
  

String Data Structures
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  Why do we need string data structures?



  

String Data Structures
Before Computers



  
Can binary search for a word in time O(log n).

Can interpolation search in average time O(log log n).



  

Array accesses take time O(1).
 

Jump to the drawer, then do an O(d) lookup, where
d is the number of elements in the drawer.



  

Miriam-Webster’s physical “Backward Index:”
All English words, written in reverse, in sorted order.

Why would you want this?



  
Find all words ending in “iatrics.”

Time required: O(log n + k).



  

String Data Structures
With Computers
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The double 
circle means 

“this is a word.”

The double 
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Because we’ve 
remembered that “a” is 
a word, we’ll remove 
it from our list.
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a word, we’ll remove 
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This data structure is called a 
trie. It’s pronounced “try.” It 

comes from the word “retrieval.” 
This is a terrible pun and we’re 

stuck with it forever.

This data structure is called a 
trie. It’s pronounced “try.” It 

comes from the word “retrieval.” 
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Using a Trie





















































































































































  

Other Operations on Tries

● Find all strings in the trie that start with 
a given prefix.
● How might you implement this?

● Print all strings in sorted order.
● How might you implement this?

● Find the first string that’s alphabetically  
before or after another.
● How might you implement this?



  

A Useful Perspective



  

...an empty list,
represented by
nullptr, or...

a single linked list
cell that points...

... at another linked 
list.

A Linked List is Either...



  

A Binary Search Tree Is Either...
an empty tree, 
represented by 
nullptr, or...

x

<x >x

... a single node,
whose left subtree 

is a BST of 
smaller values ...

... and whose right 
subtree is a BST 
of larger values.



  

A Trie is Either...
an empty trie, 
represented by 
nullptr, or...



  

A Trie is Either...
an empty trie, 
represented by 
nullptr, or...

q    x   

…

   z

a single node, 
which might be 
marked as a 

word...

... with some 
number of child 
tries labeled by 

letters.
…   



  

struct Cell {
   Type value;
   Cell* next;
};

struct Node {
   Type value;
   Node* left;
   Node* right;
};

struct Name? {

   /* ? */

};

Singly-Linked List Binary Search Tree Trie

Assignment 6: Think 
through these design 

decisions!



  

Time-Out for Announcements!



  



  

Assignment 6

● Assignment 6 (MiniBrowser) goes out 
today. It’s due one week from Friday at 
the start of class.
● Play around with linked lists and tree data 

structures!
● Build integral pieces of a larger system!
● See why all this stuff matters.

● YEAH hours will be held today at 5:00PM 
in 380-380Y. Slides will be posted.



  

Back to CS106B!



  

Twists on Tries
(a sneak peek of beautiful CS concepts!)



  

Twist: Finite Automata
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General rule to look up a string:

  1. Start at some node.
 

  2. Follow links based on the
letters you read.

 

  3. The string is there if you
don’t get stuck and land at a
double circle.

General rule to look up a string:

  1. Start at some node.
 

  2. Follow links based on the
letters you read.

 

  3. The string is there if you
don’t get stuck and land at a
double circle.
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Breaking the Rules
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but we can still 
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This isn’t a tree, 
but we can still 
follow the same 

rules!

grandma
grandpa
great-grandma
great-great-grandpa
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…

Breaking the Rules



  

    start   * //

a      *a

*

/

What sorts of 
strings does 
this weird 

thingy contain?

What sorts of 
strings does 
this weird 

thingy contain?

/*aaaa*/
/***aaaa***/
/*aaa*aaa*/
/*********/

…



  

Finite Automata

● A finite automaton is a generalization 
of a trie.

● It’s not necessarily a tree; there can be 
circular paths, places where branches 
come together, etc.

● Finite automata power many compilers 
and pattern-matching tools.

● Want to learn more? Take CS103!



  

Twist: Suffix Trees



  

Cancer cells often have multiple repeated copies the same gene.

Given a cancer genome (length ~3,000,000,000 letters)
and a gene, count the occurrences of that gene.



  

A Fundamental Theorem

● The fundamental theorem of stringology 
says that, given two strings w and x, that

w is a substring of x
if and only if

w is a prefix of a suffix of x

f l i b b e r t i i b b eg t

b e
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says that, given two strings w and x, that

w is a substring of x
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A Fundamental Theorem

● The fundamental theorem of stringology 
says that, given two strings w and x, that

w is a substring of x
if and only if

w is a prefix of a suffix of x
● Recall: Tries make it really easy to check 

if something is a prefix of any number of 
strings.

● Idea: Store all the suffixes of a string in 
a trie!
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Suffix Trees

● With a lot of creativity, it’s possible to 
compress the trie shown earlier to have 
only O(n) nodes.

● This is called a suffix tree and is a 
workhorse of a data structure.

● Want to learn more? Take CS166!



  

Next Time

● The Magic of Hash Functions
● A beautiful mathematical idea with 

incredible power.
● Hash Tables

● Surpassing BST performance!
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