	4	5	6	7	8	9	10	11	

Recall: Merge

1	2	3	4	5	6	7	8	9	10	11	12

Recall: Merge

1	2	3	4	5	6	7	8	9	10	11	12

Recall: Merge

1	2	3	4	5	6	7	8	9	10	11	12

Time Complexity: O(n).

Your Task

Merge k sorted sequences together to form list of n data points.

Your Task

Here, $k=5, n=12$.

1. Split into two groups of roughly $\mathrm{k} / 2$ sequences

2. Split into two groups of roughly $\mathrm{k} / 2$ sequences

4	5	6	10

Group 1

3	7	9

Group 2
2. Recursively merge each group to form a large sorted sequence.

4	5	6	10

$$
2
$$

11
\square

Group 1
2. Recursively merge each group to form a large sorted sequence.

11

3	7	9

Group 1
Group 2
2. Recursively merge each group to form a large sorted sequence.

1	4	5	6	10	12

Group 1 [Sorted]
Group 2
2. Recursively merge each group to form a large sorted sequence.

1	4	5	6	10	12

Group 1 [Sorted]
Group 2
2. Recursively merge each group to form a large sorted sequence.

1	4	5	6	10	12

2	3	7	8	9	11

3. Use merge algorithm to merge the two sequences together.

1	4	5	6	10	12

2	3	7	8	9	11

Group 1 [Sorted]
Group 2 [Sorted]
3. Use merge algorithm to merge the two sequences together.

1	2	3	4	5	6	7	8	9	10	11	12

Final Result

Tip 1: Read up on the edge cases
before you start!

12

Tip 2: Be careful about using Vector::subList!

v.subList(0, subList.size()/2);

What is its Big-Oh?
Will this degrade performance?

Data Sagas

Demos

Child Mortality
Earthquakes
Women's 800m Freestyle
Time Tests

Interactive
PQueue

Code

Multiway merge
Lower bound search

Priority Queue
Streaming top-k

Recall: Binary Search

1	3	6	10	15	21	28	35	45	55	66	78

Where is $6 ?$

Recall: Binary Search

1	3	6	10	15	21	28	35	45	55	66	78

Where is $6 ?$

Recall: Binary Search

Where is $6 ?$

Recall: Binary Search

1	3	6	10	15	21	28	35	45	55	66	78

Where is $6 ?$

Recall: Binary Search

Where is $6 ?$

Recall: Binary Search

1	3	6	10	15	21	28	35	45	55	66	78

Where is $6 ?$

Recall: Binary Search

1	3	6	10	15	21	28	35	45	55	66	78

Where is $6 ?$

Recall: Binary Search

Where is $6 ?$

Recall: Binary Search

Where is $6 ?$

Recall: Binary Search

1	3	6	10	15	21	28	35	45	55	66	78

Found 6! Index: 2

Your task:

Find the index of the first element greater than or equal to a lower bound.

1	3	3	10	15	15	15	35	45	45	66	78

Your task:

Find the index of the first element greater than or equal to a lower bound.

1	3	3	10	15	15	15	35	45	45	66	78

Lower bound: 38

Your task:

Find the index of the first element greater than or equal to a lower bound.

1	3	3	10	15	15	15	35	45	45	66	78

Lower bound: 38

Your task:

Find the index of the first element greater than or equal to a lower bound.

1	3	3	10	15	15		15	35	45	45	66	78

Index: 8

Your task:

Find the index of the first element greater than or equal to a lower bound.

1	3	3	10	15	15	15	35	45	45	66	78

Lower bound: 2

Your task:

Find the index of the first element greater than or equal to a lower bound.

Lower bound: 2

Your task:

Find the index of the first element greater than or equal to a lower bound.

Index: 1

Your task:

Find the index of the first element greater than or equal to a lower bound.

Lower bound: 79

Your task:

Find the index of the first element greater than or equal to a lower bound.

Lower bound: 79

Your task:

Find the index of the first element greater than or equal to a lower bound.

1	3	3	10	15	15	15	35	45	45	66	78

Index: 12

Your task:

Find the index of the first element greater than or equal to a lower bound.

1	3	3	10	15	15	15	35	45	45	66	78

Lower bound: -30

Your task:

Find the index of the first element greater than or equal to a lower bound.

1	3	3	10	15	15	15	35	45	45	66	78

Lower bound: -30

Your task:

Find the index of the first element greater than or equal to a lower bound.

1	3	3	10	15	15	15	35	45	45	66	78

Index: 0

Your task:

Find the index of the first element greater than or equal to a lower bound.

1	3	3	10	15	15	15	35	45	45	66	78

Expected runtime: O(log n)

Tips

What is wrong with this approach?

1	3	3	10	15	15	15	35	45	45	66	78

Expected runtime: $\mathrm{O}(\log \mathrm{n})$

Tips

What is wrong with this approach?

1	3	3	10	15	15	15	35	45	45	66	78

Lower bound: 15

Tips

What is wrong with this approach?

1	3	3	10	15	15	15	35	45	45	66	78

Use binary search to find 15.

Tips

What is wrong with this approach?

1	3	3	10	15	15	15	35	45	45	66	78

Move backwards to find the first 15.

Tips

What is wrong with this approach?

Try finding 15 again!

Tips

What is wrong with this approach?

15	15	15	15	15	15	15	15	15	15	15	15

Try finding 15 again!

Tips

What is wrong with this approach?

Try finding 15 again!

Tips

What is wrong with this approach?

15	15	15	15	15	15	15	15	15	15	15	15

Try finding 15 again!

Tips

What is wrong with this approach?

15	15	15	15	15	15	15	15	15	15	15	15

Try finding 15 again!

Tips

What is wrong with this approach?

15	15	15	15	15	15	15	15	15	15	15	15

Try finding 15 again!

Tips

What is wrong with this approach?

15	15	15	15	15	15	15	15	15	15	15	15

Try finding 15 again!

Tips

What is wrong with this approach?

15	15	15	15	15	15	15	15	15	15	15	15

Runtime: $\mathrm{O}(\mathrm{n})$

Data Sagas

Demos

Women's 800m Freestyle

Testing Utilities

Interactive PQueue

Code

Multiway merge
Lower bound
Priority Queue

Priority Queue Interface

```
class HeapPQueue {
public:
    HeapPQueue();
    ~HeapPQueue();
    void enqueue(const DataPoint& data);
    DataPoint dequeue();
    DataPoint peek() const;
    bool isEmpty() const;
    int size() const;
private:
    /* Up to you! */
};
```


Priority Queue Behavior

HeapPQueue hbp;

Priority Queue Behavior

HeapPQueue hbp;
hpq.enqueue(\{Leslie, 3\});

Priority Queue Behavior

HeapPQueue hbp;
hpq.enqueue(\{Leslie, 3\});
hpq.enqueue(\{Ron, 5\});

Priority Queue Behavior

HeapPQueue hbp;

hpq.enqueue(\{Leslie, 3\});
hpq.enqueue(\{Ron, 5\});
hpq.enqueue(\{April, 1\});

Leslie
3

Ron
5

Priority Queue Behavior

Priority Queue Behavior

hpq.dequeue(); // return \{April, 1\}

Priority Queue Behavior

```
hpq.dequeue(); // return \{April, 1\} hpq.dequeue(); // return \{Leslie, 3\}
```


Priority Queue Behavior

```
hpq.dequeue(); // return {April, 1}
hpq.dequeue(); // return {Leslie, 3}
hpq.dequeue(); // return {Ron, 5}
```


Implementation: Binary Heap

Each node has
0,1 , or 2 children.

Implementation: Binary Heap

Complete
All rows filled, except last row, filled left to right.

Implementation: Binary Heap

Heap Property
Parent is less than or equal to child

Implementation: Binary Heap

1. Move last to top.
2. Swap with smaller child until heap is correct.

$[0]$	$[1]$	$[2]$	$[3]$	$[4]$	$[5]$	$[6]$	$[7]$	$[8]$	$[9]$	$[10]$
		2	7	5	3	9	7	5	8	9

Implementation: Binary Heap

Tips

You have to allocate memory yourself!

$[0]$	$[1]$	$[2]$	$[3]$	$[4]$	$[5]$	$[6]$	$[7]$	$[8]$	$[9]$	$[10]$
	2	3	7	5	9	9	7	5	8	

Tips

Try 1-indexing to make the math easier!

$[0]$	$[1]$	$[2]$	$[3]$	$[4]$	$[5]$	$[6]$	$[7]$	$[8]$	$[9]$	$[10]$
	2	3	7	5	9	9	7	5	8	

Demo

Data Sagas

Demos

Child Mortality

> Earthquakes

Women's 800m Freestyle
Time Tests

Interactive
PQueue

Code

Multiway merge
Lower bound search

Streaming Top-K

stream: you can read each
DataPoint one at a time.

Streaming Top-K

Goal: find the k DataPoints in the stream with the highest weight.

Streaming

Andy	April	Leslie	Tom	Gary	Ben	Chris	Ann	Ron	Donna	
7	1	7	2	9	9	8	5		3	5

front of stream

Find top 5!

Streaming

Andy	April	Leslie	Tom	Gary	Ben	Chris	Ann	Ron	Donna
7	1	7	2	9	9	8	5	3	5

front of stream

Find top 4!

Streaming Top-K

for (DataPoint pt; stream >> pt;) \{ // each iteration of the loop
// gives you the next DataPoint // which is stored in pt.
\}

Streaming Top-K

Time: O(n log k) Space: O(k)

stream has n elements,
k is much smaller than n.

Streaming Top-K

Time: O(n log k)
 Space: O(k)

Can't just store all n elements!

Tips

Time: $\mathrm{O}(\mathrm{n} \log \mathrm{k})$

Stream has n elements.
Should do O(log k) work per element.

PQueue might be helpful!

$\stackrel{y}{\overbrace{m i n}^{b}}$

Questions

[^0]: Most Popular Parks, 2016:
 1: Golden Gate National Recreation Area $(15,638,777)$
 2: Great Smoky Mountains National Park $(11,312,786)$
 3: George Washington Memorial
 Parkway $(10,323,339)$
 4: Gateway National Recreation Area
 (8,651,770)
 5: Lincoln Memorial $(7,915,934)$

