

Algorithmic Analysis and Sorting
Part Two

Recap from Last Time

Big-O Notation

● Big-O notation is a quantitative way to
describe the runtime of a piece of code.

● For example, the runtime of this code snippet
is O(n), where n is the size of the vector:

for (int i = 0; i < vec.size(); i++) {
 cout << vec[i] << endl;

}

Big-O Notation

● Big-O notation is a quantitative way to
describe the runtime of a piece of code.

● For example, the runtime of this code snippet
is O(n2), where n is the size of the vector:

for (int i = 0; i < vec.size(); i++) {
 for (int j = 0; j < vec.size(); j++) {
 cout << (vec[i] + vec[j]) << endl;
 }
}

Sorting Algorithms

● The sorting problem is to take in a list
of things (integers, strings, etc.) and
rearrange them into sorted order.

● Last time, we saw insertion sort, an
algorithm that runs in time O(n2).

An Initial Idea: Insertion Sort

7 2 1 64

Rule: Swap each element
to the left until it doesn’t

have a bigger element
before it.

Rule: Swap each element
to the left until it doesn’t

have a bigger element
before it.

An Initial Idea: Insertion Sort

7 2 1 64

Rule: Swap each element
to the left until it doesn’t

have a bigger element
before it.

Rule: Swap each element
to the left until it doesn’t

have a bigger element
before it.

An Initial Idea: Insertion Sort

7 2 1 64

Rule: Swap each element
to the left until it doesn’t

have a bigger element
before it.

Rule: Swap each element
to the left until it doesn’t

have a bigger element
before it.

An Initial Idea: Insertion Sort

7 2 1 64

Rule: Swap each element
to the left until it doesn’t

have a bigger element
before it.

Rule: Swap each element
to the left until it doesn’t

have a bigger element
before it.

An Initial Idea: Insertion Sort

7 2 1 64

Rule: Swap each element
to the left until it doesn’t

have a bigger element
before it.

Rule: Swap each element
to the left until it doesn’t

have a bigger element
before it.

An Initial Idea: Insertion Sort

2 1 64 7

Rule: Swap each element
to the left until it doesn’t

have a bigger element
before it.

Rule: Swap each element
to the left until it doesn’t

have a bigger element
before it.

An Initial Idea: Insertion Sort

2 1 64 7

Rule: Swap each element
to the left until it doesn’t

have a bigger element
before it.

Rule: Swap each element
to the left until it doesn’t

have a bigger element
before it.

An Initial Idea: Insertion Sort

2 1 64 7

Rule: Swap each element
to the left until it doesn’t

have a bigger element
before it.

Rule: Swap each element
to the left until it doesn’t

have a bigger element
before it.

An Initial Idea: Insertion Sort

2 1 64 7

Rule: Swap each element
to the left until it doesn’t

have a bigger element
before it.

Rule: Swap each element
to the left until it doesn’t

have a bigger element
before it.

An Initial Idea: Insertion Sort

2 1 64 7

Rule: Swap each element
to the left until it doesn’t

have a bigger element
before it.

Rule: Swap each element
to the left until it doesn’t

have a bigger element
before it.

An Initial Idea: Insertion Sort

2 1 64 7

Rule: Swap each element
to the left until it doesn’t

have a bigger element
before it.

Rule: Swap each element
to the left until it doesn’t

have a bigger element
before it.

An Initial Idea: Insertion Sort

2 1 674

Rule: Swap each element
to the left until it doesn’t

have a bigger element
before it.

Rule: Swap each element
to the left until it doesn’t

have a bigger element
before it.

An Initial Idea: Insertion Sort

2 1 674

Rule: Swap each element
to the left until it doesn’t

have a bigger element
before it.

Rule: Swap each element
to the left until it doesn’t

have a bigger element
before it.

An Initial Idea: Insertion Sort

2 1 674

Rule: Swap each element
to the left until it doesn’t

have a bigger element
before it.

Rule: Swap each element
to the left until it doesn’t

have a bigger element
before it.

An Initial Idea: Insertion Sort

2 1 674

Rule: Swap each element
to the left until it doesn’t

have a bigger element
before it.

Rule: Swap each element
to the left until it doesn’t

have a bigger element
before it.

An Initial Idea: Insertion Sort

2 1 64 7

Rule: Swap each element
to the left until it doesn’t

have a bigger element
before it.

Rule: Swap each element
to the left until it doesn’t

have a bigger element
before it.

An Initial Idea: Insertion Sort

2 1 64 7

Rule: Swap each element
to the left until it doesn’t

have a bigger element
before it.

Rule: Swap each element
to the left until it doesn’t

have a bigger element
before it.

An Initial Idea: Insertion Sort

2 1 674

Rule: Swap each element
to the left until it doesn’t

have a bigger element
before it.

Rule: Swap each element
to the left until it doesn’t

have a bigger element
before it.

An Initial Idea: Insertion Sort

2 1 674

Rule: Swap each element
to the left until it doesn’t

have a bigger element
before it.

Rule: Swap each element
to the left until it doesn’t

have a bigger element
before it.

An Initial Idea: Insertion Sort

2 6741

Rule: Swap each element
to the left until it doesn’t

have a bigger element
before it.

Rule: Swap each element
to the left until it doesn’t

have a bigger element
before it.

An Initial Idea: Insertion Sort

2 6741

Rule: Swap each element
to the left until it doesn’t

have a bigger element
before it.

Rule: Swap each element
to the left until it doesn’t

have a bigger element
before it.

An Initial Idea: Insertion Sort

2 6741

Rule: Swap each element
to the left until it doesn’t

have a bigger element
before it.

Rule: Swap each element
to the left until it doesn’t

have a bigger element
before it.

An Initial Idea: Insertion Sort

2 6741

Rule: Swap each element
to the left until it doesn’t

have a bigger element
before it.

Rule: Swap each element
to the left until it doesn’t

have a bigger element
before it.

An Initial Idea: Insertion Sort

2 641 7

Rule: Swap each element
to the left until it doesn’t

have a bigger element
before it.

Rule: Swap each element
to the left until it doesn’t

have a bigger element
before it.

An Initial Idea: Insertion Sort

2 641 7

Rule: Swap each element
to the left until it doesn’t

have a bigger element
before it.

Rule: Swap each element
to the left until it doesn’t

have a bigger element
before it.

New Stuff!

n

n

2n

2n

n / 2

n / 2

n

n

Thinking About O(n2)

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12 4

T(n)

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12 4

T(½n) T(½n)

Thinking About O(n2)

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12 4

T(n)

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12 4

¼T(n) ¼T(n)

Thinking About O(n2)

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12 4

T(n)

2 3 6 7 9 14 15 16 1 4 5 8 10 11 12 13

¼T(n) ¼T(n)

2 · ¼T(n) = ½T(n)

The Key Insight: Merge

The Key Insight: Merge

108742 96531

The Key Insight: Merge

108742 96531

The Key Insight: Merge

108742 96531

The Key Insight: Merge

108742 9653

1

The Key Insight: Merge

108742 9653

1

The Key Insight: Merge

10874 9653

1 2

The Key Insight: Merge

10874 9653

1 2

The Key Insight: Merge

10874 965

1 2 3

The Key Insight: Merge

10874 965

1 2 3

The Key Insight: Merge

1087 965

1 2 3 4

The Key Insight: Merge

1087 965

1 2 3 4

The Key Insight: Merge

1087 96

1 2 3 4 5

The Key Insight: Merge

1087 96

1 2 3 4 5

The Key Insight: Merge

1087 9

1 2 3 4 5 6

The Key Insight: Merge

1087 9

1 2 3 4 5 6

The Key Insight: Merge

108 9

1 2 3 4 5 6 7

The Key Insight: Merge

108 9

1 2 3 4 5 6 7

The Key Insight: Merge

10 9

1 2 3 4 5 6 7 8

The Key Insight: Merge

10 9

1 2 3 4 5 6 7 8

The Key Insight: Merge

10

1 2 3 4 5 6 7 8 9

The Key Insight: Merge

1 2 3 4 5 6 7 8 9 10

The Key Insight: Merge

1 2 3 4 5 6 7 8 9 10

Each step makes a
single comparison and
reduces the number of

elements by one.

If there are n total
elements, this algorithm

runs in time O(n).

Each step makes a
single comparison and
reduces the number of

elements by one.

If there are n total
elements, this algorithm

runs in time O(n).

“Split Sort”

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12 4

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12 4

1. Split the input in half.

2. Insertion sort each half.

3. Merge the halves back together.

1. Split the input in half.

2. Insertion sort each half.

3. Merge the halves back together.

“Split Sort”

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12 4

2 3 6 7 9 14 15 16 1 4 5 8 10 11 12 13

1. Split the input in half.

2. Insertion sort each half.

3. Merge the halves back together.

1. Split the input in half.

2. Insertion sort each half.

3. Merge the halves back together.

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12 4

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12 4

“Split Sort”

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

2 3 6 7 9 14 15 16 1 4 5 8 10 11 12 13

1. Split the input in half.

2. Insertion sort each half.

3. Merge the halves back together.

1. Split the input in half.

2. Insertion sort each half.

3. Merge the halves back together.

“Split Sort”
void splitSort(Vector<int>& v) {
 /* Split the vector in half */
 Vector<int> left, right;
 for (int i = 0; i < v.size() / 2; i++) {
 left += v[i];
 }
 for (int j = v.size() / 2; j < v.size(); j++) {
 right += v[i];
 }

 /* Sort each half. */
 insertionSort(left);
 insertionSort(right);

 /* Merge them back together. */
 merge(left, right, v);
}

Prediction: This
should be twice as

fast as insertion sort.

Prediction: This
should be twice as

fast as insertion sort.

“Double Split Sort”

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12 4

T(n)

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12 4

T(¼n) T(¼n) T(¼n) T(¼n)

“Double Split Sort”

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12 4

T(n)

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12 4

¹/₁₆ T(n) ¹/₁₆ T(n) ¹/₁₆ T(n) ¹/₁₆ T(n)

4 · ¹/₁₆ T(n) = ¼T(n)

“Double Split Sort”

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12 4

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12 4

1. Split the input into quarters.

2. Insertion sort each quarter.

3. Merge two pairs of quarters into halves.

4. Merge the two halves back together.

1. Split the input into quarters.

2. Insertion sort each quarter.

3. Merge two pairs of quarters into halves.

4. Merge the two halves back together.

“Double Split Sort”

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12 4

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12 4

1. Split the input into quarters.

2. Insertion sort each quarter.

3. Merge two pairs of quarters into halves.

4. Merge the two halves back together.

1. Split the input into quarters.

2. Insertion sort each quarter.

3. Merge two pairs of quarters into halves.

4. Merge the two halves back together.

3 6 9 14 2 7 15 16 5 8 10 11 1 4 12 13

3 6 9 14 2 7 15 16 5 8 10 11 1 4 12 13

“Double Split Sort”

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12 4

1. Split the input into quarters.

2. Insertion sort each quarter.

3. Merge two pairs of quarters into halves.

4. Merge the two halves back together.

1. Split the input into quarters.

2. Insertion sort each quarter.

3. Merge two pairs of quarters into halves.

4. Merge the two halves back together.

2 3 6 7 9 14 15 16 1 4 5 8 10 11 12 13

3 6 9 14 2 7 15 16 5 8 10 11 1 4 12 13

“Double Split Sort”

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12 4

1. Split the input into quarters.

2. Insertion sort each quarter.

3. Merge two pairs of quarters into halves.

4. Merge the two halves back together.

1. Split the input into quarters.

2. Insertion sort each quarter.

3. Merge two pairs of quarters into halves.

4. Merge the two halves back together.

2 3 6 7 9 14 15 16 1 4 5 8 10 11 12 13

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Prediction: This
should be four
times as fast as
insertion sort.

Prediction: This
should be four
times as fast as
insertion sort.

Time-Out for Announcements!

Assignment 4

● Assignment 4 (Recursion to the Rescue) goes
out today. It’s a three-parter designed to give
you a sense of just how powerful recursion is.

● You are encouraged to work in pairs on this one.
● We recommend making slow, steady progress on

this assignment. There’s a suggested timeline on
the front of the handout.

● YEAH Hours are tonight at 7PM in 380-380Y.

More Assorted Sorts of Sorts!

Splitting to the Extreme

● Splitting our array in half, sorting each
half, and merging the halves was twice
as fast as insertion sort.

● Splitting our array in quarters, sorting
each quarter, and merging the quarters
was four times as fast as insertion sort.

● Question: What happens if we never
stop splitting?

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12 4

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12 4

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12 4

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12 4

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12 4

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12 4

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12 4

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12 4

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12 4

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12 414 6 3 9 7 16 2 15 5 10 8 11 1 13 12 4

6 14 3 9 7 16 2 15 5 10 8 11 1 13 4 12

3 6 9 14 2 7 15 16 5 8 10 11 1 4 12 13

2 3 6 7 9 14 15 16 1 4 5 8 10 11 12 13

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Mergsort

● Base Case:
● An empty or single-element list is already

sorted.
● Recursive step:

● Break the list in half and recursively sort
each part.

● Use merge to combine them back into a single
sorted list.

void mergesort(Vector<int>& v) {
 /* Base case: 0- or 1-element lists are
 * already sorted.
 */
 if (v.size() <= 1) return;

 /* Split v into two subvectors. */
 Vector<int> left, right;
 for (int i = 0; i < v.size() / 2; i++) {
 left += v[i];
 }
 for (int i = v.size() / 2; i < v.size(); i++) {
 right += v[i];
 }

 /* Recursively sort these arrays. */
 mergesort(left);
 mergesort(right);

 /* Combine them together. */
 merge(left, right, v);
}

How fast is mergesort?

First, the numbers.

Now, the theory!

void mergesort(Vector<int>& v) {
 /* Base case: 0- or 1-element lists are
 * already sorted.
 */
 if (v.size() <= 1) return;

 /* Split v into two subvectors. */
 Vector<int> left, right;
 for (int i = 0; i < v.size() / 2; i++) {
 left += v[i];
 }
 for (int i = v.size() / 2; i < v.size(); i++) {
 right += v[i];
 }

 /* Recursively sort these arrays. */
 mergesort(left);
 mergesort(right);

 /* Combine them together. */
 merge(left, right, v);
}

void mergesort(Vector<int>& v) {
 /* Base case: 0- or 1-element lists are
 * already sorted.
 */
 if (v.size() <= 1) return;

 /* Split v into two subvectors. */
 Vector<int> left, right;
 for (int i = 0; i < v.size() / 2; i++) {
 left += v[i];
 }
 for (int i = v.size() / 2; i < v.size(); i++) {
 right += v[i];
 }

 /* Recursively sort these arrays. */
 mergesort(left);
 mergesort(right);

 /* Combine them together. */
 merge(left, right, v);
}

O(n)
work

O(n)
work

void mergesort(Vector<int>& v) {
 /* Base case: 0- or 1-element lists are
 * already sorted.
 */
 if (v.size() <= 1) return;

 /* Split v into two subvectors. */
 Vector<int> left, right;
 for (int i = 0; i < v.size() / 2; i++) {
 left += v[i];
 }
 for (int i = v.size() / 2; i < v.size(); i++) {
 right += v[i];
 }

 /* Recursively sort these arrays. */
 mergesort(left);
 mergesort(right);

 /* Combine them together. */
 merge(left, right, v);
}

O(n)

O(n)

O(n)

O(n)

O(n)

How much work does
mergesort do at each level of

recursion?

O(n)

O(n)

O(n)

O(n)

O(n)

How many levels are there?

O(n)

O(n)

O(n)

O(n)

O(n)

Each recursive call cuts the
array size in half.

O(n)

O(n)

O(n)

O(n)

O(n)

After k layers of the recursion,
if the original array has size n,
each subarray has size n / 2k.

n / 2
elements

n / 2
elements

n / 8
elements

n / 8
elements

n / 1
elements

n / 1
elements

O(n)

O(n)

O(n)

O(n)

O(n)

The recursion stops when
we’re down to a single

element.

O(n)

O(n)

O(n)

O(n)

O(n)

What choice of k makes
n / 2k = 1?

Answer: k = log₂ n.

Useful intuition:
you can only cut
something in half

O(log n) times
before you run out

of elements.

Useful intuition:
you can only cut
something in half

O(log n) times
before you run out

of elements.

O(n)

O(n)

O(n)

O(n)

O(n)

There are O(log n) levels in the recursion.

Each level does O(n) work.

Total work done: O(n log n).

Can we do Better?

● Mergesort runs in time O(n log n), which
is faster than insertion sort’s O(n2).

● Can we do better than this?
● In general, no: comparison-based sorts

cannot have a worst-case runtime better
than O(n log n).

● In the worst case, we can only get
faster by a constant factor!

An Interesting Observation

● Big-O notation talks about long-term growth, but
says nothing about small inputs.

● For small inputs, insertion sort can be faster than
mergesort.

R
u

n
ti

m
e

Input Size

Mergesort

Insertion
SortInsertion

sort faster

Insertion
sort faster

Mergesort
faster

Mergesort
faster

Hybrid Mergesort

void hybridMergesort(Vector<int>& v) {
 if (v.size() <= kCutoffSize) {
 insertionSort(v);
 } else {
 Vector<int> left, right;
 for (int i = 0; i < v.size() / 2; i++) {
 left += v[i];
 }
 for (int i = v.size() / 2; i < v.size(); i++) {
 right += v[i];
 }

 hybridMergesort(left);
 hybridMergesort(right);

 merge(left, right, v);
 }
}

Hybrid Mergesort

void hybridMergesort(Vector<int>& v) {
 if (v.size() <= kCutoffSize) {
 insertionSort(v);
 } else {
 Vector<int> left, right;
 for (int i = 0; i < v.size() / 2; i++) {
 left += v[i];
 }
 for (int i = v.size() / 2; i < v.size(); i++) {
 right += v[i];
 }

 hybridMergesort(left);
 hybridMergesort(right);

 merge(left, right, v);
 }
}

Use insertion sort for small
inputs where insertion sort is

faster than mergesort.

Question to ponder: How
would you determine the value of

kCutoffSize to use?

Use insertion sort for small
inputs where insertion sort is

faster than mergesort.

Question to ponder: How
would you determine the value of

kCutoffSize to use?

Closing the Loop

bool linearSearch(const string& str, char ch) {
 for (int i = 0; i < str.length(); i++) {
 if (str[i] == ch) {
 return true;
 }
 }
 return false;
}

 Best-Case Runtime: O(1)
Worst-Case Runtime: O(n)

Suppose we want to search an array for an
element, and we know that array is sorted.

Can we do better than linear search?

Each cup
contains a
number.

Each cup
contains a
number.

Numbers are
sorted from left

to right

Numbers are
sorted from left

to right

Are any of
these numbers
equal to 106?

Are any of
these numbers
equal to 106?

???? ? ? ?

Thanks to former head TA Dawson Zhou for this idea! Except he did it IRL.

137

Are any of
these numbers
equal to 106?

Are any of
these numbers
equal to 106?

Can 106
be here?

Can 106
be here?

Or here?Or here?
Or here?Or here?

Each cup
contains a
number.

Each cup
contains a
number.

Numbers are
sorted from left

to right

Numbers are
sorted from left

to right

Thanks to former head TA Dawson Zhou for this idea! Except he did it IRL.

96

Are any of
these numbers
equal to 106?

Are any of
these numbers
equal to 106?

Can 106
be here?

Can 106
be here?

Each cup
contains a
number.

Each cup
contains a
number.

Numbers are
sorted from left

to right

Numbers are
sorted from left

to right

Thanks to former head TA Dawson Zhou for this idea! Except he did it IRL.

103

Are any of
these numbers
equal to 106?

Are any of
these numbers
equal to 106?

Each cup
contains a
number.

Each cup
contains a
number.

Numbers are
sorted from left

to right

Numbers are
sorted from left

to right

Thanks to former head TA Dawson Zhou for this idea! Except he did it IRL.

Are any of
these numbers
equal to 106?

Are any of
these numbers
equal to 106?

Each cup
contains a
number.

Each cup
contains a
number.

Numbers are
sorted from left

to right

Numbers are
sorted from left

to right

Alas, 106 is not to be found here.

Thanks to former head TA Dawson Zhou for this idea! Except he did it IRL.

Each cup
contains a
number.

Each cup
contains a
number.

Numbers are
sorted from left

to right

Numbers are
sorted from left

to right

Are any of
these numbers
equal to 106?

Are any of
these numbers
equal to 106?

???? ? ? ?

Thanks to former head TA Dawson Zhou for this idea! Except he did it IRL.

101

Are any of
these numbers
equal to 106?

Are any of
these numbers
equal to 106?

Can 106
be here?

Can 106
be here?

Or here?Or here?

Or here?Or here?

Each cup
contains a
number.

Each cup
contains a
number.

Numbers are
sorted from left

to right

Numbers are
sorted from left

to right

Thanks to former head TA Dawson Zhou for this idea! Except he did it IRL.

109

Are any of
these numbers
equal to 106?

Are any of
these numbers
equal to 106?

Can 106
be here?

Can 106
be here?

Each cup
contains a
number.

Each cup
contains a
number.

Numbers are
sorted from left

to right

Numbers are
sorted from left

to right

Thanks to former head TA Dawson Zhou for this idea! Except he did it IRL.

Thanks to former head TA Dawson Zhou for this idea! Except he did it IRL.

106

Are any of
these numbers
equal to 106?

Are any of
these numbers
equal to 106?

Each cup
contains a
number.

Each cup
contains a
number.

Numbers are
sorted from left

to right

Numbers are
sorted from left

to right

This algorithm is called binary search.

bool binarySearchRec(const Vector<int>& elems, int key,
 int low, int high) {
 /* Base case: If we're out of elements, horror of horrors!
 * Our element does not exist.
 */
 if (low == high) return false;

 /* Probe the middle element. */
 int mid = low + (high - low) / 2;

 /* We might find what we're looking for! */
 if (key == elems[mid]) return true;

 /* Otherwise, discard half the elements and search
 * the appropriate section.
 */
 if (key < elems[mid]) {
 return binarySearchRec(elems, key, low, mid);
 } else {
 return binarySearchRec(elems, key, mid + 1, high);
 }
}

bool binarySearch(const Vector<int>& elems, int key) {
 return binarySearchRec(elems, key, 0, elems.size());
}

Question to ponder:
how does this code
correspond to the

example from earlier?

Question to ponder:
how does this code
correspond to the

example from earlier?

Binary Search

● How fast is binary search?
● Each round does a constant amount of work

(checking how the key relates to the middle).
● Each round tosses away half the elements.
● We can only toss away half the elements

O(log n) times before no elements are left.
● Worst-case runtime: O(log n).
● Question to ponder: what’s the best-case

runtime?
● This is exponentially faster than linear

search!

Why All This Matters

● Big-O notation gives us a quantitive way
to predict runtimes.

● Those predictions provide a quantitive
intuition for how to improve our
algorithms.

● Understanding the nuances of big-O
notation then leads us to design algorithms
that are better than the sum of their parts.

● We can use binary search to look inside
sorted sequences really, really quickly.

Your Action Items

● Start Assignment 4
● You have plenty of time to complete this

assignment. Starting early will give you
plenty of time to think things through.

● Read Chapter 10 of the Textbook
● There’s a bunch of goodies in there we didn’t

have time to explore here.

Next Time

● Designing Abstractions
● How do you build new container classes?

● Class Design
● What do classes look like in C++?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112

