
  

Binary Search Trees
Part Two



  

Recap from Last Time



  

Binary Search Trees

● The data structure we have 
just seen is called a binary 
search tree (or BST).

● The tree consists of a 
number of nodes, each of 
which stores a value and 
has zero, one, or two 
children.

● All values in a node’s left 
subtree are smaller than 
the node’s value, and all 
values in a node’s right 
subtree are greater than 
the node’s value.
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A Binary Search Tree Is Either…
an empty tree, 
represented by 
nullptr, or…

x

<x >x

… a single node,
whose left subtree 

is a BST of 
smaller values …

… and whose right 
subtree is a BST 
of larger values.



  

New Stuff!



  

Getting Rid of Trees

http://www.tigersheds.com/garden-resources/image.axd?picture=2010%2F6%2Fdeforestation1.jpg



  

Freeing a Tree

● Once we're done with a tree, we need to free 
all of its nodes.

● As with a linked list, we have to be careful not 
to use any nodes after freeing them.
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… and whose right 
subtree is a BST 
of larger values.



  

Postorder Traversals

● The particular recursive pattern we just 
saw is called a postorder traversal of a 
binary tree.

● Specifically:
● Recursively visit all the nodes in the left 

subtree.
● Recursively visit all the nodes in the right 

subtree.
● Visit the node itself.



  

Tree Efficiency



  

How fast are BST lookups?

How fast are BST insertions?



  

Insertion Order Matters

● You can have multiple BSTs holding the same 
elements

● Here’s the BST we get by inserting these 
elements in this order:

4, 2, 1, 3, 6, 5, 7
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Insertion Order Matters

● You can have multiple BSTs holding the same 
elements

● Here’s the BST we get by inserting these 
elements in this order:

1, 2, 3, 4, 5, 6, 7
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Tree Terminology

● The height of a tree is the number of nodes 
in the longest path from the root to a leaf.

By convention, an empty tree has height -1.
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Tree Terminology
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● The height of a tree is the number of nodes 
in the longest path from the root to a leaf.

By convention, an empty tree has height -1.
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Tree Terminology

1

● The height of a tree is the number of nodes 
in the longest path from the root to a leaf.

By convention, an empty tree has height -1.
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Tree Terminology

● The height of a tree is the number of nodes 
in the longest path from the root to a leaf.

● By convention, an empty tree has height -1.
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Efficiency Questions

● The time to add 
an element to a 
BST (or look up 
an element in a 
BST) depends 
on the height 
of the tree.

● The runtime is 
O(h), where h 
is the height of 
the tree.
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The cost of an operation on a BST is O(h), 
where h is the height of the tree.

Is there a connection between h, the tree 
height, and n, the number of nodes?



  

Balanced Trees



  

Tree Heights

● What are the maximum and minimum heights 
of a tree with n nodes?

● Maximum height: all nodes in a chain. Height 
is O(n).
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Tree Heights

● What are the maximum and minimum heights 
of a tree with n nodes?

● Maximum height: all nodes in a chain. Height 
is O(n).

● Minimum height: Tree is as complete as 
possible. Height is O(log n).
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exceeds n.

You can only double 
something O(log n) 
times before it 
exceeds n.



  

Balanced Trees

● A binary search tree is called balanced 
if its height is O(log n), where n is the 
number of nodes in the tree.

● Balanced trees are extremely efficient:
● Lookups take time O(log n).
● Insertions take time O(log n).
● Deletions take time O(log n).

● Question: How do you balance a tree?



  

Balanced Trees

● Theorem: If you 
start with an empty 
tree and add in 
random values, then, 
with high probability, 
the tree is balanced.

● Proof: Take CS161!
● Takeaway: If you’re 

adding elements to a 
BST and their values 
are actually random, 
then your tree is 
likely to be balanced.
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Balanced Trees

● A self-balancing tree is a BST that reshapes itself 
on insertions and deletions to stay balanced.

● There are many strategies for doing this. They’re 
beautiful. They’re clever. And they’re beyond the 
scope of CS106B.

● Some suggested topics to read up on, if you’re 
curious:
● Red/black trees (take CS161 or CS166!)
● AVL trees (covered in the textbook)
● Splay trees (trees that reshape on lookups)
● Scapegoat trees (yes, that’s what they’re called)
● Treaps (half binary heap, half binary search tree!)



  

Balanced Trees

● If you’re given a collection of values to 
put in a BST, and they’re already sorted, 
you can construct a perfectly-balanced 
tree from them.

● Things to think about:
● Which element would you put up at the root?
● What would the children of that element be?

● These are great questions to think 
through.



  

Time-Out for Announcements!



  

Midterm Graded

● We’ve finished grading the midterm exam. Exam 
scores were sent out over email last night.
● Didn’t hear from us? Let us know!

● Be sure to read the solutions handout. It contains 
several solutions for each problem, information 
about why we asked each question, common 
mistakes, and strategies for improving.

● There is still plenty of time to improve with these 
concepts. Talk to your section leader or to Kate or 
me if you have any questions. We’re here to help 
out!



  

Some Resources

● Code Step by Step has a bunch of 
practice problems to work through on a 
variety of topics:

https://codestepbystep.com/ 
● It’s maintained by Marty Stepp, who is a 

fantastic CS106B instructor.

https://codestepbystep.com/


  

Assignment 5

● Assignment 5 is due this Wednesday at 
the start of class.

● You know the drill – stop by the LaIR or 
CLaIR with questions, or email your 
section leader!



  

Back to CS106B!



  

Range Searches
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Range Searches

● We can use BSTs to do range searches, 
in which we find all values in the BST 
within some range.

● For example:
● If the values in the BST are dates, we can 

find all events that occurred within some 
time window.

● If the values in the BST are number of 
diagnostic scans ordered, we can find all 
doctors who order a disproportionate 
number of scans.
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Range Searches

● A hybrid between an inorder traversal and a 
regular BST lookup!

● The idea:
● If the node is in the range being searched, add 

it to the result.
● Recursively explore each subtree that could 

potentially overlap with the range.
● Question to Ponder: Given how an inorder 

traversal works, how would you code this 
up if you wanted the values back in sorted 
order?



  

How efficient is a range search?
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Range Searches

● The cost of a range search in a BST of height h is

O(h + k),

where k is the number of matches reported.
● Notice that

● if k is low (close to 0), then the runtime is 
close to O(h), the cost of a single search; and

● if k is high (close to n), then the runtime is 
close to O(n), the cost of an inorder traversal.

● This is called an output-sensitive algorithm.



  

Operator Overloading



  

Has this ever happened to you?



  

What’s Going On?

● Internally, the Map and Set types are 
implemented using binary search trees.

● BSTs assume there’s a way to compare 
elements against one another using the 
relational operators.

● But you can’t compare two structs using 
the less-than operator!

● “There’s got to be a better way!”



  

Defining Comparisons

● Most programming languages provide 
some mechanism to let you define how to 
compare two objects.

● C has comparison functions, Java has the 
Comparator interface, Python has __cmp__, 
etc.

● In C++, we can use a technique called 
operator overloading to tell it how to 
compare objects using the < operator.



  

bool operator< (const Doctor& lhs, const Doctor& rhs) {
    /*     …     */
}

Doctor zhivago = /*     …     */
Doctor acula   = /*     …     */

if (zhivago < acula) {
    /*     …     */
}



  

bool operator< (const Doctor& lhs, const Doctor& rhs) {
    /*     …     */
}

Doctor zhivago = /*     …     */
Doctor acula   = /*     …     */

if (zhivago < acula) {
    /*     …     */
}



  

bool operator< (const Doctor& lhs, const Doctor& rhs) {
    /*     …     */
}

Doctor zhivago = /*     …     */
Doctor acula   = /*     …     */

if (zhivago < acula) {
    /*     …     */
}

This function is 
named “operator<”
This function is 
named “operator<”

Its arguments correspond to the 
left-hand and right-hand operands 

to the < operator.

Its arguments correspond to the 
left-hand and right-hand operands 

to the < operator.



  

bool operator< (const Doctor& lhs, const Doctor& rhs) {
    /*     …     */
}

Doctor zhivago = /*     …     */
Doctor acula   = /*     …     */

if (zhivago < acula) {
    /*     …     */
}

C++ treats this as 

operator< (zhivago, acula)

C++ treats this as 

operator< (zhivago, acula)



  

Overloading Less-Than

● To store custom types in Maps or Sets in C++, overload the 
less-than operator by defining a function like this one:

bool operator< (const Type& lhs, const Type& rhs);
● This function must obey four rules:

● It is consistent: writing x < y always returns the same result 
given x and y.

● It is irreflexive: x < x is always false.
● It is transitive: If x < y and y < z, then x < z.
● It has transitivity of incomparability: If neither x < y nor y < 

x are true, then x and y behave indistinguishably.
● (These rules mean that < is a strict weak order; take 

CS103 for details!)



  

Overloading Less-Than

A standard technique for implementing the less-than operator 
is to use a lexicographical comparison, which looks like 
this:

bool operator< (const Type& lhs, const Type& rhs) {
    if (lhs.field1 != rhs.field1) {
        return lhs.field1 < rhs.field1;
    } else if (lhs.field2 != rhs.field2) {
        return lhs.field2 < rhs.field2;
    } else if (lhs.field3 != rhs.field3) {
        return lhs.field3 < rhs.field3;
    } … {
      …
    } else {
        return lhs.fieldN < rhs.fieldN;
    }
}



  

To Summarize:



  

A Binary Search Tree Is Either…
an empty tree, 
represented by 
nullptr, or…

x

<x >x

… a single node,
whose left subtree 

is a BST of 
smaller values …

… and whose right 
subtree is a BST 
of larger values.



  

struct Node {                     
    int value;                    
    Node* left;  // Smaller values
    Node* right; // Bigger values 
};                                



  

bool contains(Node* root, const string& key) {
    if (root == nullptr) return false;
    else if (key == root->value) return true;
    else if (key <  root->value) return contains(root->left,  key);
    else return contains(root->right, key);
}

void insert(Node*& root, const string& key) {
    if (root == nullptr) {
        root = new Node;
        node->value = key;
        node->left = node->right = nullptr;
    } else if (key < root->value) {
        insert(root left, key);→left, key);
    } else if (key > root->value) {
        insert(root->right, key);
    } else {
        // Already here!
    }
}
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void printTree(Node* root) {
    if (root == nullptr) return;

    printTree(root->left);
    cout << root->value << endl;
    printTree(root->right);
}

void freeTree(Node* root) {
    if (root == nullptr) return;

    freeTree(root->left);
    freeTree(root->right);
    delete root;
}



  

bool operator< (const Type& lhs, const Type& rhs) {
    if (lhs.field1 != rhs.field1) {
        return lhs.field1 < rhs.field1;
    } else if (lhs.field2 != rhs.field2) {
        return lhs.field2 < rhs.field2;
    } else if (lhs.field3 != rhs.field3) {
        return lhs.field3 < rhs.field3;
    } … {
      …
    } else {
        return lhs.fieldN < rhs.fieldN;
    }
}



  

Next Time

● Tries
● How is the Lexicon implemented?

● More on Trees
● Where else are they used?
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