
  

Algorithmic Analysis and Sorting
Part Two



  

Recap from Last Time



  

Big-O Notation

● Big-O notation is a quantitative way to 
describe the runtime of a piece of code.

● For example, the runtime of this code snippet 
is O(n), where n is the size of the vector:

for (int i = 0; i < vec.size(); i++) {
  cout << vec[i] << endl;         

}                                     

                                         



  

Big-O Notation

● Big-O notation is a quantitative way to 
describe the runtime of a piece of code.

● For example, the runtime of this code snippet 
is O(n2), where n is the size of the vector:

for (int i = 0; i < vec.size(); i++) {    
    for (int j = 0; j < vec.size(); j++) {
        cout << (vec[i] + vec[j]) << endl;
    }                                     
}                                         



  

Sorting Algorithms

● The sorting problem is to take in a list 
of things (integers, strings, etc.) and 
rearrange them into sorted order.

● Last time, we saw insertion sort, an 
algorithm that runs in time O(n2).



  

An Initial Idea: Insertion Sort

7 2 1 64

Rule: Swap each element 
to the left until it doesn’t 

have a bigger element 
before it.
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An Initial Idea: Insertion Sort

2 1 64 7

Rule: Swap each element 
to the left until it doesn’t 

have a bigger element 
before it.
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An Initial Idea: Insertion Sort
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An Initial Idea: Insertion Sort
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An Initial Idea: Insertion Sort
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New Stuff!
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Thinking About O(n2)
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The Key Insight: Merge

1 2 3 4 5 6 7 8 9 10

Each step makes a 
single comparison and 
reduces the number of 

elements by one.
 

If there are n total 
elements, this algorithm 

runs in time O(n).

Each step makes a 
single comparison and 
reduces the number of 

elements by one.
 

If there are n total 
elements, this algorithm 

runs in time O(n).



  

“Split Sort”
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“Split Sort”
void splitSort(Vector<int>& v) {  
    /* Split the vector in half */
    Vector<int> left, right;
    for (int i = 0; i < v.size() / 2; i++) {
        left += v[i];
    }
    for (int j = v.size() / 2; j < v.size(); j++) {
        right += v[i];
    }
 
    /* Sort each half. */
    insertionSort(left);
    insertionSort(right);
 
    /* Merge them back together. */
    merge(left, right, v);
}

Prediction: This 
should be twice as 

fast as insertion sort.

Prediction: This 
should be twice as 

fast as insertion sort.



  

“Double Split Sort”
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Prediction: This 
should be four 
times as fast as 
insertion sort.

Prediction: This 
should be four 
times as fast as 
insertion sort.



  

Time-Out for Announcements!



  

Assignment 4

● Assignment 4 (Recursion to the Rescue) goes 
out today. It’s a three-parter designed to give 
you a sense of just how powerful recursion is.

● You are encouraged to work in pairs on this one.
● We recommend making slow, steady progress on 

this assignment. There’s a suggested timeline on 
the front of the handout.

● YEAH Hours are tonight at 7PM in 380-380Y.



  

More Assorted Sorts of Sorts!



  

Splitting to the Extreme

● Splitting our array in half, sorting each 
half, and merging the halves was twice 
as fast as insertion sort.

● Splitting our array in quarters, sorting 
each quarter, and merging the quarters 
was four times as fast as insertion sort.

● Question: What happens if we never 
stop splitting?
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Mergsort

● Base Case:
● An empty or single-element list is already 

sorted.
● Recursive step:

● Break the list in half and recursively sort 
each part.

● Use merge to combine them back into a single 
sorted list.



  

void mergesort(Vector<int>& v) {
   /* Base case: 0- or 1-element lists are
    * already sorted.
    */
   if (v.size() <= 1) return;

   /* Split v into two subvectors. */
   Vector<int> left, right;
   for (int i = 0; i < v.size() / 2; i++) {
       left += v[i];
   }
   for (int i = v.size() / 2; i < v.size(); i++) {
       right += v[i];
   }

   /* Recursively sort these arrays. */
   mergesort(left);
   mergesort(right);
 
   /* Combine them together. */
   merge(left, right, v);
}



  

How fast is mergesort?



  

First, the numbers.



  

Now, the theory!



  

void mergesort(Vector<int>& v) {
   /* Base case: 0- or 1-element lists are
    * already sorted.
    */
   if (v.size() <= 1) return;

   /* Split v into two subvectors. */
   Vector<int> left, right;
   for (int i = 0; i < v.size() / 2; i++) {
       left += v[i];
   }
   for (int i = v.size() / 2; i < v.size(); i++) {
       right += v[i];
   }

   /* Recursively sort these arrays. */
   mergesort(left);
   mergesort(right);
 
   /* Combine them together. */
   merge(left, right, v);
}



  

void mergesort(Vector<int>& v) {
   /* Base case: 0- or 1-element lists are
    * already sorted.
    */
   if (v.size() <= 1) return;

   /* Split v into two subvectors. */
   Vector<int> left, right;
   for (int i = 0; i < v.size() / 2; i++) {
       left += v[i];
   }
   for (int i = v.size() / 2; i < v.size(); i++) {
       right += v[i];
   }

   /* Recursively sort these arrays. */
   mergesort(left);
   mergesort(right);
 
   /* Combine them together. */
   merge(left, right, v);
}

O(n) 
work

O(n) 
work



  

void mergesort(Vector<int>& v) {
   /* Base case: 0- or 1-element lists are
    * already sorted.
    */
   if (v.size() <= 1) return;

   /* Split v into two subvectors. */
   Vector<int> left, right;
   for (int i = 0; i < v.size() / 2; i++) {
       left += v[i];
   }
   for (int i = v.size() / 2; i < v.size(); i++) {
       right += v[i];
   }

   /* Recursively sort these arrays. */
   mergesort(left);
   mergesort(right);
 
   /* Combine them together. */
   merge(left, right, v);
}



  

O(n)

O(n)

O(n)

O(n)

O(n)

How much work does 
mergesort do at each level of 

recursion?
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How many levels are there?
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Each recursive call cuts the 
array size in half.



  

O(n)

O(n)

O(n)

O(n)

O(n)

After k layers of the recursion, 
if the original array has size n, 
each subarray has size n / 2k.

n / 2 
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O(n)
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The recursion stops when 
we’re down to a single 

element.
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What choice of k makes
n / 2k = 1?

Answer: k = log₂ n.

Useful intuition: 
you can only cut 
something in half 

O(log n) times 
before you run out 

of elements.

Useful intuition: 
you can only cut 
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O(log n) times 
before you run out 

of elements.



  

O(n)

O(n)

O(n)

O(n)

O(n)

There are O(log n) levels in the recursion.
 

Each level does O(n) work.
 

Total work done: O(n log n).



  

Can we do Better?

● Mergesort runs in time O(n log n), which 
is faster than insertion sort’s O(n2).

● Can we do better than this?
● In general, no: comparison-based sorts 

cannot have a worst-case runtime better 
than O(n log n).

● In the worst case, we can only get 
faster by a constant factor!



  

An Interesting Observation

● Big-O notation talks about long-term growth, but 
says nothing about small inputs.

● For small inputs, insertion sort can be faster than 
mergesort.
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Hybrid Mergesort

void hybridMergesort(Vector<int>& v) {
   if (v.size() <= kCutoffSize) { 
      insertionSort(v); 
   } else { 
       Vector<int> left, right;
       for (int i = 0; i < v.size() / 2; i++) {
           left += v[i];
       }
       for (int i = v.size() / 2; i < v.size(); i++) {
           right += v[i];
       }
    
       hybridMergesort(left);
       hybridMergesort(right);
     
       merge(left, right, v);
    }
}
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Use insertion sort for small 
inputs where insertion sort is 

faster than mergesort.
 

Question to ponder: How 
would you determine the value of 

kCutoffSize to use?
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kCutoffSize to use?



  

Closing the Loop



  

bool linearSearch(const string& str, char ch) {
  for (int i = 0; i < str.length(); i++) {
    if (str[i] == ch) {
      return true;
    }
  }
  return false;
}

 Best-Case Runtime:  O(1)
Worst-Case Runtime: O(n)



  

Suppose we want to search an array for an 
element, and we know that array is sorted.

Can we do better than linear search?
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Thanks to former head TA Dawson Zhou for this idea! Except he did it IRL.
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Alas, 106 is not to be found here.

Thanks to former head TA Dawson Zhou for this idea! Except he did it IRL.
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This algorithm is called binary search.



  

bool binarySearchRec(const Vector<int>& elems, int key,
                     int low, int high) {
    /* Base case: If we're out of elements, horror of horrors!
     * Our element does not exist.
     */
    if (low == high) return false;
 

    /* Probe the middle element. */
    int mid = low + (high - low) / 2;
 

    /* We might find what we're looking for! */
    if (key == elems[mid]) return true;
 

    /* Otherwise, discard half the elements and search
     * the appropriate section.
     */
    if (key < elems[mid]) {
        return binarySearchRec(elems, key, low, mid);
    } else {
        return binarySearchRec(elems, key, mid + 1, high);
    }
}
 

bool binarySearch(const Vector<int>& elems, int key) {
    return binarySearchRec(elems, key, 0, elems.size());
}

Question to ponder: 
how does this code 
correspond to the 

example from earlier?
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Binary Search

● How fast is binary search?
● Each round does a constant amount of work 

(checking how the key relates to the middle). 
● Each round tosses away half the elements.
● We can only toss away half the elements 

O(log n) times before no elements are left.
● Worst-case runtime: O(log n).
● Question to ponder: what’s the best-case 

runtime?
● This is exponentially faster than linear 

search!



  

Why All This Matters

● Big-O notation gives us a quantitive way 
to predict runtimes.

● Those predictions provide a quantitive 
intuition for how to improve our 
algorithms.

● Understanding the nuances of big-O 
notation then leads us to design algorithms 
that are better than the sum of their parts.

● We can use binary search to look inside 
sorted sequences really, really quickly.



  

Your Action Items

● Start Assignment 4
● You have plenty of time to complete this 

assignment. Starting early will give you 
plenty of time to think things through.

● Read Chapter 10 of the Textbook
● There’s a bunch of goodies in there we didn’t 

have time to explore here.



  

Next Time

● Designing Abstractions
● How do you build new container classes?

● Class Design
● What do classes look like in C++?
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