
  

Collections, Part Two



  

Outline for Today

● Stacks
● Pancakes meets parsing!

● Queues
● Waiting in line at the Library of Babel.



  

Stack



  

Stack

● A Stack is a data structure 
representing a stack of things.

● Objects can be pushed on top of 
the stack or popped from the top of 
the stack.

● Only the top of the stack can be 
accessed; no other objects in the 
stack are visible.

● This is why it’s called the call stack 
and we talk about stack traces.
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An Application: Balanced Parentheses
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Let’s go code 
this up!

Let’s go code 
this up!



  

Our Algorithm

● For each character:
● If it’s an open parenthesis or brace, push it 

onto the stack.
● If it’s a close parenthesis or brace:

– If the stack is empty, report an error.
– If the character doesn’t pair with the character on 

top of the stack, report an error.

● At the end, return whether the stack is 
empty (nothing was left unmatched.)



  

Great Exercise: Reimplement this 
function purely using the call stack and 

recursion rather than a Stack<char>.



  

Other Stack Applications

● Stacks show up all the time in parsing, recovering the 
structure in a piece of text.
● Often used in natural language processing; take CS224N for 

details!
● Used all the time in compilers – take CS143 for details!
● There’s a deep theorem that says that many structures 

appearing in natural language are perfectly modeled by 
operations on stacks; come talk to me after class if you’re 
curious!

● They’re also used as building blocks in larger algorithms 
for doing things like
● making sure a city’s road networks are navigable (finding 

strongly connected components; take CS161 for details!) and
● searching for the best solution to a problem (stay tuned!)



  

Time-Out for Announcements!



  

Assignment 1

● Assignment 1 is due this Friday at the 
start of class.

● Have questions?
● Stop by the LaIR!
● Ask on Piazza!
● Email your section leader!



  

Sections This Week

● Sections start this week! You should have 
received your section assignment over 
email on Tuesday.
● Didn’t get it? Check cs198.stanford.edu for 

your assignment.
● Section solutions are available on the 

course website. We recommend looking at 
them only after working through the 
relevant problems.



  

YEAH Hours

● We’ll be holding YEAH Hours (Your Early 
Assignment Help Hours), an assignment 
review session, for Assignment 2 when it 
goes out on Friday.

● YEAH Hours will be held this Friday at 
3:30PM in Shriram 104.

● Can’t make it? No worries! We’ll post 
slides on the website.



  

Many Happy Returns!
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Queue

● A Queue is a data structure representing a 
waiting line.

● Objects can be enqueued to the back of 
the line or dequeued from the front of 
the line.

● No other objects in the queue are visible.
● Example: A checkout counter.
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An Application: The Library of Babel



  

The Library of Babel

● Short story by Jorge Luis 
Borges about a library 
containing all possible 
books of a certain length.

● Fun exposition about the 
nature of the finite and 
the infinite, about what 
truth means, and how 
people react to these 
concepts.

● Question: How would 
you generate all these 
books?



  

"" "A" "B" "AA" "AB" "BA" "BB"



  

""

"A" "B"

"AA" "AB" "BA" "BB"



  

""

"A" "B"

"AA" "AB" "BA" "BB"



  

""

"A" "B"

"AA" "AB" "BA" "BB"



  

""

"A" "B"

"AA" "AB" "BA" "BB"

""



  

""

"A" "B"

"AA" "AB" "BA" "BB"

""



  

""

"A" "B"

"AA" "AB" "BA" "BB"

""



  

""

"A" "B"

"AA" "AB" "BA" "BB"

"" "A" "B"



  

""

"A" "B"

"AA" "AB" "BA" "BB"

"A" "B"



  

""

"A" "B"

"AA" "AB" "BA" "BB"

"A"

"B"



  

""

"A" "B"

"AA" "AB" "BA" "BB"

"A"

"B"



  

""

"A" "B"

"AA" "AB" "BA" "BB"

"A"

"B"

"AA" "AB"



  

""

"A" "B"

"AA" "AB" "BA" "BB"

"B" "AA" "AB"



  

""

"A" "B"

"AA" "AB" "BA" "BB"

"B"

"AA" "AB"



  

""

"A" "B"

"AA" "AB" "BA" "BB"

"B"

"AA" "AB"



  

""

"A" "B"

"AA" "AB" "BA" "BB"

"B"

"AA" "AB"

"BA" "BB"



  

""

"A" "B"

"AA" "AB" "BA" "BB"

"AA" "AB" "BA" "BB"



  

""

"A" "B"

"AA" "AB" "BA" "BB"

"AA"

"AB" "BA" "BB"



  

""

"A" "B"

"AA" "AB" "BA" "BB"

"AA"

"AB" "BA" "BB"



  

""

"A" "B"

"AA" "AB" "BA" "BB"

"AB" "BA" "BB"



  

""

"A" "B"

"AA" "AB" "BA" "BB"

"AB"

"BA" "BB"



  

""

"A" "B"

"AA" "AB" "BA" "BB"

"AB"

"BA" "BB"



  

""

"A" "B"

"AA" "AB" "BA" "BB"

"BA" "BB"



  

""

"A" "B"

"AA" "AB" "BA" "BB"

"BA"

"BB"



  

""

"A" "B"

"AA" "AB" "BA" "BB"

"BA"

"BB"



  

""

"A" "B"

"AA" "AB" "BA" "BB"

"BB"



  

""

"A" "B"

"AA" "AB" "BA" "BB"

"BB"



  

""

"A" "B"

"AA" "AB" "BA" "BB"

"BB"



  

""

"A" "B"

"AA" "AB" "BA" "BB"



  

Let’s code it up!



  

Our Algorithm

● Start with the empty string in a queue.
● While there are still things in the queue:

● Pull one off.
● Print it.
● If it isn’t at the maximum length:

– For each possible next character, enqueue the 
string formed by tacking the character onto the 
end of the recently-dequeued string.



  

Breadth-First Search

● This general algorithm is called breadth-
first search.

● It’s often used to find the fastest or best way 
to do something, since it lists objects in 
increasing order of “size.”

● The algorithm that Google Maps uses is 
closely related to this algorithm. Stay tuned 
for details!

● You’ll see some other applications of this 
algorithm in Assignment 2.



  

Your Action Items

● Read Chapter 5 of the textbook, which 
talks about container classes.

● Finish Assignment 1. It’s due on Friday.
● Read the style guide up on the course 

website for more information about good 
programming style.

● Review the Assignment Submission Checklist 
to make sure your code is ready to submit.



  

Next Time

● Associative Containers
● Data sets aren’t always linear!

● Maps, Sets, and Lexicons
● Three ways to organize information.
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