Designing Abstractions



Apply to Section Lead!

Application Online
Due Thursday, February 14", 11:59PM



https://cs198.stanford.edu/cs198/Apply.aspx

Black in CS Presents...

Hack 101 is an event that aims to prepare students for Treehacks2019/hackathons!
All are welcome!

101 HON
Il

Wednesday, February 13th
6 - 7:20pm
GCGATES 415

AWHOLE DINNER WILL BE SERVED
RSVP HERE (HTTPR.//BIT.LY/RSVPHACKI101)
QUESTIONS/LOST? EMAIL MAMADOU@STANFORD.EDU




GTGTC Presents...

Want to inspire high school girls to code?

Apply to be a mentor for Girls Teaching Girls To Code’s annual
Code Camp on Saturday, April 6!

As a mentor, you will help teach 200+ high school girls
programming basics and then lead (in small groups) an
exploratory workshop that you design. In the past, our
students have overwhelmingly cited the mentors as their
favorite part of the day.

Fill out a short application HERE by Saturday, February 2th!

Feel free to check out our website at
http://girlsteachinggirlstocode.org/, or email
gtgtc.stanford@gmail.com with any questions.


http://bit.ly/cc19mentorapp
http://girlsteachinggirlstocode.org/
mailto:gtgtc.stanford@gmail.com

Alternate Exams

* As a reminder, our midterm is Tuesday,
February 19" from 7:00PM - 10:00PM.

« We’ll talk about that more next time.

* If you have OAE accommodations or
otherwise can’t make that exam, you
should have heard back from Kate with
information.

* If not, we don’t know that you need an
alternate exam, and you should contact
us ASAP.



Onward and Forward!



Designing Abstractions



ab-strac-tion
M

freedom from
representational
qualities in art

Source: Google







ab-strac-tion
M

the process of considering
something independently of
its associations, attributes, or

concrete accompaniments.

Source: Google




Vector Map

Set Queue



-

. ’ e E : e :
- S oo o L sl R R i e .

In Plato’s Cave, No. 4 by Robert Motherwell




Building a rich vocabulary of abstractions
makes it possible to model and solve a
wider class of problems.



Question One:

How do we create new abstractions to
model ideas not precisely captured by the
standard container types?



Question Two:

How do the abstractions we’ve been using
so far work, and how can we use that
knowledge to build richer abstractions?



Classes in C++



Classes

Interface
* Vector, Stack, Queue, (What it looks like)
Map, etc. are classes 1in
C++.

e Classes contain

* an interface specitying
what operations can be
performed on instances
of the class.




Where
we’'ve been

Classes

Interface

* VVector, Stack, Queue, (What it looks like)

Map, etc. are classes 1n
C++.

e Classes contain

* an interface specitying
what operations can be
performed on instances
of the class, and

 an implementation
specitying how those
operations are to be
performed.

|
|
>

Where we're Imp_le’m‘ehidiion
qoing (How it works)




Creating our own Classes



Random Bags

« Arandom bag is a data structure similar to a stack or
queue. It supports two operations:

* add, which puts an element into the random bag, and

e remove random, which returns and removes a random
element from the bag.

« Random bags have a number of applications:

« Simpler: Shuffling a deck of cards.

 More advanced: generating artwork, designing mazes,
and training self-driving cars to park and change
lanes. (Curious how? Come talk to me after class!)

» Let’s go create our own custom RandomBag type!



Classes in C++

* Defining a class in C++ (typically)
requires two steps:

* Create a header file (typically suffixed
with .h) describing what operations the class
can perform and what internal state it needs.

* Create an implementation file (typically
suffixed with .cpp) that contains the
implementation of the class.

 Clients of the class can then include the
header file to use the class.



What’s in a Header?




What’s in a Header?

#ifndef RandomBag_Included
#define RandomBag_Included

This boilerplate code is called
an include guard. 1t’s used to
make sure weird things don’t
happen if you include the same
header twice.

Curious how it works? Come
talk to me after class!

#endif




What’s in a Header?

#ifndef RandomBag_Included
#define RandomBag_Included

class RandomBag {

This is a class definition.
We’'re creating a new class
called RandomBag. Like a struct,
this defines the name of a new
type that we can use in our

programs.

s

#endif




What’s in a Header?

#ifndef RandomBag_Included
#define RandomBag_Included

class RandomBag {

Don’t forget to add this
semicolon! You'll get some

) / Hairy Scary Compiler Errors if
3

you leave it out.

#endif




What’s in a Header?

#ifndef RandomBag_Included
#define RandomBag_Included

class RandomBag {
public:

private:

s

#endif

Interface
(What it looks like)

I mplenijéh‘i'a‘i;ion
(How it works)




What’s in a Header?

#ifndef RandomBag_Included
#define RandomBag_Included

class RandomBag {

The public interface specifics
what functions you can call on
objects of this type.

Think things like the
Vector’s .add() function or the
TokenScanner’s .nextToken().

The private implementation
contains information that
objects of the class type will

public:
\
/
private: }
¥

#endif

need in order to do their job
properly. This is invisible to
people using the class.




What’s in a Header?

#ifndef RandomBag_Included
#define RandomBag_Included

class RandomBag {
public:
voild add(int value);
int removeRandom();

private:

s

#endif

These are member functions
of the RandomBag class. They're
functions you can call on
objects of the type RandomBag.

All member functions need to
be declared in the class
definition. We’ll implement
them in our .cpp file.




What’s in a Header?

#ifndef RandomBag_Included
#define RandomBag_Included

#include "vector.h"

class RandomBag {
public:
voild add(int value);
int removeRandom();

private:
Vector<int> elems;

s

#endif

This is a data member of the
class. This tells us how the class
is implemented. Internally, we're

going to store a Vector<int>
holding all the elements. The
only code that can access or
touch this Vector is the RandomBag

implementation.




What’s in a Header?

#ifndef RandomBag_Included
#define RandomBag_Included

#include "vector.h"

class RandomBag {
public:
voild add(int value);
int removeRandom();

private:
Vector<int> elems;

s

#endif







#include "RandomBag.h"

If we’'re going to implement
the RandomBag type, the .cpp
file needs to have the class
definition available. All
implementation files need to
include the relevant headers.

class RandomBag {
public:
vold add(int value);
int removeRandom();

private:
Vector<int> elems;

s




#include "RandomBag.h"

void RandomBag::add(int value) {

}

The syntax

means “the add function defined inside of
RandomBag.” The :: operator is called the scope
resolution operation in C++ and is used to say
where to look for things.

RandomBag: : add

class RandomBag {
public:
vold add(int value);
int removeRandom();

private:

Vector<int> elems;

s




#include "RandomBag.h"

void add(int value) {

} If we had written something like this instead,
then the compiler would think we were just
making a free function named add that has
nothing to do with RandomBag’s version of add.
That’s an easy mistake to make!

class RandomBag {
public:
vold add(int value);
int removeRandom();

private:

Vector<int> elems;

s




#include "RandomBag.h"

void RandomBag::add(int value) {
elems += value;
}

We don’t need to say what elems is. The compiler
knows we’re inside RandomBag, and so it knows
that this means “the current RandomBag’s
collection of elements.”

class RandomBag {
public:
vold add(int value);
int removeRandom();

private:

Vector<int> elems;

s




#include "RandomBag.h"
#include "random.h"

void RandomBag::add(int value) {
elems += value;
}

int RandomBag: :removeRandom() {
if (elems.isEmpty()) {
error("Aaaaahhh!");
}

int index = randomInteger(0, elems.size() - 1);
int result = elems[index];
elems.remove(index);

_ class RandomBag {
} return result; public:
void add(int value);
int removeRandom();

private:

Vector<int> elems;

s




#include "RandomBag.h"
#include "random.h"

void RandomBag::add(int value) {
elems += value;
}

int RandomBag: :removeRandom() {
if (elems.isEmpty()) {
error("Aaaaahhh!");
}

int index = randomInteger(0, elems.size() - 1);
int result = elems[index];
elems.remove(index);

_ class RandomBag {
} return result; public:
void add(int value);
int removeRandom();

int size();
bool isEmpty();

private:

Vector<int> elems;

s




#include "RandomBag.h"
#include "random.h"

void RandomBag::add(int value) {
elems += value;
}

int RandomBag: :removeRandom() {
if (elems.isEmpty()) {
error("Aaaaahhh!");
}

int index = randomInteger(0, elems.size() - 1);
int result = elems[index];
elems.remove(index);

_ class RandomBag {
} return result; public:
void add(int value);

int RandomBag::size() { int removeRandom();

return elems.size(); int size();
} 3

bool isEmpty();

private:

Vector<int> elems;

s




#include "RandomBag.h"
#include "random.h"

void RandomBag::add(int value) {

elems += value;

}

int RandomBag: :removeRandom() {

if (elems.isEmpty()) {
error("Aaaaahhh!");
}

int index = randomInteger(0, elems.size() - 1);
int result = elems[index];

elems.remove(index);

return result;

}

int RandomBag::size() {
return elems.size();

}

bool RandomBag::isEmpty() {
return size() == 0;

}

This code calls our own
size() function. The
class implementation
can use the public
interface.

private:

s

mBag {

(int value);
oveRandom();

int size();
bool isEmpty();

Vector<int> elems;




#include "RandomBag.h"
#include "random.h"

void RandomBag::add(int value) {

elems += value;

}

int RandomBag: :removeRandom() {

if (isEmpty()) {
error("Aaaaahhh!");

}
int index = randomInteger(0,
int result = elems[index];

elems.remove(index);

return result;

}

int RandomBag::size() {
return elems.size();

}

bool RandomBag::isEmpty() {
return size() == 0;

}

That’s such a
good idea, let’s
do this up here

as well.

size() - 1);

class RandomBag {

public:
void add(int value);
int removeRandom();
int size();

bool isEmpty();

private:
Vector<int> elems;

s




#include "RandomBag.h"
#include "random.h"

void RandomBag::add(int value) {
elems += value;
}

int RandomBag: :removeRandom() {

if (isEmpty()) {
error("Aaaaahhh!");
}

This use of the const

int index = randomInteger(0, size() - 1); keyword means “I

int result = elems[index];
elems.remove(index);

return result;

}

int RandomBag::size() {
return elems.size();

}

bool RandomBag::isEmpty() {
return size() == 0;

}

promise that this
function doesn’t

class Randod change the object.”

public:
void add(int value);
int removeRandom();

int size() const;
bool isEmpty() const;

private:
Vector<int> elems;
s




#include "RandomBag.h"
#include "random.h"

void RandomBag::add(int value) {
elems += value;
}

int RandomBag: :removeRandom() {

if (isEmpty()) {
error("Aaaaahhh!");

}
int index = randomInteger(0, size() - 1);
int resu : 1
elems.re We have to
remember to put it
return rd here too as well! class RandomBag {

public:
void add(int value);
int removeRandom();

}

int RandomBag::size() const {

} return elems.size(); int size() const;

bool isEmpty() const;

bool RandomBag::isEmpty() const {
return size() == 0;

private:
Vector<int> elems;

} s




#include "RandomBag.h"
#include "random.h"

void RandomBag::add(int value) {
elems += value;
}

int RandomBag: :removeRandom() {

if (isEmpty()) {
error("Aaaaahhh!");
}

int index = randomInteger(0, size() - 1);
int result = elems[index];
elems.remove(index);

_ class RandomBag {
} return result; public:
void add(int value);

int RandomBag::size() const { int removeRandom();

} return elems.size(); int size() const;

bool isEmpty() const;

bool RandomBag::isEmpty() const {
return size() == 0;

private:
Vector<int> elems;

} s




Your Action Items

* Read Chapter 6 of the textbook.

 There’s a ton of goodies in there about class
design that we’ll talk about later on.

 Keep working on Assignment 4.

 If you’'re following our suggested timetable,
you should be done with Doctors Without
Orders by the end of the evening.

« Start working on Disaster Planning over the
weekend.



Next Time

 Dynamic Allocation

« Where does memory come from?
* Constructors and Destructors

« Taking things out and putting them away.
« Implementing the Stack

* Peering into our tools!



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45

