
  

Collections, Part Two



  

Outline for Today

● Stacks
● Pancakes meets parsing!

● Queues
● Waiting in line at the Library of Babel.



  

Stack



  

Stack

● A Stack is a data structure 
representing a stack of things.

● Objects can be pushed on top of 
the stack or popped from the top of 
the stack.

● Only the top of the stack can be 
accessed; no other objects in the 
stack are visible.

● This is why it’s called the call stack 
and we talk about stack traces.



  

Stack

● A Stack is a data structure 
representing a stack of things.

● Objects can be pushed on top of 
the stack or popped from the top of 
the stack.

● Only the top of the stack can be 
accessed; no other objects in the 
stack are visible.

● This is why it’s called the call stack 
and we talk about stack traces.

137



  

Stack

● A Stack is a data structure 
representing a stack of things.

● Objects can be pushed on top of 
the stack or popped from the top of 
the stack.

● Only the top of the stack can be 
accessed; no other objects in the 
stack are visible.

● This is why it’s called the call stack 
and we talk about stack traces.

137



  

Stack

● A Stack is a data structure 
representing a stack of things.

● Objects can be pushed on top of 
the stack or popped from the top of 
the stack.

● Only the top of the stack can be 
accessed; no other objects in the 
stack are visible.

● This is why it’s called the call stack 
and we talk about stack traces.

137

42



  

Stack

● A Stack is a data structure 
representing a stack of things.

● Objects can be pushed on top of 
the stack or popped from the top of 
the stack.

● Only the top of the stack can be 
accessed; no other objects in the 
stack are visible.

● This is why it’s called the call stack 
and we talk about stack traces.

42

137



  

Stack

● A Stack is a data structure 
representing a stack of things.

● Objects can be pushed on top of 
the stack or popped from the top of 
the stack.

● Only the top of the stack can be 
accessed; no other objects in the 
stack are visible.

● This is why it’s called the call stack 
and we talk about stack traces.

42

137

271



  

Stack

● A Stack is a data structure 
representing a stack of things.

● Objects can be pushed on top of 
the stack or popped from the top of 
the stack.

● Only the top of the stack can be 
accessed; no other objects in the 
stack are visible.

● This is why it’s called the call stack 
and we talk about stack traces.

271

42

137



  

Stack

● A Stack is a data structure 
representing a stack of things.

● Objects can be pushed on top of 
the stack or popped from the top of 
the stack.

● Only the top of the stack can be 
accessed; no other objects in the 
stack are visible.

● This is why it’s called the call stack 
and we talk about stack traces.

271

42

137



  

Stack

● A Stack is a data structure 
representing a stack of things.

● Objects can be pushed on top of 
the stack or popped from the top of 
the stack.

● Only the top of the stack can be 
accessed; no other objects in the 
stack are visible.

● This is why it’s called the call stack 
and we talk about stack traces.

42

137



  

Stack

● A Stack is a data structure 
representing a stack of things.

● Objects can be pushed on top of 
the stack or popped from the top of 
the stack.

● Only the top of the stack can be 
accessed; no other objects in the 
stack are visible.

● This is why it’s called the call stack 
and we talk about stack traces.

42

137

0



  

Stack

● A Stack is a data structure 
representing a stack of things.

● Objects can be pushed on top of 
the stack or popped from the top of 
the stack.

● Only the top of the stack can be 
accessed; no other objects in the 
stack are visible.

● This is why it’s called the call stack 
and we talk about stack traces.

0

42

137



  

An Application: Balanced Parentheses



  

Balancing Parentheses

  int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
  



  

Balancing Parentheses

  int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
  ^



  

Balancing Parentheses

  int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
  ^



  

Balancing Parentheses

  int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
   ^



  

Balancing Parentheses

  int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
    ^



  

Balancing Parentheses

  int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
     ^



  

Balancing Parentheses

  int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
      ^



  

Balancing Parentheses

  int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
       ^



  

Balancing Parentheses

  int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
        ^



  

Balancing Parentheses

  int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
         ^



  

Balancing Parentheses

  int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
         ^

(



  

Balancing Parentheses

  int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
          ^

(



  

Balancing Parentheses

  int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
          ^



  

Balancing Parentheses

  int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
           ^



  

Balancing Parentheses

  int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
            ^



  

Balancing Parentheses

  int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
            ^

{



  

Balancing Parentheses

  int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
             ^

{



  

Balancing Parentheses

  int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
              ^

{



  

Balancing Parentheses

  int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
               ^

{



  

Balancing Parentheses

  int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
                ^

{



  

Balancing Parentheses

  int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
                 ^

{



  

Balancing Parentheses

  int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
                 ^

(

{



  

Balancing Parentheses

  int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
                  ^

(

{



  

Balancing Parentheses

  int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
                   ^

(

{



  

Balancing Parentheses

  int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
                    ^

(

{



  

Balancing Parentheses

  int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
                     ^

(

{



  

Balancing Parentheses

  int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
                      ^

(

{



  

Balancing Parentheses

  int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
                      ^

(

(

{



  

Balancing Parentheses

  int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
                       ^

(

(

{



  

Balancing Parentheses

  int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
                        ^

(

(

{



  

Balancing Parentheses

  int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
                         ^

(

(

{



  

Balancing Parentheses

  int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
                          ^

(

(

{



  

Balancing Parentheses

  int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
                           ^

(

(

{



  

Balancing Parentheses

  int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
                            ^

(

(

{



  

Balancing Parentheses

  int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
                            ^

(

(

{

[



  

Balancing Parentheses

  int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
                             ^

(

(

{

[



  

Balancing Parentheses

  int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
                              ^

(

(

{

[



  

Balancing Parentheses

  int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
                              ^

(

(

{



  

Balancing Parentheses

  int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
                               ^

(

(

{



  

Balancing Parentheses

  int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
                               ^

(

{



  

Balancing Parentheses

  int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
                                ^

(

{



  

Balancing Parentheses

  int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
                                 ^

(

{



  

Balancing Parentheses

  int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
                                  ^

(

{



  

Balancing Parentheses

  int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
                                   ^

(

{



  

Balancing Parentheses

  int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
                                    ^

(

{



  

Balancing Parentheses

  int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
                                     ^

(

{



  

Balancing Parentheses

  int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
                                      ^

(

{



  

Balancing Parentheses

  int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
                                      ^

{



  

Balancing Parentheses

  int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
                                       ^

{



  

Balancing Parentheses

  int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
                                        ^

{



  

Balancing Parentheses

  int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
                                        ^

{

{



  

Balancing Parentheses

  int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
                                         ^

{

{



  

Balancing Parentheses

  int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
                                          ^

{

{



  

Balancing Parentheses

  int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
                                           ^

{

{



  

Balancing Parentheses

  int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
                                            ^

{

{



  

Balancing Parentheses

  int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
                                             ^

{

{



  

Balancing Parentheses

  int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
                                              ^

{

{



  

Balancing Parentheses

  int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
                                               ^

{

{



  

Balancing Parentheses

  int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
                                                ^

{

{



  

Balancing Parentheses

  int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
                                                 ^

{

{



  

Balancing Parentheses

  int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
                                                 ^

{



  

Balancing Parentheses

  int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
                                                  ^

{



  

Balancing Parentheses

  int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
                                                   ^

{



  

Balancing Parentheses

  int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
                                                   ^



  

Balancing Parentheses

  int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
                                                    ^



  

Balancing Parentheses

  int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
                                                    



  

Balancing Parentheses

  int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
                                                    

Let’s go code 
this up!

Let’s go code 
this up!



  

Our Algorithm

● For each character:
● If it’s an open parenthesis or brace, push it 

onto the stack.
● If it’s a close parenthesis or brace:

– If the stack is empty, report an error.
– If the character doesn’t pair with the character on 

top of the stack, report an error.

● At the end, return whether the stack is 
empty (nothing was left unmatched.)



  

Great Exercise: Reimplement this 
function purely using the call stack and 

recursion rather than a Stack<char>.



  

Other Stack Applications

● Stacks show up all the time in parsing, recovering the 
structure in a piece of text.
● Often used in natural language processing; take CS224N for 

details!
● Used all the time in compilers – take CS143 for details!
● There’s a deep theorem that says that many structures 

appearing in natural language are perfectly modeled by 
operations on stacks; come talk to me after class if you’re 
curious!

● They’re also used as building blocks in larger algorithms 
for doing things like
● making sure a city’s road networks are navigable (finding 

strongly connected components; take CS161 for details!) and
● searching for the best solution to a problem (stay tuned!)



  

Time-Out for Announcements!



  

Assignment 1

● Assignment 1 is due this Friday at the 
start of class.

● Have questions?
● Stop by the LaIR!
● Ask on Piazza!
● Email your section leader!



  

Sections This Week

● Sections start this week! You should have 
received your section assignment over 
email on Tuesday.
● Didn’t get it? Check cs198.stanford.edu for 

your assignment.
● Section solutions are available on the 

course website. We recommend looking at 
them only after working through the 
relevant problems.



  

YEAH Hours

● We’ll be holding YEAH Hours (Your Early 
Assignment Help Hours), an assignment 
review session, for Assignment 2 when it 
goes out on Friday.

● YEAH Hours will be held this Friday at 
3:30PM in Shriram 104.

● Can’t make it? No worries! We’ll post 
slides on the website.



  

Many Happy Returns!



  

Queue



  

Queue

● A Queue is a data structure representing a 
waiting line.

● Objects can be enqueued to the back of 
the line or dequeued from the front of 
the line.

● No other objects in the queue are visible.
● Example: A checkout counter.

137



  

Queue

● A Queue is a data structure representing a 
waiting line.

● Objects can be enqueued to the back of 
the line or dequeued from the front of 
the line.

● No other objects in the queue are visible.
● Example: A checkout counter.

137 42



  

Queue

● A Queue is a data structure representing a 
waiting line.

● Objects can be enqueued to the back of 
the line or dequeued from the front of 
the line.

● No other objects in the queue are visible.
● Example: A checkout counter.

137 42 271



  

Queue

● A Queue is a data structure representing a 
waiting line.

● Objects can be enqueued to the back of 
the line or dequeued from the front of 
the line.

● No other objects in the queue are visible.
● Example: A checkout counter.

42 271



  

Queue

● A Queue is a data structure representing a 
waiting line.

● Objects can be enqueued to the back of 
the line or dequeued from the front of 
the line.

● No other objects in the queue are visible.
● Example: A checkout counter.

42 271 314



  

Queue

● A Queue is a data structure representing a 
waiting line.

● Objects can be enqueued to the back of 
the line or dequeued from the front of 
the line.

● No other objects in the queue are visible.
● Example: A checkout counter.

271 314



  

Queue

● A Queue is a data structure representing a 
waiting line.

● Objects can be enqueued to the back of 
the line or dequeued from the front of 
the line.

● No other objects in the queue are visible.
● Example: A checkout counter.

314



  

An Application: The Library of Babel



  

The Library of Babel

● Short story by Jorge Luis 
Borges about a library 
containing all possible 
books of a certain length.

● Fun exposition about the 
nature of the finite and 
the infinite, about what 
truth means, and how 
people react to these 
concepts.

● Question: How would 
you generate all these 
books?



  

"" "A" "B" "AA" "AB" "BA" "BB"



  

""

"A" "B"

"AA" "AB" "BA" "BB"



  

""

"A" "B"

"AA" "AB" "BA" "BB"



  

""

"A" "B"

"AA" "AB" "BA" "BB"



  

""

"A" "B"

"AA" "AB" "BA" "BB"

""



  

""

"A" "B"

"AA" "AB" "BA" "BB"

""



  

""

"A" "B"

"AA" "AB" "BA" "BB"

""



  

""

"A" "B"

"AA" "AB" "BA" "BB"

"" "A" "B"



  

""

"A" "B"

"AA" "AB" "BA" "BB"

"A" "B"



  

""

"A" "B"

"AA" "AB" "BA" "BB"

"A"

"B"



  

""

"A" "B"

"AA" "AB" "BA" "BB"

"A"

"B"



  

""

"A" "B"

"AA" "AB" "BA" "BB"

"A"

"B"

"AA" "AB"



  

""

"A" "B"

"AA" "AB" "BA" "BB"

"B" "AA" "AB"



  

""

"A" "B"

"AA" "AB" "BA" "BB"

"B"

"AA" "AB"



  

""

"A" "B"

"AA" "AB" "BA" "BB"

"B"

"AA" "AB"



  

""

"A" "B"

"AA" "AB" "BA" "BB"

"B"

"AA" "AB"

"BA" "BB"



  

""

"A" "B"

"AA" "AB" "BA" "BB"

"AA" "AB" "BA" "BB"



  

""

"A" "B"

"AA" "AB" "BA" "BB"

"AA"

"AB" "BA" "BB"



  

""

"A" "B"

"AA" "AB" "BA" "BB"

"AA"

"AB" "BA" "BB"



  

""

"A" "B"

"AA" "AB" "BA" "BB"

"AB" "BA" "BB"



  

""

"A" "B"

"AA" "AB" "BA" "BB"

"AB"

"BA" "BB"



  

""

"A" "B"

"AA" "AB" "BA" "BB"

"AB"

"BA" "BB"



  

""

"A" "B"

"AA" "AB" "BA" "BB"

"BA" "BB"



  

""

"A" "B"

"AA" "AB" "BA" "BB"

"BA"

"BB"



  

""

"A" "B"

"AA" "AB" "BA" "BB"

"BA"

"BB"



  

""

"A" "B"

"AA" "AB" "BA" "BB"

"BB"



  

""

"A" "B"

"AA" "AB" "BA" "BB"

"BB"



  

""

"A" "B"

"AA" "AB" "BA" "BB"

"BB"



  

""

"A" "B"

"AA" "AB" "BA" "BB"



  

Let’s code it up!



  

Our Algorithm

● Start with the empty string in a queue.
● While there are still things in the queue:

● Pull one off.
● Print it.
● If it isn’t at the maximum length:

– For each possible next character, enqueue the 
string formed by tacking the character onto the 
end of the recently-dequeued string.



  

Breadth-First Search

● This general algorithm is called breadth-
first search.

● It’s often used to find the fastest or best way 
to do something, since it lists objects in 
increasing order of “size.”

● The algorithm that Google Maps uses is 
closely related to this algorithm. Stay tuned 
for details!

● You’ll see some other applications of this 
algorithm in Assignment 2.



  

Your Action Items

● Read Chapter 5 of the textbook, which 
talks about container classes.

● Finish Assignment 1. It’s due on Friday.
● Read the style guide up on the course 

website for more information about good 
programming style.

● Review the Assignment Submission Checklist 
to make sure your code is ready to submit.



  

Next Time

● Associative Containers
● Data sets aren’t always linear!

● Maps, Sets, and Lexicons
● Three ways to organize information.


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134

