

Graphs

A Social Network

Chemical Bonds

http://4.bp.blogspot.com/-xCtBJ8lKHqA/Tjm0BONWBRI/AAAAAAAAAK4/-mHrbAUOHHg/s1600/Ethanol2.gif

http://strangemaps.files.wordpress.com/2007/02/fullinterstatemap-web.jpg

http://www.toothpastefordinner.com/

A graph is a mathematical structure
for representing relationships.

A graph is a mathematical structure
for representing relationships.

A graph consists of a set of nodes
connected by edges.

A graph is a mathematical structure
for representing relationships.

A graph consists of a set of nodes
connected by edges.

A graph is a mathematical structure
for representing relationships.

A graph consists of a set of nodes
connected by edges.

A graph is a mathematical structure
for representing relationships.

A graph consists of a set of nodes
connected by edges.

Nodes

A graph is a mathematical structure
for representing relationships.

A graph consists of a set of nodes
connected by edges.

Edges

Some graphs are directed.

CAT SAT RAT

RANMAN

MAT

CAN

Some graphs are undirected.

CAT SAT RAT

RANMAN

MAT

CAN

Some graphs are undirected.

It sometimes helps to think of them as
directed graphs with edges both ways.

How can we represent graphs in C++?

Representing Graphs

Node Adjacent To

Vector<Node> Node

Map<Node, Vector<Node>> We can represent a graph
as a map from nodes to
the list of nodes each
node is connected to.

We can represent a graph
as a map from nodes to
the list of nodes each
node is connected to.

Representing Graphs

● The approach we just saw is called an
adjacency list in comes in a number of
different forms:

Map<string, Vector<string>>

Map<string, Set<string>>

HashMap<string, HashSet<string>>

Vector<Vector<int>>

● The core idea is that we have some kind of
mapping associating each node with its
outgoing edges.

Representing Graphs

The approach we just saw is called an
adjacency list in comes in a number of
different forms:

Map<string, Vector<string>>

Map<string, Set<string>>

HashMap<string, HashSet<string>>

Vector<Vector<int>>

The core idea is that we have some kind of
mapping associating each node with its
outgoing edges.

Question to ponder:
where have you seen this

before?

Question to ponder:
where have you seen this

before?

Other Graph Representations

0 1 1 0 0 0

1 0 1 1 1 0

1 1 0 1 0 1

0 1 1 0 1 1

0 1 0 1 0 1

0 0 1 1 1 0

This representation is called an
adjacency matrix.

For those of you in Math 51: if
A is an adjacency matrix for a

graph G, what is the
significance of the matrix A2?

This representation is called an
adjacency matrix.

For those of you in Math 51: if
A is an adjacency matrix for a

graph G, what is the
significance of the matrix A2?

Other Representations

PIERS

PIES PIER PIRS

PISPIE PIR

PIISPE

I

PES

Many problems work
on an implicit graph.

Many problems work
on an implicit graph.

You’ll find graphs just
about everywhere you look.

They’re an extremely versatile and
powerful abstraction to be aware of.

Going forward, unless stated otherwise,
assume we’re using an adjacency list.

Node Adjacent To

Time-Out for Announcements!

Assignment 6

● Assignment 6 (MiniBrowser) is due this
Friday.
● If you’re following our suggested timetable,

you should be done with the browser history
at this point and be working on
Autocomplete or Line Manager.

● Have questions? Stop by the LaIR/CLaIR,
go on Piazza, ask your section leader, or
stop by Kate or Keith’s office hours!

Midterm Regrades

● As a reminder, midterm regrade requests
are due this Wednesday.
● Check your inbox for an email from Kate

with details.
● We’ve posted a testing harness up on the

course website that you can use to edit
and run your solutions.

Back to CS106B!

Traversing Graphs

Iterating over a Graph

● In a singly-linked list, there’s pretty much one
way to iterate over the list: start at the front
and go forward!

● In a binary search tree, there are many
traversal strategies:
● An inorder traversal that produces all the

elements in sorted order.
● A postorder traversal used to delete all the

nodes in the BST.
● There are many ways to iterate over a graph,

each of which have different properties.

Where We’re Going

● Today, we’ll cover breadth-first search,
which can be used to find shortest paths
in a graph.

● On Wednesday, we’ll see depth-first
search, which can be used to order
prerequisites and recover interesting
structures.

● There are many other approaches as
well. Take CS161 or CS221 for details!

An Initial Search Strategy

A B

D E

C

H

F

G I

A B

D E

C

H

F

G I

A B

D

C

H

F

G I

E

A B

D

C

H

F

G I

E
0

Core idea: Find
everything one
hop away from
the start, then
two hops away,
then three hops

away, etc.

Core idea: Find
everything one
hop away from
the start, then
two hops away,
then three hops

away, etc.

A C

H

F

G I

E
0

1

1

B

D

Core idea: Find
everything one
hop away from
the start, then
two hops away,
then three hops

away, etc.

Core idea: Find
everything one
hop away from
the start, then
two hops away,
then three hops

away, etc.

A C

H

F

G I

E
0

B

D1

1

Core idea: Find
everything one
hop away from
the start, then
two hops away,
then three hops

away, etc.

Core idea: Find
everything one
hop away from
the start, then
two hops away,
then three hops

away, etc.

A

H

F

I

E
0

B

D1

1

C

GCore idea: Find
everything one
hop away from
the start, then
two hops away,
then three hops

away, etc.

Core idea: Find
everything one
hop away from
the start, then
two hops away,
then three hops

away, etc.

A

H

F

I

E
0

B

D1

12 2

2

C

GCore idea: Find
everything one
hop away from
the start, then
two hops away,
then three hops

away, etc.

Core idea: Find
everything one
hop away from
the start, then
two hops away,
then three hops

away, etc.

A

I

E
0

B

D1

12 2

2

C

G H

F

Core idea: Find
everything one
hop away from
the start, then
two hops away,
then three hops

away, etc.

Core idea: Find
everything one
hop away from
the start, then
two hops away,
then three hops

away, etc.

A

I

E
0

B

D1

12 2

2

C

G H

F 3

3

Core idea: Find
everything one
hop away from
the start, then
two hops away,
then three hops

away, etc.

Core idea: Find
everything one
hop away from
the start, then
two hops away,
then three hops

away, etc.

A

I

E
0

B

D1

12 2

2

C

G H

F 3

3 4

Core idea: Find
everything one
hop away from
the start, then
two hops away,
then three hops

away, etc.

Core idea: Find
everything one
hop away from
the start, then
two hops away,
then three hops

away, etc.

Implementing this Idea

Visit nodes in ascending order of
distance from the start node E.

Load newly-discovered
nodes into a queue.

A B

D E

C

H

F

G I

A

I

E

B

D

C

G H

F

Visit nodes in ascending order of
distance from the start node E.

Load newly-discovered
nodes into a queue.

A B

D E

C

H

F

G I

A

I

E

B

D

C

G H

F

Visit nodes in ascending order of
distance from the start node E.

Load newly-discovered
nodes into a queue.

A B

D E

C

H

F

G I

A

I

E

B

D

C

G H

F
0

Visit nodes in ascending order of
distance from the start node E.

Load newly-discovered
nodes into a queue.

A B

D E

C

H

F

G I

A

I

E

B

D

C

G H

F
0

Queue: E

Visit nodes in ascending order of
distance from the start node E.

Load newly-discovered
nodes into a queue.

A B

D

C

H

F

G I

A

I

E

B

D

C

G H

F
0

Queue:

E

Visit nodes in ascending order of
distance from the start node E.

Load newly-discovered
nodes into a queue.

A C

H

F

G I

A

I

E

B

D

C

G H

F
0

Queue:

E

B

D

Visit nodes in ascending order of
distance from the start node E.

Load newly-discovered
nodes into a queue.

A C

H

F

G I

A

I

E

B

D

C

G H

F
0

Queue:

E

B

D

D B

Visit nodes in ascending order of
distance from the start node E.

Load newly-discovered
nodes into a queue.

A C

H

F

G I

A

I

E

B

D

C

G H

F
0

Queue:

E

B

D

D B

Visit nodes in ascending order of
distance from the start node E.

Load newly-discovered
nodes into a queue.

A C

H

F

G I

A

I

E

C

G H

F
0

Queue:

E

B

D

D B

B

D

Visit nodes in ascending order of
distance from the start node E.

Load newly-discovered
nodes into a queue.

A C

H

F

G I

A

I

E

C

G H

F
0

Queue:

E

B

D

D B

B

D1

1

Visit nodes in ascending order of
distance from the start node E.

Load newly-discovered
nodes into a queue.

A C

H

F

G I

A

I

E

C

G H

F
0

Queue:

E

B

D

D B

B

D1

1

Visit nodes in ascending order of
distance from the start node E.

Load newly-discovered
nodes into a queue.

A C

H

F

G I

A

I

E

C

G H

F
0

Queue:

E

B

D

B

B

D1

1

Visit nodes in ascending order of
distance from the start node E.

Load newly-discovered
nodes into a queue.

A C

H

F

G I

A

I

E

C

G H

F
0

Queue:

E

B

D

B

B

D1

1

Visit nodes in ascending order of
distance from the start node E.

Load newly-discovered
nodes into a queue.

A C

H

F

G I

A

I

E

C

G H

F
0

Queue:

E

B

D

B

B

D1

1

Visit nodes in ascending order of
distance from the start node E.

Load newly-discovered
nodes into a queue.

A C

H

F

G I

A

I

E

C

G H

F
0

Queue:

E

B

D

B

B

D1

1

Visit nodes in ascending order of
distance from the start node E.

Load newly-discovered
nodes into a queue.

A C

H

F

G I

A

I

E

C

G H

F
0

Queue:

E

B

D

B

B

D1

1

A G

Visit nodes in ascending order of
distance from the start node E.

Load newly-discovered
nodes into a queue.

A C

H

F

G I

A

I

E

C

G H

F
0

Queue:

E

B

D

B

B

D1

1

A G

Visit nodes in ascending order of
distance from the start node E.

Load newly-discovered
nodes into a queue.

A C

H

F

G I

A

I

E

C

G H

F
0

Queue:

E

B

D

B

B

D1

1

A G

Visit nodes in ascending order of
distance from the start node E.

Load newly-discovered
nodes into a queue.

A C

H

F

G I

A

I

E

C

G H

F
0

Queue:

E

B

D

B

D1

1

A G

Visit nodes in ascending order of
distance from the start node E.

Load newly-discovered
nodes into a queue.

A C

H

F

G I

A

I

E

C

G H

F
0

Queue:

E

B

D

B

D1

1

A G

Visit nodes in ascending order of
distance from the start node E.

Load newly-discovered
nodes into a queue.

A C

H

F

G I

A

I

E

C

G H

F
0

Queue:

E

B

D

B

D1

1

A G

Visit nodes in ascending order of
distance from the start node E.

Load newly-discovered
nodes into a queue.

A

H

F

G I

A

I

E

C

G H

F
0

Queue:

E

B

D

B

D1

1

A G

C

Visit nodes in ascending order of
distance from the start node E.

Load newly-discovered
nodes into a queue.

A

H

F

G I

A

I

E

C

G H

F
0

Queue:

E

B

D

B

D1

1

A G

C

C

Visit nodes in ascending order of
distance from the start node E.

Load newly-discovered
nodes into a queue.

A

H

F

G I

A

I

E

C

G H

F
0

Queue:

E

B

D

B

D1

1

A G

C

C

Visit nodes in ascending order of
distance from the start node E.

Load newly-discovered
nodes into a queue.

A

H

F

G I

A

I

E

H

F
0

Queue:

E

B

D

B

D1

1

A G

C

C

C

G

Visit nodes in ascending order of
distance from the start node E.

Load newly-discovered
nodes into a queue.

A

H

F

G I

A

I

E

H

F
0

Queue:

E

B

D

B

D1

1

A G

C

C

C

G

2 2

2

Visit nodes in ascending order of
distance from the start node E.

Load newly-discovered
nodes into a queue.

A

H

F

G I

A

I

E

H

F
0

Queue:

E

B

D

B

D1

1

A G

C

C

C

G

2 2

2

Visit nodes in ascending order of
distance from the start node E.

Load newly-discovered
nodes into a queue.

A

H

F

G I

A

I

E

H

F
0

Queue:

E

B

D

B

D1

1

G

C

C

C

G

2 2

2

Visit nodes in ascending order of
distance from the start node E.

Load newly-discovered
nodes into a queue.

A

H

F

G I

A

I

E

H

F
0

Queue:

E

B

D

B

D1

1

G

C

C

C

G

2 2

2

Visit nodes in ascending order of
distance from the start node E.

Load newly-discovered
nodes into a queue.

A

H

F

G I

A

I

E

H

F
0

Queue:

E

B

D

B

D1

1

G

C

C

C

G

2 2

2

Visit nodes in ascending order of
distance from the start node E.

Load newly-discovered
nodes into a queue.

A

H

F

G I

A

I

E

H

F
0

Queue:

E

B

D

B

D1

1

G

C

C

C

G

2 2

2

Visit nodes in ascending order of
distance from the start node E.

Load newly-discovered
nodes into a queue.

A

H

F

G I

A

I

E

H

F
0

Queue:

E

B

D

B

D1

1

G

C

C

C

G

2 2

2

Visit nodes in ascending order of
distance from the start node E.

Load newly-discovered
nodes into a queue.

A

H

F

G I

A

I

E

H

F
0

Queue:

E

B

D

B

D1

1

C

C

C

G

2 2

2

Visit nodes in ascending order of
distance from the start node E.

Load newly-discovered
nodes into a queue.

A

H

F

G I

A

I

E

H

F
0

Queue:

E

B

D

B

D1

1

C

C

C

G

2 2

2

Visit nodes in ascending order of
distance from the start node E.

Load newly-discovered
nodes into a queue.

A

H

F

G I

A

I

E

H

F
0

Queue:

E

B

D

B

D1

1

C

C

C

G

2 2

2

Visit nodes in ascending order of
distance from the start node E.

Load newly-discovered
nodes into a queue.

A

F

G I

A

I

E

H

F
0

Queue:

E

B

D

B

D1

1

C

C

C

G

2 2

2

H

Visit nodes in ascending order of
distance from the start node E.

Load newly-discovered
nodes into a queue.

A

F

G I

A

I

E

H

F
0

Queue:

E

B

D

B

D1

1

C

C

C

G

2 2

2

H

H

Visit nodes in ascending order of
distance from the start node E.

Load newly-discovered
nodes into a queue.

A

F

G I

A

I

E

H

F
0

Queue:

E

B

D

B

D1

1

C

C

C

G

2 2

2

H

H

Visit nodes in ascending order of
distance from the start node E.

Load newly-discovered
nodes into a queue.

A

F

G I

A

I

E

H

F
0

Queue:

E

B

D

B

D1

1

C

C

C

G

2 2

2

H

H

Visit nodes in ascending order of
distance from the start node E.

Load newly-discovered
nodes into a queue.

A

F

G I

A

I

E

H

F
0

Queue:

E

B

D

B

D1

1

CC

G

2 2

2

H

H

Visit nodes in ascending order of
distance from the start node E.

Load newly-discovered
nodes into a queue.

A

F

G I

A

I

E

H

F
0

Queue:

E

B

D

B

D1

1

CC

G

2 2

2

H

H

Visit nodes in ascending order of
distance from the start node E.

Load newly-discovered
nodes into a queue.

A

F

G I

A

I

E

H

F
0

Queue:

E

B

D

B

D1

1

CC

G

2 2

2

H

H

Visit nodes in ascending order of
distance from the start node E.

Load newly-discovered
nodes into a queue.

A

G I

A

I

E

H

F
0

Queue:

E

B

D

B

D1

1

CC

G

2 2

2

H

H

F

Visit nodes in ascending order of
distance from the start node E.

Load newly-discovered
nodes into a queue.

A

G I

A

I

E

H

F
0

Queue:

E

B

D

B

D1

1

CC

G

2 2

2

H

H F

F

Visit nodes in ascending order of
distance from the start node E.

Load newly-discovered
nodes into a queue.

A

G I

A

I

E

H

F
0

Queue:

E

B

D

B

D1

1

CC

G

2 2

2

H

H F

F

Visit nodes in ascending order of
distance from the start node E.

Load newly-discovered
nodes into a queue.

A

G I

A

I

E

H

F
0

Queue:

E

B

D

B

D1

1

CC

G

2 2

2

H

H F

F

Visit nodes in ascending order of
distance from the start node E.

Load newly-discovered
nodes into a queue.

A

G I

A

I

E

H

F
0

Queue:

E

B

D

B

D1

1

CC

G

2 2

2

H

H F

F3

3

Visit nodes in ascending order of
distance from the start node E.

Load newly-discovered
nodes into a queue.

A

G I

A

I

E

H

F
0

Queue:

E

B

D

B

D1

1

CC

G

2 2

2

H

H F

F3

3

Visit nodes in ascending order of
distance from the start node E.

Load newly-discovered
nodes into a queue.

A

G I

A

I

E

H

F
0

Queue:

E

B

D

B

D1

1

CC

G

2 2

2

H

F

F3

3

Visit nodes in ascending order of
distance from the start node E.

Load newly-discovered
nodes into a queue.

A

G I

A

I

E

H

F
0

Queue:

E

B

D

B

D1

1

CC

G

2 2

2

H

F

F3

3

Visit nodes in ascending order of
distance from the start node E.

Load newly-discovered
nodes into a queue.

A

G I

A

I

E

H

F
0

Queue:

E

B

D

B

D1

1

CC

G

2 2

2

H

F

F3

3

Visit nodes in ascending order of
distance from the start node E.

Load newly-discovered
nodes into a queue.

A

G

A

I

E

H

F
0

Queue:

E

B

D

B

D1

1

CC

G

2 2

2

H

F

F

I

3

3

Visit nodes in ascending order of
distance from the start node E.

Load newly-discovered
nodes into a queue.

A

G

A

I

E

H

F
0

Queue:

E

B

D

B

D1

1

CC

G

2 2

2

H

F

F

I

I

3

3

Visit nodes in ascending order of
distance from the start node E.

Load newly-discovered
nodes into a queue.

A

G

A

I

E

H

F
0

Queue:

E

B

D

B

D1

1

CC

G

2 2

2

H

F

F

I

I

3

3

Visit nodes in ascending order of
distance from the start node E.

Load newly-discovered
nodes into a queue.

A

G

A

I

E

H

F
0

Queue:

E

B

D

B

D1

1

CC

G

2 2

2

H

F

F

I

I

3

3

Visit nodes in ascending order of
distance from the start node E.

Load newly-discovered
nodes into a queue.

A

G

A

I

E

H

F
0

Queue:

E

B

D

B

D1

1

CC

G

2 2

2

H

F

I

I

3

3

Visit nodes in ascending order of
distance from the start node E.

Load newly-discovered
nodes into a queue.

A

G

A

I

E

H

F
0

Queue:

E

B

D

B

D1

1

CC

G

2 2

2

H

F

I

I

3

3

Visit nodes in ascending order of
distance from the start node E.

Load newly-discovered
nodes into a queue.

A

G

A

I

E

H

F
0

Queue:

E

B

D

B

D1

1

CC

G

2 2

2

H

F

I

I

3

3

Visit nodes in ascending order of
distance from the start node E.

Load newly-discovered
nodes into a queue.

A

G

A

I

E

H

F
0

Queue:

E

B

D

B

D1

1

CC

G

2 2

2

H

F

I

I

3

3

Visit nodes in ascending order of
distance from the start node E.

Load newly-discovered
nodes into a queue.

A

G

A

I

E

H

F
0

Queue:

E

B

D

B

D1

1

CC

G

2 2

2

H

F

I

I

3

3

Visit nodes in ascending order of
distance from the start node E.

Load newly-discovered
nodes into a queue.

A

G

A

I

E

H

F
0

Queue:

E

B

D

B

D1

1

CC

G

2 2

2

H

F

I

I

3

3

Visit nodes in ascending order of
distance from the start node E.

Load newly-discovered
nodes into a queue.

A

G

A

I

E

H

F
0

Queue:

E

B

D

B

D1

1

CC

G

2 2

2

H

F

I

I

3

3 4

Visit nodes in ascending order of
distance from the start node E.

Load newly-discovered
nodes into a queue.

A

G

A

I

E

H

F
0

Queue:

E

B

D

B

D1

1

CC

G

2 2

2

H

F

I

I

3

3 4

Visit nodes in ascending order of
distance from the start node E.

Load newly-discovered
nodes into a queue.

A

G

A

I

E

H

F
0

Queue:

E

B

D

B

D1

1

CC

G

2 2

2

H

F

I

3

3 4

Visit nodes in ascending order of
distance from the start node E.

Load newly-discovered
nodes into a queue.

A

G

A

I

E

H

F
0

Queue:

E

B

D

B

D1

1

CC

G

2 2

2

H

F

I

3

3 4

Visit nodes in ascending order of
distance from the start node E.

Load newly-discovered
nodes into a queue.

A

G

A

I

E

H

F
0

Queue:

E

B

D

B

D1

1

CC

G

2 2

2

H

F

I

3

3 4

Breadth-First Search

● The Queue-based search strategy we just
saw is called breadth-first search (or
just BFS for short).

● In pseudocode:

bfs-from(node v) {
 make a queue of nodes, initially seeded with v.

 while the queue isn't empty:
 dequeue a node curr.
 process the node curr.

 for each node adjacent to curr:
 if that node has never been enqueued:
 enqueue that node.
}

bfs-from(node v) {
 make a queue of nodes, initially seeded with v.

 while the queue isn't empty:
 dequeue a node curr.
 process the node curr.

 for each node adjacent to curr:
 if that node has never been enqueued:
 enqueue that node.
}

BFS Efficiency
bfs-from(node v) {
 make a queue of nodes, initially seeded with v.

 while the queue isn't empty:
 dequeue a node curr.
 process the node curr.

 for each node adjacent to curr:
 if that node has never been enqueued:
 enqueue that node.
}

bfs-from(node v) {
 make a queue of nodes, initially seeded with v.

 while the queue isn't empty:
 dequeue a node curr.
 process the node curr.

 for each node adjacent to curr:
 if that node has never been enqueued:
 enqueue that node.
}

BFS Efficiency
bfs-from(node v) {
 make a queue of nodes, initially seeded with v.

 while the queue isn't empty:
 dequeue a node curr.
 process the node curr.

 for each node adjacent to curr:
 if that node has never been enqueued:
 enqueue that node.
}

bfs-from(node v) {
 make a queue of nodes, initially seeded with v.

 while the queue isn't empty:
 dequeue a node curr.
 process the node curr.

 for each node adjacent to curr:
 if that node has never been enqueued:
 enqueue that node.
}

Whenever we process a node, we do

 1. some fixed amount of work to process the
node, then

 2. some amount of work proportional to the
number of edges touching that node.

Whenever we process a node, we do

 1. some fixed amount of work to process the
node, then

 2. some amount of work proportional to the
number of edges touching that node.

BFS Efficiency

Whenever we process a node, we do

 1. some fixed amount of work to process the
node, then

 2. some amount of work proportional to the
number of edges touching that node.

Whenever we process a node, we do

 1. some fixed amount of work to process the
node, then

 2. some amount of work proportional to the
number of edges touching that node.

● Suppose our graph has n nodes and m edges.
● These letters are the standard conventions for talking

about graphs.
● Average work done per node: O(1) baseline work,

plus O(ᵐ/ₙ) work processing edges.
● Number of nodes: n.
● Total work done: n · (O(ᵐ/ₙ) + O(1)) = O(m + n).

BFS Efficiency

● The amount of work done to run breadth-
first search is O(m + n), assuming the
graph is represented as an adjacency list.
● Great question to ponder: how fast is breadth-

first search if we use an adjacency matrix?
● The work done is proportional to the

number of objects (nodes and edges) that
make up the graph.

● We say that BFS is a linear-time graph
algorithm.

A Nifty BFS Trick

A B

D E

C

H

F

G I

Run BFS, but have
each node store a
pointer back to the

node that first
discovered it.

Run BFS, but have
each node store a
pointer back to the

node that first
discovered it.

Queue:

A B

D E

C

H

F

G I

Run BFS, but have
each node store a
pointer back to the

node that first
discovered it.

Run BFS, but have
each node store a
pointer back to the

node that first
discovered it.

Queue:

A B

D E

C

H

F

G I

Run BFS, but have
each node store a
pointer back to the

node that first
discovered it.

Run BFS, but have
each node store a
pointer back to the

node that first
discovered it.

Queue: E

A B

D

C

H

F

G I

Run BFS, but have
each node store a
pointer back to the

node that first
discovered it.

Run BFS, but have
each node store a
pointer back to the

node that first
discovered it.

Queue:

E

A C

H

F

G I

Run BFS, but have
each node store a
pointer back to the

node that first
discovered it.

Run BFS, but have
each node store a
pointer back to the

node that first
discovered it.

Queue:

E

B

D

A C

H

F

G I

Run BFS, but have
each node store a
pointer back to the

node that first
discovered it.

Run BFS, but have
each node store a
pointer back to the

node that first
discovered it.

Queue:

E

B

D

D B

A C

H

F

G I

Run BFS, but have
each node store a
pointer back to the

node that first
discovered it.

Run BFS, but have
each node store a
pointer back to the

node that first
discovered it.

Queue:

E

B

D

D B

A C

H

F

G I

Run BFS, but have
each node store a
pointer back to the

node that first
discovered it.

Run BFS, but have
each node store a
pointer back to the

node that first
discovered it.

Queue:

E

B

D

B

C

H

F

I

Run BFS, but have
each node store a
pointer back to the

node that first
discovered it.

Run BFS, but have
each node store a
pointer back to the

node that first
discovered it.

Queue:

E

B

D

B

A

G

C

H

F

I

Run BFS, but have
each node store a
pointer back to the

node that first
discovered it.

Run BFS, but have
each node store a
pointer back to the

node that first
discovered it.

Queue:

E

B

D

B

A

G

A G

C

H

F

I

Run BFS, but have
each node store a
pointer back to the

node that first
discovered it.

Run BFS, but have
each node store a
pointer back to the

node that first
discovered it.

Queue:

E

B

D

B

A

G

A G

C

H

F

I

Run BFS, but have
each node store a
pointer back to the

node that first
discovered it.

Run BFS, but have
each node store a
pointer back to the

node that first
discovered it.

Queue:

E

B

D

B

A

G

A G

C

H

F

I

Run BFS, but have
each node store a
pointer back to the

node that first
discovered it.

Run BFS, but have
each node store a
pointer back to the

node that first
discovered it.

Queue:

E

B

D

A

G

A G

C

H

F

I

Run BFS, but have
each node store a
pointer back to the

node that first
discovered it.

Run BFS, but have
each node store a
pointer back to the

node that first
discovered it.

Queue:

E

B

D

A

G

A G

C

H

F

I

Run BFS, but have
each node store a
pointer back to the

node that first
discovered it.

Run BFS, but have
each node store a
pointer back to the

node that first
discovered it.

Queue:

E

B

D

A

G

A G C

C

H

F

I

Run BFS, but have
each node store a
pointer back to the

node that first
discovered it.

Run BFS, but have
each node store a
pointer back to the

node that first
discovered it.

Queue:

E

B

D

A

G

A G C

C

H

F

I

Run BFS, but have
each node store a
pointer back to the

node that first
discovered it.

Run BFS, but have
each node store a
pointer back to the

node that first
discovered it.

Queue:

E

B

D

A

G

A G C

C

H

F

I

Run BFS, but have
each node store a
pointer back to the

node that first
discovered it.

Run BFS, but have
each node store a
pointer back to the

node that first
discovered it.

Queue:

E

B

D

A

G

G C

C

H

F

I

Run BFS, but have
each node store a
pointer back to the

node that first
discovered it.

Run BFS, but have
each node store a
pointer back to the

node that first
discovered it.

Queue:

E

B

D

A

G

G C

C

H

F

I

Run BFS, but have
each node store a
pointer back to the

node that first
discovered it.

Run BFS, but have
each node store a
pointer back to the

node that first
discovered it.

Queue:

E

B

D

A

G

C

C

H

F

I

Run BFS, but have
each node store a
pointer back to the

node that first
discovered it.

Run BFS, but have
each node store a
pointer back to the

node that first
discovered it.

Queue:

E

B

D

A

G

C H

C

H

F

I

Run BFS, but have
each node store a
pointer back to the

node that first
discovered it.

Run BFS, but have
each node store a
pointer back to the

node that first
discovered it.

Queue:

E

B

D

A

G

C H

C

H

F

I

Run BFS, but have
each node store a
pointer back to the

node that first
discovered it.

Run BFS, but have
each node store a
pointer back to the

node that first
discovered it.

Queue:

E

B

D

A

G

H

C

H

F

I

Run BFS, but have
each node store a
pointer back to the

node that first
discovered it.

Run BFS, but have
each node store a
pointer back to the

node that first
discovered it.

Queue:

E

B

D

A

G

H

C

H

F

I

Run BFS, but have
each node store a
pointer back to the

node that first
discovered it.

Run BFS, but have
each node store a
pointer back to the

node that first
discovered it.

Queue:

E

B

D

A

G

H F

C

H

F

I

Run BFS, but have
each node store a
pointer back to the

node that first
discovered it.

Run BFS, but have
each node store a
pointer back to the

node that first
discovered it.

Queue:

E

B

D

A

G

H F

C

H

F

I

Run BFS, but have
each node store a
pointer back to the

node that first
discovered it.

Run BFS, but have
each node store a
pointer back to the

node that first
discovered it.

Queue:

E

B

D

A

G

F

C

H

Run BFS, but have
each node store a
pointer back to the

node that first
discovered it.

Run BFS, but have
each node store a
pointer back to the

node that first
discovered it.

Queue:

E

B

D

A

G

F

I

F

C

H

Run BFS, but have
each node store a
pointer back to the

node that first
discovered it.

Run BFS, but have
each node store a
pointer back to the

node that first
discovered it.

Queue:

E

B

D

A

G

F

I

F

I

C

H

Run BFS, but have
each node store a
pointer back to the

node that first
discovered it.

Run BFS, but have
each node store a
pointer back to the

node that first
discovered it.

Queue:

E

B

D

A

G

F

I

F

I

C

H

Run BFS, but have
each node store a
pointer back to the

node that first
discovered it.

Run BFS, but have
each node store a
pointer back to the

node that first
discovered it.

Queue:

E

B

D

A

G I

F

I

C

H

Run BFS, but have
each node store a
pointer back to the

node that first
discovered it.

Run BFS, but have
each node store a
pointer back to the

node that first
discovered it.

Queue:

E

B

D

A

G I

F

I

C

H

Run BFS, but have
each node store a
pointer back to the

node that first
discovered it.

Run BFS, but have
each node store a
pointer back to the

node that first
discovered it.

Queue:

E

B

D

A

G I

F

I

C

H

Run BFS, but have
each node store a
pointer back to the

node that first
discovered it.

Run BFS, but have
each node store a
pointer back to the

node that first
discovered it.

Queue:

E

B

D

A

G I

F

C

H

Run BFS, but have
each node store a
pointer back to the

node that first
discovered it.

Run BFS, but have
each node store a
pointer back to the

node that first
discovered it.

E

B

D

A

G I

F

C

H

Run BFS, but have
each node store a
pointer back to the

node that first
discovered it.

Run BFS, but have
each node store a
pointer back to the

node that first
discovered it.

E

B

D

A

G I

F

C

H

Run BFS, but have
each node store a
pointer back to the

node that first
discovered it.

Run BFS, but have
each node store a
pointer back to the

node that first
discovered it.

E

B

D

A

G I

F

Start at any node
and follow pointers
until you reach E.
What path are you

tracing out?

Start at any node
and follow pointers
until you reach E.
What path are you

tracing out?

Shortest Path Routing

● Breadth-first search can be used to find a
shortest path from each node back to the
start node.

● The tree you get when you do this is
called a breadth-first search tree and
has lots of fun properties and cool
applications.

● Want to learn more? Take CS161!

Next Time

● Depth-First Search
● Another graph search algorithm.

● Directed Acyclic Graphs
● Representing prerequisites.

● Topological Sorting
● Ordering your “to do” list with constraints.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153

