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A graph is a mathematical structure
for representing relationships.

A graph consists of a set of nodes 
connected by edges.

Edges



  

Some graphs are directed.
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Some graphs are undirected.



  

CAT SAT RAT

RANMAN

MAT

CAN

Some graphs are undirected.

It sometimes helps to think of them as
directed graphs with edges both ways.



  

How can we represent graphs in C++?



  

Representing Graphs

Node Adjacent To            

Vector<Node>      Node

Map<Node, Vector<Node>>   We can represent a graph 
as a map from nodes to 
the list of nodes each 
node is connected to.

We can represent a graph 
as a map from nodes to 
the list of nodes each 
node is connected to.



  

Representing Graphs

● The approach we just saw is called an 
adjacency list in comes in a number of 
different forms:

Map<string, Vector<string>>

Map<string, Set<string>>

HashMap<string, HashSet<string>>

Vector<Vector<int>>

● The core idea is that we have some kind of 
mapping associating each node with its 
outgoing edges.
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Other Graph Representations

0 1 1 0 0 0

1 0 1 1 1 0

1 1 0 1 0 1

0 1 1 0 1 1

0 1 0 1 0 1

0 0 1 1 1 0

This representation is called an 
adjacency matrix.

 

For those of you in Math 51: if 
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graph G, what is the 
significance of the matrix A2?

This representation is called an 
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For those of you in Math 51: if 
A is an adjacency matrix for a 

graph G, what is the 
significance of the matrix A2?



  

Other Representations

PIERS

PIES PIER PIRS

PISPIE PIR

PIISPE

I

PES

Many problems work 
on an implicit graph.

Many problems work 
on an implicit graph.



  

You’ll find graphs just
about everywhere you look.

 

They’re an extremely versatile and 
powerful abstraction to be aware of.



  

Going forward, unless stated otherwise,
assume we’re using an adjacency list.

Node Adjacent To



  

Time-Out for Announcements!



  

Assignment 6

● Assignment 6 (MiniBrowser) is due this 
Friday.
● If you’re following our suggested timetable, 

you should be done with the browser history 
at this point and be working on 
Autocomplete or Line Manager.

● Have questions? Stop by the LaIR/CLaIR, 
go on Piazza, ask your section leader, or 
stop by Kate or Keith’s office hours!



  

Midterm Regrades

● As a reminder, midterm regrade requests 
are due this Wednesday.
● Check your inbox for an email from Kate 

with details.
● We’ve posted a testing harness up on the 

course website that you can use to edit 
and run your solutions.



  

Back to CS106B!



  

Traversing Graphs



  

Iterating over a Graph

● In a singly-linked list, there’s pretty much one 
way to iterate over the list: start at the front 
and go forward!

● In a binary search tree, there are many 
traversal strategies:
● An inorder traversal that produces all the 

elements in sorted order.
● A postorder traversal used to delete all the 

nodes in the BST.
● There are many ways to iterate over a graph, 

each of which have different properties.



  

Where We’re Going

● Today, we’ll cover breadth-first search, 
which can be used to find shortest paths 
in a graph.

● On Wednesday, we’ll see depth-first 
search, which can be used to order 
prerequisites and recover interesting 
structures.

● There are many other approaches as 
well. Take CS161 or CS221 for details!



  

An Initial Search Strategy
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Implementing this Idea



  
Visit nodes in ascending order of 
distance from the start node E.

Load newly-discovered
nodes into a queue.

A B

D E

C

H

F

G I

A

I

E

B

D

C

G H

F



  
Visit nodes in ascending order of 
distance from the start node E.

Load newly-discovered
nodes into a queue.

A B

D E

C

H

F

G I

A

I

E

B

D

C

G H

F



  
Visit nodes in ascending order of 
distance from the start node E.

Load newly-discovered
nodes into a queue.

A B

D E

C

H

F

G I

A

I

E

B

D

C

G H

F
0



  
Visit nodes in ascending order of 
distance from the start node E.

Load newly-discovered
nodes into a queue.

A B

D E

C

H

F

G I

A

I

E

B

D

C

G H

F
0

Queue: E



  
Visit nodes in ascending order of 
distance from the start node E.

Load newly-discovered
nodes into a queue.

A B

D

C

H

F

G I

A

I

E

B

D

C

G H

F
0

Queue:

E



  
Visit nodes in ascending order of 
distance from the start node E.

Load newly-discovered
nodes into a queue.

A C

H

F

G I

A

I

E

B

D

C

G H

F
0

Queue:

E

B

D



  
Visit nodes in ascending order of 
distance from the start node E.

Load newly-discovered
nodes into a queue.

A C

H

F

G I

A

I

E

B

D

C

G H

F
0

Queue:

E

B

D

D B



  
Visit nodes in ascending order of 
distance from the start node E.

Load newly-discovered
nodes into a queue.

A C

H

F

G I

A

I

E

B

D

C

G H

F
0

Queue:

E

B

D

D B



  
Visit nodes in ascending order of 
distance from the start node E.

Load newly-discovered
nodes into a queue.

A C

H

F

G I

A

I

E

C

G H

F
0

Queue:

E

B

D

D B

B

D



  
Visit nodes in ascending order of 
distance from the start node E.

Load newly-discovered
nodes into a queue.

A C

H

F

G I

A

I

E

C

G H

F
0

Queue:

E

B

D

D B

B

D1

1



  
Visit nodes in ascending order of 
distance from the start node E.

Load newly-discovered
nodes into a queue.

A C

H

F

G I

A

I

E

C

G H

F
0

Queue:

E

B

D

D B

B

D1

1



  
Visit nodes in ascending order of 
distance from the start node E.

Load newly-discovered
nodes into a queue.

A C

H

F

G I

A

I

E

C

G H

F
0

Queue:

E

B

D

B

B

D1

1



  
Visit nodes in ascending order of 
distance from the start node E.

Load newly-discovered
nodes into a queue.

A C

H

F

G I

A

I

E

C

G H

F
0

Queue:

E

B

D

B

B

D1

1



  
Visit nodes in ascending order of 
distance from the start node E.

Load newly-discovered
nodes into a queue.

A C

H

F

G I

A

I

E

C

G H

F
0

Queue:

E

B

D

B

B

D1

1



  
Visit nodes in ascending order of 
distance from the start node E.

Load newly-discovered
nodes into a queue.

A C

H

F

G I

A

I

E

C

G H

F
0

Queue:

E

B

D

B

B

D1

1



  
Visit nodes in ascending order of 
distance from the start node E.

Load newly-discovered
nodes into a queue.

A C

H

F

G I

A

I

E

C

G H

F
0

Queue:

E

B

D

B

B

D1

1

A G



  
Visit nodes in ascending order of 
distance from the start node E.

Load newly-discovered
nodes into a queue.

A C

H

F

G I

A

I

E

C

G H

F
0

Queue:

E

B

D

B

B

D1

1

A G



  
Visit nodes in ascending order of 
distance from the start node E.

Load newly-discovered
nodes into a queue.

A C

H

F

G I

A

I

E

C

G H

F
0

Queue:

E

B

D

B

B

D1

1

A G



  
Visit nodes in ascending order of 
distance from the start node E.

Load newly-discovered
nodes into a queue.

A C

H

F

G I

A

I

E

C

G H

F
0

Queue:

E

B

D

B

D1

1

A G



  
Visit nodes in ascending order of 
distance from the start node E.

Load newly-discovered
nodes into a queue.

A C

H

F

G I

A

I

E

C

G H

F
0

Queue:

E

B

D

B

D1

1

A G



  
Visit nodes in ascending order of 
distance from the start node E.

Load newly-discovered
nodes into a queue.

A C

H

F

G I

A

I

E

C

G H

F
0

Queue:

E

B

D

B

D1

1

A G



  
Visit nodes in ascending order of 
distance from the start node E.

Load newly-discovered
nodes into a queue.

A

H

F

G I

A

I

E

C

G H

F
0

Queue:

E

B

D

B

D1

1

A G

C



  
Visit nodes in ascending order of 
distance from the start node E.

Load newly-discovered
nodes into a queue.

A

H

F

G I

A

I

E

C

G H

F
0

Queue:

E

B

D

B

D1

1

A G

C

C



  
Visit nodes in ascending order of 
distance from the start node E.

Load newly-discovered
nodes into a queue.

A

H

F

G I

A

I

E

C

G H

F
0

Queue:

E

B

D

B

D1

1

A G

C

C



  
Visit nodes in ascending order of 
distance from the start node E.

Load newly-discovered
nodes into a queue.

A

H

F

G I

A

I

E

H

F
0

Queue:

E

B

D

B

D1

1

A G

C

C

C

G



  
Visit nodes in ascending order of 
distance from the start node E.

Load newly-discovered
nodes into a queue.

A

H

F

G I

A

I

E

H

F
0

Queue:

E

B

D

B

D1

1

A G

C

C

C

G

2 2

2



  
Visit nodes in ascending order of 
distance from the start node E.

Load newly-discovered
nodes into a queue.

A

H

F

G I

A

I

E

H

F
0

Queue:

E

B

D

B

D1

1

A G

C

C

C

G

2 2

2



  
Visit nodes in ascending order of 
distance from the start node E.

Load newly-discovered
nodes into a queue.

A

H

F

G I

A

I

E

H

F
0

Queue:

E

B

D

B

D1

1

G

C

C

C

G

2 2

2



  
Visit nodes in ascending order of 
distance from the start node E.

Load newly-discovered
nodes into a queue.

A

H

F

G I

A

I

E

H

F
0

Queue:

E

B

D

B

D1

1

G

C

C

C

G

2 2

2



  
Visit nodes in ascending order of 
distance from the start node E.

Load newly-discovered
nodes into a queue.

A

H

F

G I

A

I

E

H

F
0

Queue:

E

B

D

B

D1

1

G

C

C

C

G

2 2

2



  
Visit nodes in ascending order of 
distance from the start node E.

Load newly-discovered
nodes into a queue.

A

H

F

G I

A

I

E

H

F
0

Queue:

E

B

D

B

D1

1

G

C

C

C

G

2 2

2



  
Visit nodes in ascending order of 
distance from the start node E.

Load newly-discovered
nodes into a queue.

A

H

F

G I

A

I

E

H

F
0

Queue:

E

B

D

B

D1

1

G

C

C

C

G

2 2

2



  
Visit nodes in ascending order of 
distance from the start node E.

Load newly-discovered
nodes into a queue.

A

H

F

G I

A

I

E

H

F
0

Queue:

E

B

D

B

D1

1

C

C

C

G

2 2

2



  
Visit nodes in ascending order of 
distance from the start node E.

Load newly-discovered
nodes into a queue.

A

H

F

G I

A

I

E

H

F
0

Queue:

E

B

D

B

D1

1

C

C

C

G

2 2

2



  
Visit nodes in ascending order of 
distance from the start node E.

Load newly-discovered
nodes into a queue.

A

H

F

G I

A

I

E

H

F
0

Queue:

E

B

D

B

D1

1

C

C

C

G

2 2

2



  
Visit nodes in ascending order of 
distance from the start node E.

Load newly-discovered
nodes into a queue.

A

F

G I

A

I

E

H

F
0

Queue:

E

B

D

B

D1

1

C

C

C

G

2 2

2

H



  
Visit nodes in ascending order of 
distance from the start node E.

Load newly-discovered
nodes into a queue.

A

F

G I

A

I

E

H

F
0

Queue:

E

B

D

B

D1

1

C

C

C

G

2 2

2

H

H



  
Visit nodes in ascending order of 
distance from the start node E.

Load newly-discovered
nodes into a queue.

A

F

G I

A

I

E

H

F
0

Queue:

E

B

D

B

D1

1

C

C

C

G

2 2

2

H

H



  
Visit nodes in ascending order of 
distance from the start node E.

Load newly-discovered
nodes into a queue.

A

F

G I

A

I

E

H

F
0

Queue:

E

B

D

B

D1

1

C

C

C

G

2 2

2

H

H



  
Visit nodes in ascending order of 
distance from the start node E.

Load newly-discovered
nodes into a queue.

A

F

G I

A

I

E

H

F
0

Queue:

E

B

D

B

D1

1

CC

G

2 2

2

H

H



  
Visit nodes in ascending order of 
distance from the start node E.

Load newly-discovered
nodes into a queue.

A

F

G I

A

I

E

H

F
0

Queue:

E

B

D

B

D1

1

CC

G

2 2

2

H

H



  
Visit nodes in ascending order of 
distance from the start node E.

Load newly-discovered
nodes into a queue.

A

F

G I

A

I

E

H

F
0

Queue:

E

B

D

B

D1

1

CC

G

2 2

2

H

H



  
Visit nodes in ascending order of 
distance from the start node E.

Load newly-discovered
nodes into a queue.

A

G I

A

I

E

H

F
0

Queue:

E

B

D

B

D1

1

CC

G

2 2

2

H

H

F



  
Visit nodes in ascending order of 
distance from the start node E.

Load newly-discovered
nodes into a queue.

A

G I

A

I

E

H

F
0

Queue:

E

B

D

B

D1

1

CC

G

2 2

2

H

H F

F



  
Visit nodes in ascending order of 
distance from the start node E.

Load newly-discovered
nodes into a queue.

A

G I

A

I

E

H

F
0

Queue:

E

B

D

B

D1

1

CC

G

2 2

2

H

H F

F



  
Visit nodes in ascending order of 
distance from the start node E.

Load newly-discovered
nodes into a queue.

A

G I

A

I

E

H

F
0

Queue:

E

B

D

B

D1

1

CC

G

2 2

2

H

H F

F



  
Visit nodes in ascending order of 
distance from the start node E.

Load newly-discovered
nodes into a queue.

A

G I

A

I

E

H

F
0

Queue:

E

B

D

B

D1

1

CC

G

2 2

2

H

H F

F3

3



  
Visit nodes in ascending order of 
distance from the start node E.

Load newly-discovered
nodes into a queue.

A

G I

A

I

E

H

F
0

Queue:

E

B

D

B

D1

1

CC

G

2 2

2

H

H F

F3

3



  
Visit nodes in ascending order of 
distance from the start node E.

Load newly-discovered
nodes into a queue.

A

G I

A

I

E

H

F
0

Queue:

E

B

D

B

D1

1

CC

G

2 2

2

H

F

F3

3



  
Visit nodes in ascending order of 
distance from the start node E.

Load newly-discovered
nodes into a queue.

A

G I

A

I

E

H

F
0

Queue:

E

B

D

B

D1

1

CC

G

2 2

2

H

F

F3

3



  
Visit nodes in ascending order of 
distance from the start node E.

Load newly-discovered
nodes into a queue.

A

G I

A

I

E

H

F
0

Queue:

E

B

D

B

D1

1

CC

G

2 2

2

H

F

F3

3



  
Visit nodes in ascending order of 
distance from the start node E.

Load newly-discovered
nodes into a queue.

A

G

A

I

E

H

F
0

Queue:

E

B

D

B

D1

1

CC

G

2 2

2

H

F

F

I

3

3



  
Visit nodes in ascending order of 
distance from the start node E.

Load newly-discovered
nodes into a queue.

A

G

A

I

E

H

F
0

Queue:

E

B

D

B

D1

1

CC

G

2 2

2

H

F

F

I

I

3

3



  
Visit nodes in ascending order of 
distance from the start node E.

Load newly-discovered
nodes into a queue.

A

G

A

I

E

H

F
0

Queue:

E

B

D

B

D1

1

CC

G

2 2

2

H

F

F

I

I

3

3



  
Visit nodes in ascending order of 
distance from the start node E.

Load newly-discovered
nodes into a queue.

A

G

A

I

E

H

F
0

Queue:

E

B

D

B

D1

1

CC

G

2 2

2

H

F

F

I

I

3

3



  
Visit nodes in ascending order of 
distance from the start node E.

Load newly-discovered
nodes into a queue.

A

G

A

I

E

H

F
0

Queue:

E

B

D

B

D1

1

CC

G

2 2

2

H

F

I

I

3

3



  
Visit nodes in ascending order of 
distance from the start node E.

Load newly-discovered
nodes into a queue.

A

G

A

I

E

H

F
0

Queue:

E

B

D

B

D1

1

CC

G

2 2

2

H

F

I

I

3

3



  
Visit nodes in ascending order of 
distance from the start node E.

Load newly-discovered
nodes into a queue.

A

G

A

I

E

H

F
0

Queue:

E

B

D

B

D1

1

CC

G

2 2

2

H

F

I

I

3

3



  
Visit nodes in ascending order of 
distance from the start node E.

Load newly-discovered
nodes into a queue.

A

G

A

I

E

H

F
0

Queue:

E

B

D

B

D1

1

CC

G

2 2

2

H

F

I

I

3

3



  
Visit nodes in ascending order of 
distance from the start node E.

Load newly-discovered
nodes into a queue.

A

G

A

I

E

H

F
0

Queue:

E

B

D

B

D1

1

CC

G

2 2

2

H

F

I

I

3

3



  
Visit nodes in ascending order of 
distance from the start node E.

Load newly-discovered
nodes into a queue.

A

G

A

I

E

H

F
0

Queue:

E

B

D

B

D1

1

CC

G

2 2

2

H

F

I

I

3

3



  
Visit nodes in ascending order of 
distance from the start node E.

Load newly-discovered
nodes into a queue.

A

G

A

I

E

H

F
0

Queue:

E

B

D

B

D1

1

CC

G

2 2

2

H

F

I

I

3

3 4



  
Visit nodes in ascending order of 
distance from the start node E.

Load newly-discovered
nodes into a queue.

A

G

A

I

E

H

F
0

Queue:

E

B

D

B

D1

1

CC

G

2 2

2

H

F

I

I

3

3 4



  
Visit nodes in ascending order of 
distance from the start node E.

Load newly-discovered
nodes into a queue.

A

G

A

I

E

H

F
0

Queue:

E

B

D

B

D1

1

CC

G

2 2

2

H

F

I

3

3 4



  
Visit nodes in ascending order of 
distance from the start node E.

Load newly-discovered
nodes into a queue.

A

G

A

I

E

H

F
0

Queue:

E

B

D

B

D1

1

CC

G

2 2

2

H

F

I

3

3 4



  
Visit nodes in ascending order of 
distance from the start node E.

Load newly-discovered
nodes into a queue.

A

G

A

I

E

H

F
0

Queue:

E

B

D

B

D1

1

CC

G

2 2

2

H

F

I

3

3 4



  

Breadth-First Search

● The Queue-based search strategy we just 
saw is called breadth-first search (or 
just BFS for short).

● In pseudocode:

bfs-from(node v) {
    make a queue of nodes, initially seeded with v.
     

    while the queue isn't empty:
        dequeue a node curr.
        process the node curr.
     

        for each node adjacent to curr:
            if that node has never been enqueued:
                enqueue that node.
}

bfs-from(node v) {
    make a queue of nodes, initially seeded with v.
     

    while the queue isn't empty:
        dequeue a node curr.
        process the node curr.
     

        for each node adjacent to curr:
            if that node has never been enqueued:
                enqueue that node.
}



  

BFS Efficiency
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BFS Efficiency
bfs-from(node v) {
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Whenever we process a node, we do
 

 1. some fixed amount of work to process the
node, then

 

 2. some amount of work proportional to the
number of edges touching that node.

Whenever we process a node, we do
 

 1. some fixed amount of work to process the
node, then

 

 2. some amount of work proportional to the
number of edges touching that node.



  

BFS Efficiency

Whenever we process a node, we do
 

 1. some fixed amount of work to process the
node, then

 

 2. some amount of work proportional to the
number of edges touching that node.

Whenever we process a node, we do
 

 1. some fixed amount of work to process the
node, then

 

 2. some amount of work proportional to the
number of edges touching that node.

● Suppose our graph has n nodes and m edges.
● These letters are the standard conventions for talking 

about graphs.
● Average work done per node: O(1) baseline work, 

plus O(ᵐ/ₙ) work processing edges.
● Number of nodes: n.
● Total work done: n · (O(ᵐ/ₙ) + O(1)) = O(m + n).



  

BFS Efficiency

● The amount of work done to run breadth-
first search is O(m + n), assuming the 
graph is represented as an adjacency list.
● Great question to ponder: how fast is breadth-

first search if we use an adjacency matrix?
● The work done is proportional to the 

number of objects (nodes and edges) that 
make up the graph.

● We say that BFS is a linear-time graph 
algorithm.



  

A Nifty BFS Trick
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Shortest Path Routing

● Breadth-first search can be used to find a 
shortest path from each node back to the 
start node.

● The tree you get when you do this is 
called a breadth-first search tree and 
has lots of fun properties and cool 
applications.

● Want to learn more? Take CS161!



  

Next Time

● Depth-First Search
● Another graph search algorithm.

● Directed Acyclic Graphs
● Representing prerequisites.

● Topological Sorting
● Ordering your “to do” list with constraints.
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