

String Data Structures

 Why do we need string data structures?

 Why do we need string data structures?

 Why do we need string data structures?

 Why do we need string data structures?

String Data Structures
Before Computers

Can binary search for a word in time O(log n).

Can interpolation search in average time O(log log n).

Array accesses take time O(1).

Jump to the drawer, then do an O(d) lookup, where
d is the number of elements in the drawer.

Miriam-Webster’s physical “Backward Index:”
All English words, written in reverse, in sorted order.

Why would you want this?

Find all words ending in “iatrics.”

Time required: O(log n + k).

String Data Structures
With Computers

a
about
ad

adage
adagio
bar
bard
barn
bed
bet
beta
can
cane
cat

dikdik
diktat

a
about
ad

adage
adagio

bar
bard
barn
bed
bet
beta

can
cane
cat

dikdik
diktat

a b c d

a
about
ad

adage
adagio

bar
bard
barn
bed
bet
beta

can
cane
cat

dikdik
diktat

a b c d

The double
circle means

“this is a word.”

The double
circle means

“this is a word.”

about
ad

adage
adagio

bar
bard
barn
bed
bet
beta

can
cane
cat

dikdik
diktat

a b c d

Because we’ve
remembered that “a” is
a word, we’ll remove
it from our list.

Because we’ve
remembered that “a” is
a word, we’ll remove
it from our list.

about
ad

adage
adagio

bar
bard
barn
bed
bet
beta

can
cane
cat

dikdik
diktat

a b c d

about

bar
bard
barn
bed
bet
beta

can
cane
cat

dikdik
diktat

a b c d

b d

ad
adage
adagio

about

bar
bard
barn
bed
bet
beta

can
cane
cat

dikdik
diktat

a b c d

b d

ad
adage
adagio

about

bar
bard
barn
bed
bet
beta

can
cane
cat

dikdik
diktat

a b c d

b d

ad
adage
adagio

about

bar
bard
barn
bed
bet
beta

can
cane
cat

dikdik
diktat

a b c d

b d

adage
adagio

about bar
bard
barn

can
cane
cat

dikdik
diktat

a b c d

b d

adage
adagio

a e

bed
bet
beta

about bar
bard
barn

can
cane
cat

dikdik
diktat

a b c d

b d

adage
adagio

a e

bed
bet
beta

about

bar
bard
barn

can
cane
cat

dikdik
diktat

a b c d

b d

adage
adagio

a e

bed
bet
beta

r

about

bar
bard
barn

can
cane
cat

dikdik
diktat

a b c d

b d

adage
adagio

a e

bed
bet
beta

r

about

bard
barn

can
cane
cat

dikdik
diktat

a b c d

b d

adage
adagio

a e

bed
bet
beta

r

about

bard

can
cane
cat

dikdik
diktat

a b c d

b d

adage
adagio

a e

bed
bet
beta

r

d n

barn

about

bard

can
cane
cat

dikdik
diktat

a b c d

b d

adage
adagio

a e

bed
bet
beta

r

d n

barn

about

can
cane
cat

dikdik
diktat

a b c d

b d

adage
adagio

a e

bed
bet
beta

r

d n

about can
cane
cat

dikdik
diktat

a b c d

b d

adage
adagio

a e

bed
bet
beta

r

d n

a

about can
cane
cat

dikdik
diktat

a b c d

b d

adage
adagio

a e

bed
bet
beta

r

d n

a

about

can
cane

dikdik
diktat

a b c d

b d

adage
adagio

a e

bed
bet
beta

r

d n

a

n t

cat

about

can
cane

dikdik
diktat

a b c d

b d

adage
adagio

a e

bed
bet
beta

r

d n

a

n t

cat

about

cane

dikdik
diktat

a b c d

b d

adage
adagio

a e

bed
bet
beta

r

d n

a

n t

a b c d

b

o

u

t

 d

 a

 g

e i

 o

a

r

d n

 e

d t

 a

a

n

e

 t

i

k

 a

 t

i

k

d t

a b c d

b

o

u

t

 d

 a

 g

e i

 o

a

r

d n

 e

d t

 a

a

n

e

 t

i

k

 a

 t

i

k

d t

This data structure is called a
trie. It’s pronounced “try.” It

comes from the word “retrieval.”
This is a terrible pun and we’re

stuck with it forever.

This data structure is called a
trie. It’s pronounced “try.” It

comes from the word “retrieval.”
This is a terrible pun and we’re

stuck with it forever.

Using a Trie

Other Operations on Tries

● Find all strings in the trie that start with
a given prefix.
● How might you implement this?

● Print all strings in sorted order.
● How might you implement this?

● Find the first string that’s alphabetically
before or after another.
● How might you implement this?

A Useful Perspective

...an empty list,
represented by
nullptr, or...

a single linked list
cell that points...

... at another linked
list.

A Linked List is Either...

A Binary Search Tree Is Either...
an empty tree,
represented by
nullptr, or...

x

<x >x

... a single node,
whose left subtree

is a BST of
smaller values ...

... and whose right
subtree is a BST
of larger values.

A Trie is Either...
an empty trie,
represented by
nullptr, or...

A Trie is Either...
an empty trie,
represented by
nullptr, or...

q x

…

 z

a single node,
which might be
marked as a

word...

... with some
number of child
tries labeled by

letters.
…

struct Cell {
 Type value;
 Cell* next;
};

struct Node {
 Type value;
 Node* left;
 Node* right;
};

struct Name? {

 /* ? */

};

Singly-Linked List Binary Search Tree Trie

Assignment 6: Think
through these design

decisions!

Time-Out for Announcements!

Assignment 6

● Assignment 6 (MiniBrowser) goes out
today. It’s due one week from Friday at
the start of class.
● Play around with linked lists and tree data

structures!
● Build integral pieces of a larger system!
● See why all this stuff matters.

● YEAH hours will be held today at 5:00PM
in 380-380Y. Slides will be posted.

Back to CS106B!

Twists on Tries
(a sneak peek of beautiful CS concepts!)

Twist: Finite Automata

a b c d

b

o

u

t

 d

 a

 g

e i

 o

a

r

d n

 e

d t

 a

a

n

e

 t

i

k

 a

 t

i

k

d t

General rule to look up a string:

 1. Start at some node.

 2. Follow links based on the
letters you read.

 3. The string is there if you
don’t get stuck and land at a
double circle.

General rule to look up a string:

 1. Start at some node.

 2. Follow links based on the
letters you read.

 3. The string is there if you
don’t get stuck and land at a
double circle.

g r a n d
m a

p a
start

grandma
grandpa
great-grandma
great-great-grandpa
great-great-great-great-grandpa
…

Breaking the Rules

g r a n d
m a

p a
start

e

at

-

This isn’t a tree,
but we can still
follow the same

rules!

This isn’t a tree,
but we can still
follow the same

rules!

grandma
grandpa
great-grandma
great-great-grandpa
great-great-great-great-grandpa
…

Breaking the Rules

 start * //

a *a

*

/

What sorts of
strings does
this weird

thingy contain?

What sorts of
strings does
this weird

thingy contain?

/*aaaa*/
/***aaaa***/
/*aaa*aaa*/
/*********/

…

Finite Automata

● A finite automaton is a generalization
of a trie.

● It’s not necessarily a tree; there can be
circular paths, places where branches
come together, etc.

● Finite automata power many compilers
and pattern-matching tools.

● Want to learn more? Take CS103!

Twist: Suffix Trees

Cancer cells often have multiple repeated copies the same gene.

Given a cancer genome (length ~3,000,000,000 letters)
and a gene, count the occurrences of that gene.

A Fundamental Theorem

● The fundamental theorem of stringology
says that, given two strings w and x, that

w is a substring of x
if and only if

w is a prefix of a suffix of x

f l i b b e r t i i b b eg t

b e

A Fundamental Theorem

● The fundamental theorem of stringology
says that, given two strings w and x, that

w is a substring of x
if and only if

w is a prefix of a suffix of x

f l i b

b e

b e r t i i b b eg t

A Fundamental Theorem

● The fundamental theorem of stringology
says that, given two strings w and x, that

w is a substring of x
if and only if

w is a prefix of a suffix of x

f l i b

b e

b e r t i i b b eg t

A Fundamental Theorem

● The fundamental theorem of stringology
says that, given two strings w and x, that

w is a substring of x
if and only if

w is a prefix of a suffix of x

f l i b b e r t i i b b eg t

b e

A Fundamental Theorem

● The fundamental theorem of stringology
says that, given two strings w and x, that

w is a substring of x
if and only if

w is a prefix of a suffix of x

f l i b b e r t i i bg

b e

b e t

A Fundamental Theorem

● The fundamental theorem of stringology
says that, given two strings w and x, that

w is a substring of x
if and only if

w is a prefix of a suffix of x

f l i b b e r t i i bg

b e

b e t

A Fundamental Theorem

● The fundamental theorem of stringology
says that, given two strings w and x, that

w is a substring of x
if and only if

w is a prefix of a suffix of x
● Recall: Tries make it really easy to check

if something is a prefix of any number of
strings.

● Idea: Store all the suffixes of a string in
a trie!

e n o s

o

n

 s

e

s

n

e

s

n

e

s

n

e

s

 e

e

 n

 e

 s

n

e

s

n

e

s

nonsense

Suffix Trees

● With a lot of creativity, it’s possible to
compress the trie shown earlier to have
only O(n) nodes.

● This is called a suffix tree and is a
workhorse of a data structure.

● Want to learn more? Take CS166!

Next Time

● The Magic of Hash Functions
● A beautiful mathematical idea with

incredible power.
● Hash Tables

● Surpassing BST performance!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139

