Algorithmic Analysis and Sorting Part One

Fundamental Question:

How do we measure efficiency?

One Idea: Runtime

Runtime is Noisy

- Runtime is highly sensitive to which computer you're using.
- Runtime is highly sensitive to which inputs you're testing.
- Runtime is highly sensitive to external factors.
bool linearSearch(const string\& str, char ch) \{ for (int $\mathrm{i}=0$; i < str.length(); i++) \{ if (str[i] == ch) \{ return true;
\}
\}
return false;
\}

Work Done: At most $k_{0} n+k_{1}$

Big Observations

- If our goal is to extrapolate out the runtime, we don't need to know the constants in advance. We can figure them out by running the code.
- For "sufficiently large" inputs, only the dominant term matters.
- For both $4 n+1000$ and $n+137$, for very large n most of the runtime is explained by n.
- Is there a concise way of describing this?

Big-O

Big-O Notation

- Ignore everything except the dominant growth term, including constant factors.
- Examples:
- $4 n+4=\mathbf{O}(n)$
- $137 n+271=\mathbf{O (n)}$
- $n^{2}+3 n+4=\mathbf{O}\left(\boldsymbol{n}^{2}\right)$
- $2^{n}+n^{3}=\mathbf{O}\left(2^{n}\right)$

For the mathematically inclined:

$$
f(n)=O(g(n)) \text { if }
$$

$\exists n_{0} \in \mathbb{R} . \exists c \in \mathbb{R} . \forall n \geq n_{0} . f(n) \leq c|g(n)|$

Algorithmic Analysis with Big-O

Algorithmic Analysis with Big-O

double average(const Vector<int>\& vec) \{
double total = 0.0;
for (int $\mathrm{i}=0$; i < vec.size(); i++) \{ total += vec[i];
$\}$
return total / vec.size(); \}

Algorithmic Analysis with Big-O

double average(const Vector<int>\& vec) \{ double total = 0.0;
for (int $i=0 ; i<\operatorname{vec} . \operatorname{size}() ; i++$) \{ total += vec[i];
\}
return total / vec.size();
\}

Algorithmic Analysis with Big-O

double average(const Vector<int>\& vec) \{ double total = 0.0;
for (int $i=0 ; i<v e c . s i z e() ; i++)\{$ total += vec[i];
\}
return total / vec.size();
\}

$$
O(n)
$$

$\mathrm{O}(n)$ means "the runtime is proportional to the size of the input." We'd say that this code runs in linear time.

A More Interesting Example

A More Interesting Example

bool linearSearch(const string\& str, char ch) \{
for (int $\mathrm{i}=0$; i < str.length(); i++) \{ if (str[i] == ch) \{
return true;
\}
\}
return false;
\}
How do we analyze this?

Types of Analysis

- Worst-Case Analysis
- What's the worst possible runtime for the algorithm?
- Useful for "sleeping well at night."
- Best-Case Analysis
- What's the best possible runtime for the algorithm?
- Useful to see if the algorithm performs well in some cases.
- Average-Case Analysis
- What's the average runtime for the algorithm?
- Far beyond the scope of this class; take CS109, CS161, or CS265 for more information!

Types of Analysis

- Worst-Case Analysis
- What's the worst possible runtime for the algorithm?
- Useful for "sleeping well at night."

Best-Case Analysis
What's the best possible runtime for the algorithm?
Useful to see if the algorithm performs well in some cases.
Average-Case Analysis
What's the average runtime for the algorithm?
Far beyond the scope of this class; take CS109, CS161, CS365, or CS369N for more information!

Being Pessimistic

Worst-Case Runtime: O(n)

Types of Analysis

- Worst-Case Analysis
- What's the worst possible runtime for the algorithm?
- Useful for "sleeping well at night."
- Best-Case Analysis
- What's the best possible runtime for the algorithm?
- Useful to see if the algorithm performs well in some cases.
- Average-Case Analysis
- What's the average runtime for the algorithm?
- Far beyond the scope of this class; take CS109, CS161, or CS265 for more information!

Types of Analysis

Worst-Case Analysis
What's the worst possible runtime for the algorithm?
Useful for "sleeping well at night."

- Best-Case Analysis
- What's the best possible runtime for the algorithm?
- Useful to see if the algorithm performs well in some cases.

Average-Case Analysis
What's the average runtime for the algorithm?
Far beyond the scope of this class; take CS109, CS161, or CS265 for more information!

Three Cheers for Optimism!

bool linearSearch(const string\& str, char ch) \{
for (int i = 0; i < str.length(); i++) \{ if (str[i] == ch) \{
return true;

```
        }
    return false;
```

 \}
 \}

O(1) means "the runtime doesn't depend on the size of the input." In the best case, this code runs in constant time.

Best-Case Runtime: O(1)

What Can Big-O Tell Us?

- Long-term behavior of a function.
- If algorithm A has runtime $O(n)$ and algorithm B has runtime $O\left(n^{2}\right)$, for very large inputs algorithm A will always be faster.
- If algorithm A has runtime $O(n)$, for large inputs, doubling the size of the input doubles the runtime.

What Can't Big-O Tell Us?

- The actual runtime of a function.
- $10^{100} n=O(n)$
- $10^{-100} n=\mathrm{O}(n)$
- How a function behaves on small inputs.
- $n^{3}=\mathrm{O}\left(n^{3}\right)$
- $10^{6}=O(1)$

Some Standard Runtime Complexities

Growth Rates, Part I

Growth Rates, Part II

250

What is this
strange n log
n? stay tuned:

Growth Rates, Part III

All Together Now!

Comparison of Runtimes

(assuming 1 operation = 1 nanosecond)

Size	1
1000	1 ns
2000	1 ns
3000	1 ns
4000	1 ns
5000	1 ns
6000	1 ns
7000	1 ns
8000	1 ns
9000	1 ns
10000	1 ns
11000	1 ns
12000	1 ns
13000	1 ns
14000	1 ns

The Story So Far

- Big-O notation is a quantitative measure of how a function's runtime scales.
- It ignores constants and lower-order terms. Only the fastest-growing terms matter.
- Big-O notation lets us predict how long a function will take to run.
- Big-O notation lets us quantitatively compare algorithms.

Time-Out for Announcements!

Programming Assignments

- Assignment 3 is due on Wednesday.
- If you're following our timetable, you should be done with the Sierpinski triangle, Human Pyramids, and Shift Scheduling at this point and should be working on Riding Circuit.
- Have questions? Stop by the LaIR, email your section leader, or visit Piazza!
- Assignment 4 will go out on Wednesday.
- We'll be holding YEAH Hours for this assignment this Wednesday at 7:00PM in room 380-380Y.

big-Onward!

Sorting Algorithms

What is sorting?

Time	Auto	Athlete	Nationality	Date	Venue
4：37．0		Anne Smith	디는 United Kingdom	3 June 1967 ${ }^{[7]}$	London
4：36．8		Maria Gommers	－Netherlands	14 June 1969 ${ }^{[7]}$	Leicester
4：35．3		Ellen Tittel	－West Germany	20 August 1971 ${ }^{[7]}$	Sittard
4：29．5		Paola Pigni	－Italy	8 August 1973 ${ }^{[7]}$	Viareggio
4：23．8		Natalia Mărășescu	－Romania	21 May 1977 ${ }^{[7]}$	Bucharest
4：22．1	4：22．09	Natalia Mărășescu	Romania	27 January 1979 ${ }^{[7]}$	Auckland
4：21．7	4：21．68	Mary Decker	垔 United States	26 January 1980［7］	Auckland
4：20．89		Lyudmila Veselkova	P Soviet Union	12 September $1981{ }^{[7]}$	Bologna
4：18．08		Mary Decker－Tabb	垔 United States	9 July 1982 ${ }^{[7]}$	Paris
4：17．44		Maricica Puică	－Romania	9 September 1982 ${ }^{[7]}$	Rieti
4：16．71		Mary Decker－Slaney	垔 United States	21 August 1985 ${ }^{[7]}$	Zürich
4：15．61		Paula Ivan	－Romania	10 July 1989 ${ }^{[7]}$	Nice
4：12．56		Svetlana Masterkova	\square Russia	14 August 1996 ${ }^{[7]}$	Zürich

Problem：Given a list of data points，sort those data points into ascending／descending order by some quantity．

Suppose we want to rearrange a sequence to put elements into ascending order. What are some strategies we could use?

How do those strategies compare?
Is there a "best" strategy?

An Initial Idea: Insertion Sort

An Initial Idea: Insertion Sort

An Initial Idea: Insertion Sort

An Initial Idea: Insertion Sort

An Initial Idea: Insertion Sort

An Initial Idea: Insertion Sort

An Initial Idea: Insertion Sort

An Initial Idea: Insertion Sort

An Initial Idea: Insertion Sort

An Initial Idea: Insertion Sort

An Initial Idea: Insertion Sort

An Initial Idea: Insertion Sort

An Initial Idea: Insertion Sort

An Initial Idea: Insertion Sort

An Initial Idea: Insertion Sort

An Initial Idea: Insertion Sort

An Initial Idea: Insertion Sort

An Initial Idea: Insertion Sort

An Initial Idea: Insertion Sort

An Initial Idea: Insertion Sort

An Initial Idea: Insertion Sort

An Initial Idea: Insertion Sort

An Initial Idea: Insertion Sort

An Initial Idea: Insertion Sort

An Initial Idea: Insertion Sort


```
/**
    * Sorts the specified vector using insertion sort.
    *
    * @param v The vector to sort.
    */
void insertionSort(Vector<int>& v) {
    for (int i = 0; i < v.size(); i++) {
        /* Scan backwards until either (1) there is no
            * preceding element or the preceding element is
            * no bigger than us.
            */
        for (int j = i - 1; j >= 0; j--) {
            if (v[j] <= v[j + 1]) break;
                /* Swap this element back one step. */
                swap(v[j], v[j + 1]);
            }
    }
}
```


How Fast is Insertion Sort?

64

7

2
1

How Fast is Insertion Sort?

Work Done: $\mathbf{1 + 2 + 3 + 4}$

If we run insertion sort on a sequence of n elements, we might have to do

$$
1+2+3+4+\ldots+(n-2)+(n-1)
$$

swaps. How many swaps is this?

$1+2+3+\ldots+(n-2)+(n-1)=n(n-1) / 2$

The Complexity of Insertion Sort

- In the worst case, insertion sort takes time

$$
\begin{aligned}
& \mathrm{O}(n(n-1) / 2) \\
= & \mathrm{O}(n(n-1)) \\
= & \mathrm{O}\left(n^{2}-n\right) \\
= & \mathbf{O}\left(\boldsymbol{n}^{2}\right) .
\end{aligned}
$$

- Fun fact: Insertion sorting an array of random values takes, on average, $\mathrm{O}\left(n^{2}\right)$ time.
- Curious why? Come talk to me after class!

Thinking About $\mathrm{O}\left(n^{2}\right)$

$$
\begin{aligned}
& \begin{array}{llllllll}
14 & 6 & 3 & 9 & 7 & 16 & 2 & 15
\end{array} \\
& \mathrm{~T}(n) \\
& \begin{array}{lllllllllllllllll}
14 & 6 & 3 & 9 & 7 & 16 & 2 & 15 & 5 & 10 & 8 & 11 & 1 & 13 & 12 & 4
\end{array} \\
& \mathrm{~T}(2 n) \approx 4 \mathrm{~T}(n)
\end{aligned}
$$

Next Time

- Faster Sorting Algorithms
- Can you beat O(n^{2}) time?
- Hybrid Sorting Algorithms
- When might insertion sort be useful?

