

Binary Search Trees
Part Two

Recap from Last Time

Binary Search Trees

● The data structure we have
just seen is called a binary
search tree (or BST).

● The tree consists of a
number of nodes, each of
which stores a value and
has zero, one, or two
children.

● All values in a node’s left
subtree are smaller than
the node’s value, and all
values in a node’s right
subtree are greater than
the node’s value.

-2

-1

1

2

3

6

3

4

7

9

0

6

4

865

A Binary Search Tree Is Either…
an empty tree,
represented by
nullptr, or…

x

<x >x

… a single node,
whose left subtree

is a BST of
smaller values …

… and whose right
subtree is a BST
of larger values.

New Stuff!

Getting Rid of Trees

http://www.tigersheds.com/garden-resources/image.axd?picture=2010%2F6%2Fdeforestation1.jpg

Freeing a Tree

● Once we're done with a tree, we need to free
all of its nodes.

● As with a linked list, we have to be careful not
to use any nodes after freeing them.

4

2

1 3

6

5 7

A Binary Search Tree Is Either…
an empty tree,
represented by
nullptr, or…

x

<x >x

… a single node,
whose left subtree

is a BST of
smaller values …

… and whose right
subtree is a BST
of larger values.

Postorder Traversals

● The particular recursive pattern we just
saw is called a postorder traversal of a
binary tree.

● Specifically:
● Recursively visit all the nodes in the left

subtree.
● Recursively visit all the nodes in the right

subtree.
● Visit the node itself.

Tree Efficiency

How fast are BST lookups?

How fast are BST insertions?

Insertion Order Matters

● You can have multiple BSTs holding the same
elements

● Here’s the BST we get by inserting these
elements in this order:

4, 2, 1, 3, 6, 5, 7

4

2

1 3

6

5 7

Insertion Order Matters

● You can have multiple BSTs holding the same
elements

● Here’s the BST we get by inserting these
elements in this order:

1, 2, 3, 4, 5, 6, 7
1

2
3

4
5

6
7

Tree Terminology

● The height of a tree is the number of nodes
in the longest path from the root to a leaf.

By convention, an empty tree has height -1.

4

2

1 3

6

5 7 Height
two

Height
two

Tree Terminology

1
2

3
4

5
6

7

● The height of a tree is the number of nodes
in the longest path from the root to a leaf.

By convention, an empty tree has height -1.

Height
six

Height
six

Tree Terminology

1

● The height of a tree is the number of nodes
in the longest path from the root to a leaf.

By convention, an empty tree has height -1.

Height
zero

Height
zero

Tree Terminology

● The height of a tree is the number of nodes
in the longest path from the root to a leaf.

● By convention, an empty tree has height -1.

Height
-1

Height
-1

Efficiency Questions

● The time to add
an element to a
BST (or look up
an element in a
BST) depends
on the height
of the tree.

● The runtime is
O(h), where h
is the height of
the tree.

4

2

1 3

6

5 7

1
2

3
4

5
6

7

8

8

The cost of an operation on a BST is O(h),
where h is the height of the tree.

Is there a connection between h, the tree
height, and n, the number of nodes?

Balanced Trees

Tree Heights

● What are the maximum and minimum heights
of a tree with n nodes?

● Maximum height: all nodes in a chain. Height
is O(n).

1
2

3
4

5
6

7

Tree Heights

● What are the maximum and minimum heights
of a tree with n nodes?

● Maximum height: all nodes in a chain. Height
is O(n).

● Minimum height: Tree is as complete as
possible. Height is O(log n).

4

2

1 3

6

5 7

You can only double
something O(log n)
times before it
exceeds n.

You can only double
something O(log n)
times before it
exceeds n.

Balanced Trees

● A binary search tree is called balanced
if its height is O(log n), where n is the
number of nodes in the tree.

● Balanced trees are extremely efficient:
● Lookups take time O(log n).
● Insertions take time O(log n).
● Deletions take time O(log n).

● Question: How do you balance a tree?

Balanced Trees

● Theorem: If you
start with an empty
tree and add in
random values, then,
with high probability,
the tree is balanced.

● Proof: Take CS161!
● Takeaway: If you’re

adding elements to a
BST and their values
are actually random,
then your tree is
likely to be balanced.

10

135

16111 7

1492

19

20

8

Balanced Trees

● A self-balancing tree is a BST that reshapes itself
on insertions and deletions to stay balanced.

● There are many strategies for doing this. They’re
beautiful. They’re clever. And they’re beyond the
scope of CS106B.

● Some suggested topics to read up on, if you’re
curious:
● Red/black trees (take CS161 or CS166!)
● AVL trees (covered in the textbook)
● Splay trees (trees that reshape on lookups)
● Scapegoat trees (yes, that’s what they’re called)
● Treaps (half binary heap, half binary search tree!)

Balanced Trees

● If you’re given a collection of values to
put in a BST, and they’re already sorted,
you can construct a perfectly-balanced
tree from them.

● Things to think about:
● Which element would you put up at the root?
● What would the children of that element be?

● These are great questions to think
through.

Time-Out for Announcements!

Midterm Graded

● We’ve finished grading the midterm exam. Exam
scores were sent out over email last night.
● Didn’t hear from us? Let us know!

● Be sure to read the solutions handout. It contains
several solutions for each problem, information
about why we asked each question, common
mistakes, and strategies for improving.

● There is still plenty of time to improve with these
concepts. Talk to your section leader or to Kate or
me if you have any questions. We’re here to help
out!

Some Resources

● Code Step by Step has a bunch of
practice problems to work through on a
variety of topics:

https://codestepbystep.com/
● It’s maintained by Marty Stepp, who is a

fantastic CS106B instructor.

https://codestepbystep.com/

Assignment 5

● Assignment 5 is due this Wednesday at
the start of class.

● You know the drill – stop by the LaIR or
CLaIR with questions, or email your
section leader!

Back to CS106B!

Range Searches

106

103

51

5241

110

108

107 109

166

154

143 161

Find all elements in this tree in the range [103, 154].

106

103 110

108

107 109 154

143

106

103

51

5241

110

108

107 109

166

154

143 161

Find all elements in this tree in the range [99, 105].

103

106

103

51

5241

110

108

107 109

166

154

143 161

Find all elements in this tree in the range [150, 170].

166

154

161

106

103

51

5241

110

108

107 109

166

154

143 161

Find all elements in this tree in the range [137, 138].

Range Searches

● We can use BSTs to do range searches,
in which we find all values in the BST
within some range.

● For example:
● If the values in the BST are dates, we can

find all events that occurred within some
time window.

● If the values in the BST are number of
diagnostic scans ordered, we can find all
doctors who order a disproportionate
number of scans.

106

103

51

5241

110

108

107 109

166

154

143 161

Find all elements in this tree in the range [109, 163].

106

103

51

5241

110

108

107 109

166

154

143 161

Find all elements in this tree in the range [109, 163].

Not visited

Visited, not in range

Visited, in range.

106

103

51

5241

110

108

107 109

166

154

143 161

Find all elements in this tree in the range [109, 163].

Not visited

Visited, not in range

Visited, in range.

106

103

51

5241

110

108

107 109

166

154

143 161

Find all elements in this tree in the range [109, 163].

Not visited

Visited, not in range

Visited, in range.

106

103

51

5241

110

108

107 109

166

154

143 161

Find all elements in this tree in the range [109, 163].

Not visited

Visited, not in range

Visited, in range.

106

103

51

5241

110

108

107 109

166

154

143 161

Find all elements in this tree in the range [109, 163].

Not visited

Visited, not in range

Visited, in range.

106

103

51

5241

110

108

107 109

166

154

143 161

Find all elements in this tree in the range [109, 163].

Not visited

Visited, not in range

Visited, in range.

106

103

51

5241

110

108

107 109

166

154

143 161

Find all elements in this tree in the range [109, 163].

Not visited

Visited, not in range

Visited, in range.

106

103

51

5241

110

108

107 109

166

154

143 161

Find all elements in this tree in the range [109, 163].

Not visited

Visited, not in range

Visited, in range.

106

103

51

5241

110

108

107 109

166

154

143 161

Find all elements in this tree in the range [109, 163].

Not visited

Visited, not in range

Visited, in range.

106

103

51

5241

110

108

107 109

166

154

143 161

Find all elements in this tree in the range [109, 163].

Not visited

Visited, not in range

Visited, in range.

106

103

51

5241

110

108

107 109

166

154

143 161

Find all elements in this tree in the range [109, 163].

Not visited

Visited, not in range

Visited, in range.

106

103

51

5241

110

108

107 109

166

154

143 161

Find all elements in this tree in the range [109, 163].

Not visited

Visited, not in range

Visited, in range.

106

103

51

5241

110

108

107 109

166

154

143 161

Find all elements in this tree in the range [109, 163].

Not visited

Visited, not in range

Visited, in range.

106

103

51

5241

110

108

107 109

166

154

143 161

Find all elements in this tree in the range [109, 163].

Not visited

Visited, not in range

Visited, in range.

106

103

51

5241

110

108

107 109

166

154

143 161

Find all elements in this tree in the range [109, 163].

Not visited

Visited, not in range

Visited, in range.

106

103

51

5241

110

108

107 109

166

154

143 161

Find all elements in this tree in the range [124, 155].

Not visited

Visited, not in range

Visited, in range.

106

103

51

5241

110

108

107 109

166

154

143 161

Find all elements in this tree in the range [124, 155].

Not visited

Visited, not in range

Visited, in range.

106

103

51

5241

110

108

107 109

166

154

143 161

Find all elements in this tree in the range [124, 155].

Not visited

Visited, not in range

Visited, in range.

106

103

51

5241

110

108

107 109

166

154

143 161

Find all elements in this tree in the range [124, 155].

Not visited

Visited, not in range

Visited, in range.

106

103

51

5241

110

108

107 109

166

154

143 161

Find all elements in this tree in the range [124, 155].

Not visited

Visited, not in range

Visited, in range.

106

103

51

5241

110

108

107 109

166

154

143 161

Find all elements in this tree in the range [124, 155].

Not visited

Visited, not in range

Visited, in range.

106

103

51

5241

110

108

107 109

166

154

143 161

Find all elements in this tree in the range [124, 155].

Not visited

Visited, not in range

Visited, in range.

106

103

51

5241

110

108

107 109

166

154

143 161

Find all elements in this tree in the range [124, 155].

Not visited

Visited, not in range

Visited, in range.

106

103

51

5241

110

108

107 109

166

154

143 161

Find all elements in this tree in the range [124, 155].

Not visited

Visited, not in range

Visited, in range.

106

103

51

5241

110

108

107 109

166

154

143 161

Find all elements in this tree in the range [124, 155].

Not visited

Visited, not in range

Visited, in range.

106

103

51

5241

110

108

107 109

166

154

143 161

Find all elements in this tree in the range [124, 155].

Not visited

Visited, not in range

Visited, in range.

106

103

51

5241

110

108

107 109

166

154

143 161

Find all elements in this tree in the range [124, 155].

Not visited

Visited, not in range

Visited, in range.

106

103

51

5241

110

108

107 109

166

154

143 161

Find all elements in this tree in the range [124, 155].

Not visited

Visited, not in range

Visited, in range.

106

103

51

5241

110

108

107 109

166

154

143 161

Find all elements in this tree in the range [42, 165].

Not visited

Visited, not in range

Visited, in range.

106

103

51

5241

110

108

107 109

166

154

143 161

Find all elements in this tree in the range [42, 165].

Not visited

Visited, not in range

Visited, in range.

106

103

51

5241

110

108

107 109

166

154

143 161

Find all elements in this tree in the range [42, 165].

Not visited

Visited, not in range

Visited, in range.

106

103

51

5241

110

108

107 109

166

154

143 161

Find all elements in this tree in the range [42, 165].

Not visited

Visited, not in range

Visited, in range.

106

103

51

5241

110

108

107 109

166

154

143 161

Find all elements in this tree in the range [42, 165].

Not visited

Visited, not in range

Visited, in range.

106

103

51

5241

110

108

107 109

166

154

143 161

Find all elements in this tree in the range [42, 165].

Not visited

Visited, not in range

Visited, in range.

106

103

51

5241

110

108

107 109

166

154

143 161

Find all elements in this tree in the range [42, 165].

Not visited

Visited, not in range

Visited, in range.

106

103

51

5241

110

108

107 109

166

154

143 161

Find all elements in this tree in the range [42, 165].

Not visited

Visited, not in range

Visited, in range.

106

103

51

5241

110

108

107 109

166

154

143 161

Find all elements in this tree in the range [42, 165].

Not visited

Visited, not in range

Visited, in range.

106

103

51

5241

110

108

107 109

166

154

143 161

Find all elements in this tree in the range [42, 165].

Not visited

Visited, not in range

Visited, in range.

106

103

51

5241

110

108

107 109

166

154

143 161

Find all elements in this tree in the range [42, 165].

Not visited

Visited, not in range

Visited, in range.

106

103

51

5241

110

108

107 109

166

154

143 161

Find all elements in this tree in the range [42, 165].

Not visited

Visited, not in range

Visited, in range.

106

103

51

5241

110

108

107 109

166

154

143 161

Find all elements in this tree in the range [42, 165].

Not visited

Visited, not in range

Visited, in range.

106

103

51

5241

110

108

107 109

166

154

143 161

Find all elements in this tree in the range [42, 165].

Not visited

Visited, not in range

Visited, in range.

106

103

51

5241

110

108

107 109

166

154

143 161

Find all elements in this tree in the range [42, 165].

Not visited

Visited, not in range

Visited, in range.

106

103

51

5241

110

108

107 109

166

154

143 161

Find all elements in this tree in the range [42, 165].

Not visited

Visited, not in range

Visited, in range.

106

103

51

5241

110

108

107 109

166

154

143 161

Find all elements in this tree in the range [42, 165].

Not visited

Visited, not in range

Visited, in range.

106

103

51

5241

110

108

107 109

166

154

143 161

Find all elements in this tree in the range [42, 165].

Not visited

Visited, not in range

Visited, in range.

106

103

51

5241

110

108

107 109

166

154

143 161

Find all elements in this tree in the range [42, 165].

Not visited

Visited, not in range

Visited, in range.

106

103

51

5241

110

108

107 109

166

154

143 161

Find all elements in this tree in the range [42, 165].

Not visited

Visited, not in range

Visited, in range.

106

103

51

5241

110

108

107 109

166

154

143 161

Find all elements in this tree in the range [42, 165].

Not visited

Visited, not in range

Visited, in range.

106

103

51

5241

110

108

107 109

166

154

143 161

Find all elements in this tree in the range [42, 165].

Not visited

Visited, not in range

Visited, in range.

106

103

51

5241

110

108

107 109

166

154

143 161

Find all elements in this tree in the range [42, 165].

Not visited

Visited, not in range

Visited, in range.

106

103

51

5241

110

108

107 109

166

154

143 161

Find all elements in this tree in the range [49, 50].

Not visited

Visited, not in range

Visited, in range.

106

103

51

5241

110

108

107 109

166

154

143 161

Find all elements in this tree in the range [49, 50].

Not visited

Visited, not in range

Visited, in range.

106

103

51

5241

110

108

107 109

166

154

143 161

Find all elements in this tree in the range [49, 50].

Not visited

Visited, not in range

Visited, in range.

106

103

51

5241

110

108

107 109

166

154

143 161

Find all elements in this tree in the range [49, 50].

Not visited

Visited, not in range

Visited, in range.

106

103

51

5241

110

108

107 109

166

154

143 161

Find all elements in this tree in the range [49, 50].

Not visited

Visited, not in range

Visited, in range.

106

103

51

5241

110

108

107 109

166

154

143 161

Find all elements in this tree in the range [49, 50].

Not visited

Visited, not in range

Visited, in range.

106

103

51

5241

110

108

107 109

166

154

143 161

Find all elements in this tree in the range [49, 50].

Not visited

Visited, not in range

Visited, in range.

106

103

51

5241

110

108

107 109

166

154

143 161

Find all elements in this tree in the range [49, 50].

Not visited

Visited, not in range

Visited, in range.

106

103

51

5241

110

108

107 109

166

154

143 161

Find all elements in this tree in the range [49, 50].

Not visited

Visited, not in range

Visited, in range.

106

103

51

5241

110

108

107 109

166

154

143 161

Find all elements in this tree in the range [49, 50].

Not visited

Visited, not in range

Visited, in range.

Range Searches

● A hybrid between an inorder traversal and a
regular BST lookup!

● The idea:
● If the node is in the range being searched, add

it to the result.
● Recursively explore each subtree that could

potentially overlap with the range.
● Question to Ponder: Given how an inorder

traversal works, how would you code this
up if you wanted the values back in sorted
order?

How efficient is a range search?

106

103

51

5241

110

108

107 109

166

154

143 161

Find all elements in this tree in the range [109, 163].

Not visited

Visited, not in range

Visited, in range.

106

103

51

5241

110

108

107 109

166

154

143 161

Find all elements in this tree in the range [124, 155].

Not visited

Visited, not in range

Visited, in range.

106

103

51

5241

110

108

107 109

166

154

143 161

Find all elements in this tree in the range [42, 165].

Not visited

Visited, not in range

Visited, in range.

106

103

51

5241

110

108

107 109

166

154

143 161

Find all elements in this tree in the range [49, 50].

Not visited

Visited, not in range

Visited, in range.

106

103

51

5241

110

108

107 109

166

154

143 161

The runtime of the search depends only
on how many gold nodes and how
many blue nodes there are.

The number gold nodes is equal to the
number of elements in the range.

The number of blue nodes in each
layer of the tree is at most two.

The runtime of the search depends only
on how many gold nodes and how
many blue nodes there are.

The number gold nodes is equal to the
number of elements in the range.

The number of blue nodes in each
layer of the tree is at most two.

Not visited

Visited, not in range

Visited, in range.

106

103

51

5241

110

108

107 109

166

154

143 161

The runtime of the search depends only
on how many gold nodes and how
many blue nodes there are.

The number gold nodes is equal to the
number of elements in the range.

The number of blue nodes in each
layer of the tree is at most two.

The runtime of the search depends only
on how many gold nodes and how
many blue nodes there are.

The number gold nodes is equal to the
number of elements in the range.

The number of blue nodes in each
layer of the tree is at most two.

Not visited

Visited, not in range

Visited, in range.

106

103

51

5241

110

108

107 109

166

154

143 161

The runtime of the search depends only
on how many gold nodes and how
many blue nodes there are.

The number gold nodes is equal to the
number of elements in the range.

The number of blue nodes in each
layer of the tree is at most two.

The runtime of the search depends only
on how many gold nodes and how
many blue nodes there are.

The number gold nodes is equal to the
number of elements in the range.

The number of blue nodes in each
layer of the tree is at most two.

Not visited

Visited, not in range

Visited, in range.

106

103

51

5241

110

108

107 109

166

154

143 161

The runtime of the search depends only
on how many gold nodes and how
many blue nodes there are.

The number gold nodes is equal to the
number of elements in the range.

The number of blue nodes in each
layer of the tree is at most two.

The runtime of the search depends only
on how many gold nodes and how
many blue nodes there are.

The number gold nodes is equal to the
number of elements in the range.

The number of blue nodes in each
layer of the tree is at most two.

Not visited

Visited, not in range

Visited, in range.

106

103

51

5241

110

108

107 109

166

154

143 161

The runtime of the search depends only
on how many gold nodes and how
many blue nodes there are.

The number gold nodes is equal to the
number of elements in the range.

The number of blue nodes in each
layer of the tree is at most two.

The runtime of the search depends only
on how many gold nodes and how
many blue nodes there are.

The number gold nodes is equal to the
number of elements in the range.

The number of blue nodes in each
layer of the tree is at most two.

Not visited

Visited, not in range

Visited, in range.

106

103

51

5241

110

108

107 109

166

154

143 161

The runtime of the search depends only
on how many gold nodes and how
many blue nodes there are.

The number gold nodes is equal to the
number of elements in the range.

The number of blue nodes in each
layer of the tree is at most two.

The runtime of the search depends only
on how many gold nodes and how
many blue nodes there are.

The number gold nodes is equal to the
number of elements in the range.

The number of blue nodes in each
layer of the tree is at most two.

Not visited

Visited, not in range

Visited, in range.

106

103

51

5241

110

108

107 109

166

154

143 161

The runtime of the search depends only
on how many gold nodes and how
many blue nodes there are.

The number gold nodes is equal to the
number of elements in the range.

The number of blue nodes in each
layer of the tree is at most two.

The runtime of the search depends only
on how many gold nodes and how
many blue nodes there are.

The number gold nodes is equal to the
number of elements in the range.

The number of blue nodes in each
layer of the tree is at most two.

Not visited

Visited, not in range

Visited, in range.

Range Searches

● The cost of a range search in a BST of height h is

O(h + k),

where k is the number of matches reported.
● Notice that

● if k is low (close to 0), then the runtime is
close to O(h), the cost of a single search; and

● if k is high (close to n), then the runtime is
close to O(n), the cost of an inorder traversal.

● This is called an output-sensitive algorithm.

Operator Overloading

Has this ever happened to you?

What’s Going On?

● Internally, the Map and Set types are
implemented using binary search trees.

● BSTs assume there’s a way to compare
elements against one another using the
relational operators.

● But you can’t compare two structs using
the less-than operator!

● “There’s got to be a better way!”

Defining Comparisons

● Most programming languages provide
some mechanism to let you define how to
compare two objects.

● C has comparison functions, Java has the
Comparator interface, Python has __cmp__,
etc.

● In C++, we can use a technique called
operator overloading to tell it how to
compare objects using the < operator.

bool operator< (const Doctor& lhs, const Doctor& rhs) {
 /* … */
}

Doctor zhivago = /* … */
Doctor acula = /* … */

if (zhivago < acula) {
 /* … */
}

bool operator< (const Doctor& lhs, const Doctor& rhs) {
 /* … */
}

Doctor zhivago = /* … */
Doctor acula = /* … */

if (zhivago < acula) {
 /* … */
}

bool operator< (const Doctor& lhs, const Doctor& rhs) {
 /* … */
}

Doctor zhivago = /* … */
Doctor acula = /* … */

if (zhivago < acula) {
 /* … */
}

This function is
named “operator<”
This function is
named “operator<”

Its arguments correspond to the
left-hand and right-hand operands

to the < operator.

Its arguments correspond to the
left-hand and right-hand operands

to the < operator.

bool operator< (const Doctor& lhs, const Doctor& rhs) {
 /* … */
}

Doctor zhivago = /* … */
Doctor acula = /* … */

if (zhivago < acula) {
 /* … */
}

C++ treats this as

operator< (zhivago, acula)

C++ treats this as

operator< (zhivago, acula)

Overloading Less-Than

● To store custom types in Maps or Sets in C++, overload the
less-than operator by defining a function like this one:

bool operator< (const Type& lhs, const Type& rhs);
● This function must obey four rules:

● It is consistent: writing x < y always returns the same result
given x and y.

● It is irreflexive: x < x is always false.
● It is transitive: If x < y and y < z, then x < z.
● It has transitivity of incomparability: If neither x < y nor y <

x are true, then x and y behave indistinguishably.
● (These rules mean that < is a strict weak order; take

CS103 for details!)

Overloading Less-Than

A standard technique for implementing the less-than operator
is to use a lexicographical comparison, which looks like
this:

bool operator< (const Type& lhs, const Type& rhs) {
 if (lhs.field1 != rhs.field1) {
 return lhs.field1 < rhs.field1;
 } else if (lhs.field2 != rhs.field2) {
 return lhs.field2 < rhs.field2;
 } else if (lhs.field3 != rhs.field3) {
 return lhs.field3 < rhs.field3;
 } … {
 …
 } else {
 return lhs.fieldN < rhs.fieldN;
 }
}

To Summarize:

A Binary Search Tree Is Either…
an empty tree,
represented by
nullptr, or…

x

<x >x

… a single node,
whose left subtree

is a BST of
smaller values …

… and whose right
subtree is a BST
of larger values.

struct Node {
 int value;
 Node* left; // Smaller values
 Node* right; // Bigger values
};

bool contains(Node* root, const string& key) {
 if (root == nullptr) return false;
 else if (key == root->value) return true;
 else if (key < root->value) return contains(root->left, key);
 else return contains(root->right, key);
}

void insert(Node*& root, const string& key) {
 if (root == nullptr) {
 root = new Node;
 node->value = key;
 node->left = node->right = nullptr;
 } else if (key < root->value) {
 insert(root left, key);→left, key);
 } else if (key > root->value) {
 insert(root->right, key);
 } else {
 // Already here!
 }
}

4

2

1 3

6

5 7

1
2

3
4

5
6

7

void printTree(Node* root) {
 if (root == nullptr) return;

 printTree(root->left);
 cout << root->value << endl;
 printTree(root->right);
}

void freeTree(Node* root) {
 if (root == nullptr) return;

 freeTree(root->left);
 freeTree(root->right);
 delete root;
}

bool operator< (const Type& lhs, const Type& rhs) {
 if (lhs.field1 != rhs.field1) {
 return lhs.field1 < rhs.field1;
 } else if (lhs.field2 != rhs.field2) {
 return lhs.field2 < rhs.field2;
 } else if (lhs.field3 != rhs.field3) {
 return lhs.field3 < rhs.field3;
 } … {
 …
 } else {
 return lhs.fieldN < rhs.fieldN;
 }
}

Next Time

● Tries
● How is the Lexicon implemented?

● More on Trees
● Where else are they used?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131

