
YEAH! Hours -
Fun With Collections

Part 1 - Crystals!
An idea developed by Stanislaw Ulam (really interesting guy!)

Have a two-dimensional grid and place a crystal.

Next, the crystal grows in each cardinal (N/S/E/W) direction.

Each of those crystals grows in a cardinal direction

When things get crowded, only cells with exactly one adjacent
neighbor get to have a crystal.

Part 1- In Action!

Part 1 - Implementation Details
● Pretty simple… Just use a Grid<Bool> right?

○ ...Not exactly. If that were the case, we’d need to know
how big our crystal’s going to be

○ Solution: Set<Point>! This allows us to have as many
points as needed, but how to keep track of what to do...

○ It turns out that a Queue<Point> works beautifully, since
Queue’s are a great way of modeling to-do lists.

Part 1: Implementation Details:
● Two functions:

○ void crystallizeAt(Crystal& crystal, int x, int y);
■ Responsible for simply adding a crystal at <x,y>,
■ Adds things to the Queue

○ void step(Crystal& crystal);
■ Moves forward one generation.
■ This means processing everything in the Queue while also

getting the Queue set up for the next generation.

Tips:

● Recursion isn’t necessary!
● It can very difficult to eyeball if your solution is right. Write

tests!
● You shouldn’t need to write a lot of code for this.
● Go to LaIR :)

Part 2: EVIL HANGMAN
● It’s hangman! With one twist:
● The computer cheats! How so?

○ You have a dictionary of words. When the user chooses a
letter, you see all the possibilities where that letter could
be in. You then choose the group with the most amount of
words in it.

○ If that group doesn’t contained the guessed letter, the user
didn’t “guess correctly” and so you mark them as
incorrect.

Part 2: Implementation Details:
1) Set up the Game

a) Prompt the user for word length. Reprompt if there are not words of that
length.

b) Prompt user for the number of guesses.
c) Prompt user if they want a running total of the words remaining in the

word list.
2) Play the Game

a) Print out how many guesses the user has remaining
b) Propmt for a single-letter guess
c) Partition list of words into groups/families, and choose the largest one.
d) Repeat

3) Report Result, and Ask to play again.

Tips:

● Choose Appropriate Collections
● Decompose!
● Think about how you should pass arguments to functions

around.
● Letter position matters as much as frequency (BEER is not in

the same family as HERE)

