

Minimum Spanning Trees

Outline for Today

● Coda for Last Time
● Revisiting Topological Sorting

● Minimum Spanning Trees
● Wiring things cheaply.

● Kruskal’s Algorithm
● A beautiful and elegant algorithm.

● Applications of MSTs
● ...to lots of problems!

Coda: Topological Sorting

X A

QV

X A

QV

X A

QV

X A

QV

X A

QV

X A

QV
A

X A

QV
A

X A

QV
A

X A

QV
A

X

X A

QV
A

X

X A

QV
A

X

X A

QV
A

X

X A

QV
A

X

X A

QV
A

X

Q

X A

QV
A

X

Q

X A

QV
A

X

QQ

V

X A

QV
A

X

QQ

V

V

Q

QX

A

X A

QV

dfs-topological-sort() {
 result = []
 for each node in the graph, in whatever order sparks joy:
 run a recursive DFS starting from that node.
 when you finish visiting a node, append it to result.
 return the reverse of result

dfs-topological-sort() {
 result = []
 for each node in the graph, in whatever order sparks joy:
 run a recursive DFS starting from that node.
 when you finish visiting a node, append it to result.
 return the reverse of result

V

Q

QX

A

X A

QV

dfs-topological-sort() {
 result = []
 for each node in the graph, in whatever order sparks joy:
 run a recursive DFS starting from that node.
 when you finish visiting a node, append it to result.
 return the reverse of result

dfs-topological-sort() {
 result = []
 for each node in the graph, in whatever order sparks joy:
 run a recursive DFS starting from that node.
 when you finish visiting a node, append it to result.
 return the reverse of result

V

Q

QX

A

V

Q

QX

A
X A

QV

dfs-topological-sort() {
 result = []
 for each node in the graph, in whatever order sparks joy:
 run a recursive DFS starting from that node.
 when you finish visiting a node, append it to result.
 return the reverse of result

dfs-topological-sort() {
 result = []
 for each node in the graph, in whatever order sparks joy:
 run a recursive DFS starting from that node.
 when you finish visiting a node, append it to result.
 return the reverse of result

The recursive version of DFS
makes it really easy to track
when you start visiting a node
(recursive call starts) and

finish visiting a node
(recursive call ends.)

The iterative DFS we saw
does not have this property.

The recursive version of DFS
makes it really easy to track
when you start visiting a node
(recursive call starts) and

finish visiting a node
(recursive call ends.)

The iterative DFS we saw
does not have this property.

New Stuff!

 6
1

5

4

 8
 7 6

7

12

 2

 9 1

3

 6
1

5

4

 8
 7 6

7

12

 2

 9 1

3

 6
1

5

4

 8
 7 6

7

12

 2

 9 1

3

 6
1

5

4

 8
 7 6

7

12

 2

 9 1

3

 6
1

5

4

 8
 7 6

7

12

 2

 9 1

3

 6
1

5

4

 8
 7 6

7

12

 2

 9 1

3

This graph is not
connected.

This graph is not
connected.

 6
1

5

4

 8
 7 6

7

12

 2

 9 1

3

 6
1

5

4

 8
 7 6

7

12

 2

 9 1

3

There is a cycle in this
graph. It can’t be the
cheapest way to link

everything.

There is a cycle in this
graph. It can’t be the
cheapest way to link

everything.

A spanning tree in an undirected
graph is a set of edges with

no cycles that connects all nodes.

 6
1

5

4

 8
 7 6

7

12

 2

 9 1

3

 6
1

5

4

 8
 7 6

7

12

 2

 9 1

3

Cost:
3 + 6 + 5 + 7 + 8 + 12 + 9 = 50

 6
1

5

4

 8
 7 6

7

12

 2

 9 1

3

Cost:
3 + 4 + 7 + 8 + 6 + 12 + 9 = 49

 6
1

5

4

 8
 7 6

7

12

 2

 9 1

3

Cost:
1 + 3 + 5 + 4 + 1 + 6 + 2 = 22

A minimum spanning tree (or MST) is a
spanning tree with the least total cost.

Applications

● Electric Grids
● Given a collection of houses, where do you lay wires to

connect all houses with the least total cost?
● This was the initial motivation for studying minimum

spanning trees in the early 1920's. (work done by Czech
mathematician Otakar Borůvka)

● Data Clustering
● More on that later...

● Maze Generation

● More on that later…
● Computational Biology

● More on that later...

Finding an MST

MST Algorithms

● The original MST algorithm (1926) that Borůvka
proposed is now called Borůvka’s algorithm.

● Later, the Czech mathematician Vojtěch Jarník
(1930) invented an algorithm now called Prim’s
algorithm.

● After that, American mathematician Joseph
Kruskal (1956) developed what’s now called
Kruskal’s algorithm, which is what we’ll
present today.

● There’s been a ton of work since them – come
talk to me after class for details!

Kruskal’s Algorithm:

Remove all edges from the graph.

Repeatedly find the cheapest edge that
doesn’t create a cycle and add it back.

The result is an MST of the overall graph.

 4
1

4

6

 4
 3 6

7

4

 2

3

 5 6

 7

5

5

7

 6

 4
1

4

6

 4
 3 6

7

4

 2

3

 5 6

 7

5

5

7

 6

 4
1

4

6

 4
 3 6

7

4

 2

3

 5 6

 7

5

5

7

 6

Find the lowest-cost edge that
doesn’t create a cycle and add

it back to the graph.

Find the lowest-cost edge that
doesn’t create a cycle and add

it back to the graph.

 4
1

4

6

 4
 3 6

7

4

 2

3

 5 6

 7

5

5

7

 6

Find the lowest-cost edge that
doesn’t create a cycle and add

it back to the graph.

Find the lowest-cost edge that
doesn’t create a cycle and add

it back to the graph.

 4
1

4

6

 4
 3 6

7

4

 2

3

 5 6

 7

5

5

7

 6

Find the lowest-cost edge that
doesn’t create a cycle and add

it back to the graph.

Find the lowest-cost edge that
doesn’t create a cycle and add

it back to the graph.

 4
1

4

6

 4
 3 6

7

4

 2

3

 5 6

 7

5

5

7

 6

Find the lowest-cost edge that
doesn’t create a cycle and add

it back to the graph.

Find the lowest-cost edge that
doesn’t create a cycle and add

it back to the graph.

 4
1

4

6

 4
 3 6

7

4

 2

3

 5 6

 7

5

5

7

 6

Find the lowest-cost edge that
doesn’t create a cycle and add

it back to the graph.

Find the lowest-cost edge that
doesn’t create a cycle and add

it back to the graph.

 4
1

4

6

 4
 3 6

7

4

 2

3

 5 6

 7

5

5

7

 6

Find the lowest-cost edge that
doesn’t create a cycle and add

it back to the graph.

Find the lowest-cost edge that
doesn’t create a cycle and add

it back to the graph.

 4
1

4

6

 4
 3 6

7

4

 2

3

 5 6

 7

5

5

7

 6

Find the lowest-cost edge that
doesn’t create a cycle and add

it back to the graph.

Find the lowest-cost edge that
doesn’t create a cycle and add

it back to the graph.

 4
1

4

6

 4
 3 6

7

4

 2

3

 5 6

 7

5

5

7

 6

Find the lowest-cost edge that
doesn’t create a cycle and add

it back to the graph.

Find the lowest-cost edge that
doesn’t create a cycle and add

it back to the graph.

 4
1

4

6

 4
 3 6

7

4

 2

3

 5 6

 7

5

5

7

 6

Find the lowest-cost edge that
doesn’t create a cycle and add

it back to the graph.

Find the lowest-cost edge that
doesn’t create a cycle and add

it back to the graph.

 4
1

4

6

 4
 3 6

7

4

 2

3

 5 6

 7

5

5

7

 6

Find the lowest-cost edge that
doesn’t create a cycle and add

it back to the graph.

Find the lowest-cost edge that
doesn’t create a cycle and add

it back to the graph.

 4
1

4

6

 4
 3 6

7

4

 2

3

 5 6

 7

5

5

7

 6

Find the lowest-cost edge that
doesn’t create a cycle and add

it back to the graph.

Find the lowest-cost edge that
doesn’t create a cycle and add

it back to the graph.

1

4

6

 4
 3 6

7

4

 2

3

 5 6

 7

5

5

7

 6

Find the lowest-cost edge that
doesn’t create a cycle and add

it back to the graph.

Find the lowest-cost edge that
doesn’t create a cycle and add

it back to the graph.

1

4

6

 4
 3 6

7

4

 2

3

 5 6

 7

5

5

7

 6

Find the lowest-cost edge that
doesn’t create a cycle and add

it back to the graph.

Find the lowest-cost edge that
doesn’t create a cycle and add

it back to the graph.

1

4

6

 4
 3 6

7

4

 2

3

 5 6

 7

5

5

7

 6

Find the lowest-cost edge that
doesn’t create a cycle and add

it back to the graph.

Find the lowest-cost edge that
doesn’t create a cycle and add

it back to the graph.

1

4

6

 4
 3 6

7

4

 2

3

 5 6

 7

5

5

7

 6

Find the lowest-cost edge that
doesn’t create a cycle and add

it back to the graph.

Find the lowest-cost edge that
doesn’t create a cycle and add

it back to the graph.

1

4

6

 4
 3 6

7

4

 2

3

 5 6

 7

5

5

7

 6

Find the lowest-cost edge that
doesn’t create a cycle and add

it back to the graph.

Find the lowest-cost edge that
doesn’t create a cycle and add

it back to the graph.

1

4

6

 4
 3 6

7

4

 2

3

 5 6

 7

5

5

7

 6

Find the lowest-cost edge that
doesn’t create a cycle and add

it back to the graph.

Find the lowest-cost edge that
doesn’t create a cycle and add

it back to the graph.
A graph can have many
minimum spanning trees.
 Here, the choice of

which length-4 edge we
visit first leads to
different results.

A graph can have many
minimum spanning trees.
 Here, the choice of

which length-4 edge we
visit first leads to
different results.

1

4

6

 3 6

7

4

 2

3

 5 6

 7

5

5

7

 6

Find the lowest-cost edge that
doesn’t create a cycle and add

it back to the graph.

Find the lowest-cost edge that
doesn’t create a cycle and add

it back to the graph.

1

4

6

 3 6

7

4

 2

3

 5 6

 7

5

5

7

 6

Find the lowest-cost edge that
doesn’t create a cycle and add

it back to the graph.

Find the lowest-cost edge that
doesn’t create a cycle and add

it back to the graph.

1

4

6

 3 6

7

4

 2

3

 5 6

 7

5

5

7

 6

Find the lowest-cost edge that
doesn’t create a cycle and add

it back to the graph.

Find the lowest-cost edge that
doesn’t create a cycle and add

it back to the graph.

1

4

6

 3 6

7

4

 2

3

 5 6

 7

5

5

7

 6

Find the lowest-cost edge that
doesn’t create a cycle and add

it back to the graph.

Find the lowest-cost edge that
doesn’t create a cycle and add

it back to the graph.

1

4

6

 3 6

7

4

 2

3

 5 6

 7

5

5

7

 6

Find the lowest-cost edge that
doesn’t create a cycle and add

it back to the graph.

Find the lowest-cost edge that
doesn’t create a cycle and add

it back to the graph.

1

4

6

 3 6

7

4

 2

3

 5 6

 7

5

5

7

 6

Find the lowest-cost edge that
doesn’t create a cycle and add

it back to the graph.

Find the lowest-cost edge that
doesn’t create a cycle and add

it back to the graph.

1

4

6

 3 6

7

4

 2

3

 6

 7

5

5

7

 6

Find the lowest-cost edge that
doesn’t create a cycle and add

it back to the graph.

Find the lowest-cost edge that
doesn’t create a cycle and add

it back to the graph.

1

4

6

 3 6

7

4

 2

3

 6

 7

5

5

7

 6

Find the lowest-cost edge that
doesn’t create a cycle and add

it back to the graph.

Find the lowest-cost edge that
doesn’t create a cycle and add

it back to the graph.

1

4

6

 3 6

7

4

 2

3

 6

 7

5

5

7

 6

Find the lowest-cost edge that
doesn’t create a cycle and add

it back to the graph.

Find the lowest-cost edge that
doesn’t create a cycle and add

it back to the graph.

1

4

6

 3 6

7

4

 2

3

 6

 7

5

5

7

 6

Find the lowest-cost edge that
doesn’t create a cycle and add

it back to the graph.

Find the lowest-cost edge that
doesn’t create a cycle and add

it back to the graph.

1

4

 3 6

7

4

 2

3

 6

 7

5

5

7

 6

Find the lowest-cost edge that
doesn’t create a cycle and add

it back to the graph.

Find the lowest-cost edge that
doesn’t create a cycle and add

it back to the graph.

1

4

 3 6

7

4

 2

3

 6

 7

5

5

7

 6

Find the lowest-cost edge that
doesn’t create a cycle and add

it back to the graph.

Find the lowest-cost edge that
doesn’t create a cycle and add

it back to the graph.

1

4

 3 6

7

4

 2

3

 6

 7

5

5

7

Find the lowest-cost edge that
doesn’t create a cycle and add

it back to the graph.

Find the lowest-cost edge that
doesn’t create a cycle and add

it back to the graph.

1

4

 3 6

7

4

 2

3

 6

 7

5

5

7

Find the lowest-cost edge that
doesn’t create a cycle and add

it back to the graph.

Find the lowest-cost edge that
doesn’t create a cycle and add

it back to the graph.

1

4

 3

7

4

 2

3

 6

 7

5

5

7

Find the lowest-cost edge that
doesn’t create a cycle and add

it back to the graph.

Find the lowest-cost edge that
doesn’t create a cycle and add

it back to the graph.

1

4

 3

7

4

 2

3

 6

 7

5

5

7

Find the lowest-cost edge that
doesn’t create a cycle and add

it back to the graph.

Find the lowest-cost edge that
doesn’t create a cycle and add

it back to the graph.

1

4

 3

7

4

 2

3

 7

5

5

7

Find the lowest-cost edge that
doesn’t create a cycle and add

it back to the graph.

Find the lowest-cost edge that
doesn’t create a cycle and add

it back to the graph.

1

4

 3

7

4

 2

3

 7

5

5

7

Find the lowest-cost edge that
doesn’t create a cycle and add

it back to the graph.

Find the lowest-cost edge that
doesn’t create a cycle and add

it back to the graph.

1

4

 3

7

4

 2

3

 7

5

5

7

Find the lowest-cost edge that
doesn’t create a cycle and add

it back to the graph.

Find the lowest-cost edge that
doesn’t create a cycle and add

it back to the graph.

1

4

 3

7

4

 2

3

 7

5

5

7

Find the lowest-cost edge that
doesn’t create a cycle and add

it back to the graph.

Find the lowest-cost edge that
doesn’t create a cycle and add

it back to the graph.

1

4

 3

7

4

 2

3

 7

5

5

Find the lowest-cost edge that
doesn’t create a cycle and add

it back to the graph.

Find the lowest-cost edge that
doesn’t create a cycle and add

it back to the graph.

1

4

 3

7

4

 2

3

 7

5

5

Find the lowest-cost edge that
doesn’t create a cycle and add

it back to the graph.

Find the lowest-cost edge that
doesn’t create a cycle and add

it back to the graph.

1

4

 3

4

 2

3

 7

5

5

Find the lowest-cost edge that
doesn’t create a cycle and add

it back to the graph.

Find the lowest-cost edge that
doesn’t create a cycle and add

it back to the graph.

 4
1

4

6

 4
 3 6

7

4

 2

3

 5 6

 7

5

5

7

 6

Here’s our MST!Here’s our MST!

Maintaining Connectivity

● The key step in Kruskal's algorithm is
determining whether the two endpoints
of an edge are already connected to one
another.

● Typical approach: break the nodes apart
into clusters.
● Initially, each node is in its own cluster.
● Whenever an edge is added, the clusters for

the endpoints are merged together into a
new cluster.

 4
1

4

6

 4
 3 6

7

4

 2

3

 5 6

 7

5

5

7

 6

 4
1

4

6

 4
 3 6

7

4

 2

3

 5 6

 7

5

5

7

 6

 4
1

4

6

 4
 3 6

7

4

 2

3

 5 6

 7

5

5

7

 6

D E

IHG

F

J

B C

A

 4
1

4

6

 4
 3 6

7

4

 2

3

 5 6

 7

5

5

7

 6

D E

IHG

F

J

B C

A

 4
1

4

6

 4
 3 6

7

4

 2

3

 5 6

 7

5

5

7

 6

D E

IHD

F

J

B C

A

 4
1

4

6

 4
 3 6

7

4

 2

3

 5 6

 7

5

5

7

 6

D E

IHD

F

J

B C

A

 4
1

4

6

 4
 3 6

7

4

 2

3

 5 6

 7

5

5

7

 6

D E

IHD

J

J

B C

A

 4
1

4

6

 4
 3 6

7

4

 2

3

 5 6

 7

5

5

7

 6

D E

IHD

J

J

B C

A

 4
1

4

6

 4
 3 6

7

4

 2

3

 5 6

 7

5

5

7

 6

I E

IHI

J

J

B C

A

 4
1

4

6

 4
 3 6

7

4

 2

3

 5 6

 7

5

5

7

 6

I E

IHI

J

J

B C

A

 4
1

4

6

 4
 3 6

7

4

 2

3

 5 6

 7

5

5

7

 6

I E

III

J

J

B C

A

 4
1

4

6

 4
 3 6

7

4

 2

3

 5 6

 7

5

5

7

 6

I E

III

J

J

B C

A

1

4

6

 4
 3 6

7

4

 2

3

 5 6

 7

5

5

7

 6

I E

III

J

J

B C

A

1

4

6

 4
 3 6

7

4

 2

3

 5 6

 7

5

5

7

 6

I E

III

J

J

B C

A

1

4

6

 4
 3 6

7

4

 2

3

 5 6

 7

5

5

7

 6

E E

EEE

J

J

B C

A

1

4

6

 4
 3 6

7

4

 2

3

 5 6

 7

5

5

7

 6

E E

EEE

J

J

B C

A

1

4

6

 3 6

7

4

 2

3

 5 6

 7

5

5

7

 6

E E

EEE

J

J

B C

A

1

4

6

 3 6

7

4

 2

3

 5 6

 7

5

5

7

 6

E E

EEE

J

J

B C

A

1

4

6

 3 6

7

4

 2

3

 5 6

 7

5

5

7

 6

E E

EEE

E

E

B C

A

1

4

6

 3 6

7

4

 2

3

 5 6

 7

5

5

7

 6

E E

EEE

E

E

B C

A

1

4

6

 3 6

7

4

 2

3

 5 6

 7

5

5

7

 6

E E

EEE

E

E

E C

A

1

4

6

 3 6

7

4

 2

3

 5 6

 7

5

5

7

 6

E E

EEE

E

E

E C

A

1

4

6

 3 6

7

4

 2

3

 6

 7

5

5

7

 6

E E

EEE

E

E

E C

A

1

4

6

 3 6

7

4

 2

3

 6

 7

5

5

7

 6

E E

EEE

E

E

E C

A

1

4

6

 3 6

7

4

 2

3

 6

 7

5

5

7

 6

C C

CCC

C

C

C C

A

1

4

6

 3 6

7

4

 2

3

 6

 7

5

5

7

 6

C C

CCC

C

C

C C

A

1

4

 3 6

7

4

 2

3

 6

 7

5

5

7

 6

C C

CCC

C

C

C C

A

1

4

 3 6

7

4

 2

3

 6

 7

5

5

7

 6

C C

CCC

C

C

C C

A

1

4

 3 6

7

4

 2

3

 6

 7

5

5

7

C C

CCC

C

C

C C

A

1

4

 3 6

7

4

 2

3

 6

 7

5

5

7

C C

CCC

C

C

C C

A

1

4

 3

7

4

 2

3

 6

 7

5

5

7

C C

CCC

C

C

C C

A

1

4

 3

7

4

 2

3

 6

 7

5

5

7

C C

CCC

C

C

C C

A

1

4

 3

7

4

 2

3

 7

5

5

7

C C

CCC

C

C

C C

A

1

4

 3

7

4

 2

3

 7

5

5

7

C C

CCC

C

C

C C

A

1

4

 3

7

4

 2

3

 7

5

5

7

C C

CCC

C

C

C C

AC

1

4

 3

4

 2

3

 7

5

5

C C

CCC

C

C

C C

AC

Implementing Kruskal’s Algorithm

● Place every node into its own cluster.

● Place all edges into a priority queue.

● While there are two or more clusters remaining:

● Dequeue an edge from the priority queue.
● If its endpoints are not in the same cluster:

– Merge the clusters containing the endpoints.
– Add the edge to the resulting spanning tree.

● Return the resulting spanning tree.

Time-Out for Announcements!

Assignment 7

● Assignment 7 (Calligraphy) goes out
today. It’s due on Friday, March 15th, at the
start of class.
● Play around with the beauty (kallos) of graphs

through two smaller projects.
● YEAH Hours are today at 3:00PM in room

380-380Y. Slides will be posted online.
● As a reminder, late days cannot be used on

this assignment. Please plan accordingly.

Back to CS106B!

Applications of Kruskal's Algorithm

Data Clustering

Data Clustering

Data Clustering

● Given a set of points, break those points
apart into clusters.

● Immensely useful across all disciplines:
● Cluster individuals by phenotype to try to

determine what genes influence which traits.
● Cluster images by pixel color to identify

objects in pictures.
● Cluster essays by various features to see

how students learn to write.

Data Clustering

Data Clustering

Data Clustering

What makes a clustering “good?”

Maximum-Separation Clustering

● A maximum-separation clustering is
one where the distance between the
resulting clusters is as large as possible.

● Specifically, it maximizes the minimum
distance between any two points of
different clusters.

● Very good on many data sets, though not
always ideal.

Maximum-Separation Clustering

Maximum-Separation Clustering

Maximum-Separation Clustering

● It is extremely easy to adopt Kruskal's
algorithm to produce a maximum-separation
set of clusters.
● Suppose you want k clusters.
● Given the data set, add an edge from each node

to each other node whose length depends on
their similarity.

● Run Kruskal's algorithm until only k clusters
remain.

● The pieces of the graph that have been linked
together are k maximally-separated clusters.

Maximum-Separation Clustering

Maximum-Separation Clustering

Maximum-Separation Clustering

Want to learn more about clustering?

Take CS246!

Another Application

Mazes with Kruskal's Algorithm

Mazes with Kruskal's Algorithm

Mazes with Kruskal's Algorithm

3 1 4

1 5 9

2 7 1 8

2 6 5

3 5 8

2 8 4 5

2 8 1 8

Mazes with Kruskal's Algorithm

3 1 4

1 5 9

2 7 1 8

2 6 5

3 5 8

2 8 4 5

2 8 1 8

Mazes with Kruskal's Algorithm

3 1 4

1 5 9

2 7 1 8

2 6 5

3 5 8

2 8 4 5

2 8 1 8

Mazes with Kruskal's Algorithm

3 1 4

1 5 9

2 7 1 8

2 6 5

3 5 8

2 8 4 5

2 8 1 8

Mazes with Kruskal's Algorithm

3 1 4

1 5 9

2 7 1 8

2 6 5

3 5 8

2 8 4 5

2 8 1 8

Mazes with Kruskal's Algorithm

3 1 4

1 5 9

2 7 1 8

2 6 5

3 5 8

2 8 4 5

2 8 1 8

Mazes with Kruskal's Algorithm

3 1 4

1 5 9

2 7 1 8

2 6 5

3 5 8

2 8 4 5

2 8 1 8

Mazes with Kruskal's Algorithm

3 1 4

1 5 9

2 7 1 8

2 6 5

3 5 8

2 8 4 5

2 8 1 8

Mazes with Kruskal's Algorithm

3 1 4

1 5 9

2 7 1 8

2 6 5

3 5 8

2 8 4 5

2 8 1 8

Mazes with Kruskal's Algorithm

3 1 4

1 5 9

2 7 1 8

2 6 5

3 5 8

2 8 4 5

2 8 1 8

Mazes with Kruskal's Algorithm

3 1 4

1 5 9

2 7 1 8

2 6 5

3 5 8

2 8 4 5

2 8 1 8

Mazes with Kruskal's Algorithm

3 1 4

1 5 9

2 7 1 8

2 6 5

3 5 8

2 8 4 5

2 8 1 8

Mazes with Kruskal's Algorithm

3 1 4

1 5 9

2 7 1 8

2 6 5

3 5 8

2 8 4 5

2 8 1 8

Mazes with Kruskal's Algorithm

3 1 4

1 5 9

2 7 1 8

2 6 5

3 5 8

2 8 4 5

2 8 1 8

Mazes with Kruskal's Algorithm

3 1 4

1 5 9

2 7 1 8

2 6 5

3 5 8

2 8 4 5

2 8 1 8

Mazes with Kruskal's Algorithm

3 1 4

1 9

2 7 1 8

2 6 5

3 5 8

2 8 4 5

2 8 1 8

Mazes with Kruskal's Algorithm

3 1 4

1 9

2 7 1 8

2 6 5

3 5 8

2 8 4 5

2 8 1 8

Mazes with Kruskal's Algorithm

3 1 4

1 9

2 7 1 8

2 6 5

3 8

2 8 4 5

2 8 1 8

Mazes with Kruskal's Algorithm

3 1 4

1 9

2 7 1 8

2 6 5

3 8

2 8 4 5

2 8 1 8

Mazes with Kruskal's Algorithm

3 1 4

1 9

2 7 1 8

2 6 5

3 8

2 8 4 5

2 8 1 8

Mazes with Kruskal's Algorithm

3 1 4

1 9

2 7 1 8

2 6 5

3 8

2 8 4 5

2 8 1 8

Mazes with Kruskal's Algorithm

3 1 4

1 9

2 7 1 8

2 5

3 8

2 8 4 5

2 8 1 8

Mazes with Kruskal's Algorithm

3 1 4

1 9

2 7 1 8

2 5

3 8

2 8 4 5

2 8 1 8

Mazes with Kruskal's Algorithm

3 1 4

1 9

2 1 8

2 5

3 8

2 8 4 5

2 8 1 8

Mazes with Kruskal's Algorithm

3 1 4

1 9

2 1 8

2 5

3 8

2 8 4 5

2 8 1 8

Mazes with Kruskal's Algorithm

3 1 4

1 9

2 1 8

2 5

3

2 8 4 5

2 8 1 8

Mazes with Kruskal's Algorithm

3 1 4

1 9

2 1 8

2 5

3

2 8 4 5

2 8 1 8

Mazes with Kruskal's Algorithm

3 1 4

1 9

2 1 8

2 5

3

2 8 4 5

2 1 8

Mazes with Kruskal's Algorithm

3 1 4

1 9

2 1 8

2 5

3

2 8 4 5

2 1 8

Mazes with Kruskal's Algorithm

3 1 4

1

2 1

2 5

3

2 4 5

2 1 8

Mazes with Kruskal's Algorithm

Mazes with Kruskal's Algorithm

Mazes with Kruskal's Algorithm

Mazes with Kruskal's Algorithm

Mazes with Kruskal’s Algorithm

● The algorithm:
● Create a grid graph.
● Give each edge a random weight.
● Compute an MST of that graph.
● Put walls between any two cells that aren’t

adjacent in the MST.
● Great question to ponder: How do the

mazes generated this way compare to the
mazes generated via DFS?

Application: Stem Cells!

Question: How do you determine the
patterns by which stem cells differentiate

into specialized cells?

 Step One: Grab a random collection of cells
you know contains a bunch of stem cells.

 Step Two: Measure a bunch of different features from each
cell and plot those features on a coordinate axis.

 Step Two: Measure a bunch of different features from each
cell and plot those features on a coordinate axis.

 Step Three: Cluster those nodes into smaller groups, which
likely represent cells of the same type.

 Step Three: Cluster those nodes into smaller groups, which
likely represent cells of the same type.

 Step Four: Find an MST. Nodes are clusters and edges are
distances. This is the cheapest tree connecting the clusters.

 Step Four: Find an MST. Nodes are clusters and edges are
distances. This is the cheapest tree connecting the clusters.

 Step Five: Figure out which cluster represents the original
stem cells. You now have the likely differentiation pattern!

 Step Five: Figure out which cluster represents the original
stem cells. You now have the likely differentiation pattern!

Building a repertoire of abstractions and
algorithms helps you model and solve
larger and larger classes of problems.

Interested in learning more?

Take CS161!

Your Action Items

● Read Chapter 18 of the textbook.
● There’s a ton of beautiful things about graphs in

there!
● Finish MiniBrowser, if you haven’t yet.

● It’s okay if you need some extra time on this one.
You can do this!

● Start working on Calligraphy.
● At a minimum, look over the two problems and

make sure you have a good sense of what’s
being asked of you.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158
	Slide 159
	Slide 160
	Slide 161
	Slide 162
	Slide 163
	Slide 164
	Slide 165
	Slide 166
	Slide 167
	Slide 168
	Slide 169
	Slide 170
	Slide 171
	Slide 172
	Slide 173
	Slide 174
	Slide 175
	Slide 176
	Slide 177
	Slide 178
	Slide 179
	Slide 180
	Slide 181
	Slide 182
	Slide 183
	Slide 184
	Slide 185
	Slide 186
	Slide 187
	Slide 188
	Slide 189
	Slide 190
	Slide 191
	Slide 192
	Slide 193
	Slide 194
	Slide 195
	Slide 196

