

Thinking Recursively
Part III

Outline for Today

● Recap from Last Time
● Where are we, again?

● Recursive Optimization
● Finding the best solution to a problem.

Recap from Last Time

A?

I?

{A,H,I} {A, H} {A, I} {A} {H, I} {H} {I} { }

I? I? I?

H? H?

 ✓ ×

 ✓

 ✓

 ✓ ✓ ✓ × × ×

 × × ✓

 ×

List all subsets of
{A, H, I}

List all subsets of
{A, H, I}

{A, H} {A} {H} { }

{A} { }

{ }

Each decision is of
the form “do I
include this?”

Each decision is of
the form “do I
include this?”

List all permutations of
{A, H, I}

List all permutations of
{A, H, I}

Each decision is of
the form “what do I

pick next?”

Each decision is of
the form “what do I

pick next?”

I

AHI AIH HAI HIA IAH IHA

H I A H A

HI AI AH

AHI

I I

I

H H

H

A A

A I I A H

A

 H

"AH" "AI" "HA" "HI" "IA" "IH"

"A" "H" "I"

""

Pick 4 Justices out of
{ Breyer, …, Thomas }

Chosen so far: { Kagan }

Pick 5 Justices out of
{ Breyer, …, Thomas }

Chosen so far: { }

Pick 5 Justices out of
{Kagan, Breyer, …, Thomas}

Chosen so far: { }

Include
Elena Kagan

 Exclude
 Elena Kagan

List all combinations of
five justices

List all combinations of
five justices

Each decision is of
the form “do I

include this person?”

Each decision is of
the form “do I

include this person?”

void exploreRec(decisions remaining,
 decisions already made) {

 if (no decisions remain) {
 process decisions made;
 } else {
 for (each possible next choice) {
 exploreRec(all remaining decisions,
 decisions made + that choice);
 }
 }
}

void exploreAllTheThings(initial state) {
 exploreRec(initial state, no decisions made);
}

Decisions
yet to be

made

Decisions
yet to be

made

Decisions
already
made

Decisions
already
made

Base Case: No
decisions remain.

Base Case: No
decisions remain.

Recursive Case:
Try all options for
the next decision.

Recursive Case:
Try all options for
the next decision.

New Stuff!

You want to organize a tug-of-
war match as a morale-building

exercise for your team.

You’d like the match to be as
fair as possible, and you have a

rough estimate of how much
force everyone can pull with.

What’s the fairest way to divvy
people up into teams?

You want to organize a tug-of-
war match as a morale-building

exercise for your team.

You’d like the match to be as
fair as possible, and you have a

rough estimate of how much
force everyone can pull with.

What’s the fairest way to divvy
people up into teams?

A?

C?

{A,B,C}
{ }

{A, B}
{C}

{A, C}
{B}

{A}
{B, C}

{B, C}
{A}

{B}
{A, C}

{C}
{A, B}

{ }
{A,B,C}

C? C? C?

B? B?

1 2

1

1

1 1 1 2 2 2

 2 21

 2

List all ways to
split {A, B, C} into

two teams.

List all ways to
split {A, B, C} into

two teams.

{A, B}
{ }

{A}
{B}

{B}
{A}

{ }
{A, B}

{A}
{ }

{ }
{A}

{ }
{ }

Let’s Code it Up!

struct Person {
 string name;
 int power;
};

struct Person {
 string name;
 int power;
};

struct Teams {
 Set<Person> one;
 Set<Person> two;
};

struct Teams {
 Set<Person> one;
 Set<Person> two;
}; A?

C?

{A,B,C}
{ }

{A, B}
{C}

{A, C}
{B}

{A}
{B, C}

{B, C}
{A}

{B}
{A, C}

{C}
{A, B}

{ }
{A,B,C}

C? C? C?

B? B?

1 2

1

1

1 1 1 2 2 2

 2 21

 2

{A, B}
{ }

{A}
{B}

{B}
{A}

{ }
{A, B}

{A}
{ }

{ }
{A}

{ }
{ }

Tug-of-War

● We currently can list off (enumerate) all
the ways to split people into two teams.

● At the end of the day, we’re only
interested in the most fair split, not all
possible splits.

● How can we determine what that split is?

Time-Out for Announcements!

CURIS Applications Open

● CURIS (the Undergraduate Research
Internship in Computer Science) is now
accepting applications for summer
research positions.

● Yes, you can do this with just CS106B!
● For more information, visit

https://curis.stanford.edu

https://curis.stanford.edu/

Assignment 2

● Assignment 2 was due at the start of
class today.
● Need more time? One late day will extend

the deadline to Wednesday, and a second will
extend it to Friday.

● Feel free to use late days without giving
us a heads-up over email. We’ll do all the
appropriate recordkeeping.

Assignment 3

● Assignment 3 (Recursion!) goes out today. It’s due
Wednesday, February 6, at the start of class.

● Play around with recursive problem-solving across
four problems:
● Siepinski Triangle: A famous self-similar fractal.
● Human Pyramids: Gymnastics meets computer science.
● Shift Scheduling: How to maximize profits, and why you

might not want to.
● Riding Circuit: Justice delayed is justice denied.

● You are allowed to work with a partner on this
assignment, though it’s not required. Feel free to
use Piazza to find someone to work with!

YEAH Hours

● We will be holding YEAH Hours (Your
Early Assignment Help Hours) for
Assignment 3. They’ll be held

Tuesday, January 29th

at 7:00PM, in
room 380-380X.

● Can’t make it? No worries! Slides will be
posted on the course website.

fg
(“Foreground;” The UNIX

command to resume a program
that’s been paused.)

Recursive Optimization

Enumeration and Optimization

● An enumeration problem is one where
the goal is to list all objects of some type.

● An optimization problem is one where
the goal is to find the best object of some
type.

● We’ve seen many examples of
enumeration problems. How do we solve
optimization problems?

A?

… …

1 2

Person A either gets assigned to Team 1 or gets
assigned to Team 2.

Therefore, to list all possible splits, we can

 · list all splits where A goes on Team 1, then
 · list all splits where A goes on Team 2.

Since this covers all possible options, this lists all
possible splits.

Person A either gets assigned to Team 1 or gets
assigned to Team 2.

Therefore, to list all possible splits, we can

 · list all splits where A goes on Team 1, then
 · list all splits where A goes on Team 2.

Since this covers all possible options, this lists all
possible splits.

A?

… …

1 2

The best split either assigns A to Team 1 or assigns
B to Team 2.

Therefore, to find the best possible split, we can

 · find the best split where A is on Team 1,
 · find the best split where A is on Team 2, then

choose whichever of these two splits is best, since
the best option has to be one of those two.

The best split either assigns A to Team 1 or assigns
B to Team 2.

Therefore, to find the best possible split, we can

 · find the best split where A is on Team 1,
 · find the best split where A is on Team 2, then

choose whichever of these two splits is best, since
the best option has to be one of those two.

Teams bestTeamsRec(const Set<Person>& remaining,
 const Teams& soFar) {
 if (remaining.isEmpty()) {
 return soFar;
 } else {
 Person curr = remaining.first();

 /* Option 1: Put this person on Team 1. */
 Teams best1 = bestTeamsRec(remaining – curr,
 { soFar.one + curr, soFar.two });

 /* Option 2: Put this person on Team 2. */
 Teams best2 = bestTeamsRec(remaining – curr,
 { soFar.one, soFar.two + curr });

 if (imbalanceOf(best1) < imbalanceOf(best2)) {
 return best1;
 } else {
 return best2;
 }
 }
}

Teams bestTeamsRec(const Set<Person>& remaining,
 const Teams& soFar) {
 if (remaining.isEmpty()) {
 return soFar;
 } else {
 Person curr = remaining.first();

 /* Option 1: Put this person on Team 1. */
 Teams best1 = bestTeamsRec(remaining – curr,
 { soFar.one + curr, soFar.two });

 /* Option 2: Put this person on Team 2. */
 Teams best2 = bestTeamsRec(remaining – curr,
 { soFar.one, soFar.two + curr });

 if (imbalanceOf(best1) < imbalanceOf(best2)) {
 return best1;
 } else {
 return best2;
 }
 }
}

This is basically the same code as
before! The only difference is that
we propagate values back up the

recursion.

This is basically the same code as
before! The only difference is that
we propagate values back up the

recursion.

Recursive Optimization

● The code we’ve written here is an
example of a recursive optimization.

● The major change is how the recursive
step works.
● In recursive enumeration, the recursive step

tries all options for the current decision.
● In recursive optimization, the recursive step

does this, but then returns the best solution
out of the options it found.

Type optimizeRec(decisions remaining,
 decisions already made) {

 if (no decisions remain) {
 return the result of those decisions;
 } else {
 for (each possible next choice) {
 Type option = optimizeRec(all remaining decisions,
 decisions made + that choice);
 do something with that option;
 }
 return the best option discovered.
 }

}

Type optimizeAllTheThings(initial state) {
 return optimizeRec(initial state, no decisions made);
}

Decisions
yet to be

made

Decisions
yet to be

made

Decisions
already
made

Decisions
already
made

Base Case:
You’re stuck with this choice.

Base Case:
You’re stuck with this choice.

Recursive Case:
Try all options; take the best.

Recursive Case:
Try all options; take the best.

Your Action Items

● Start working on Assignment 3
● Aim to complete the Sierpinski triangle and to

have started Human Pyramids by Wednesday.
● Review the Cell Towers example

● It’s in the lecture on the Vector type. Based on
what we’ve covered, does that example make
a bit more sense?

● Finish reading Chapter 8
● There’s plenty of useful insights and ideas in

there!

Next Time

● Recursive Backtracking
● Searching for a needle in a haystack.

● The Great Shrinkable Word Problem
● Helping your relatives with recursion.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

