

Strings in C++

Recap from Last Time

Recursion on Numbers

● Here’s a recursive function that computes n!:

 int factorial(int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * factorial(n – 1);
 }
 }

● Here’s a recursive implementation of a function to compute
the sum of the digits of a number:

 int sumOfDigitsOf(int n) {
 if (n < 10) {
 return n;
 } else {
 return sumOfDigitsOf(n / 10) + (n % 10);
 }
 }

Thinking Recursively

if (The problem is very simple) {

 Directly solve the problem.

 Return the solution.

 } else {

 Split the problem into one or more
 smaller problems with the same
 structure as the original.

 Solve each of those smaller problems.

 Combine the results to get the overall
 solution.

 Return the overall solution.

}

These simple cases
are called base

cases.

These simple cases
are called base

cases.

These are the
recursive cases.

These are the
recursive cases.

New Stuff!

Digital Roots Revisited

● Here’s some code to compute the digital
root of a number:

 int digitalRootOf(int n) {
 while (n >= 10) {
 n = sumOfDigitsOf(n);
 }
 return n;
 }

● How might we write this recursively?

Thinking Recursively

if (The problem is very simple) {

 Directly solve the problem.

 Return the solution.

 } else {

 Split the problem into one or more
 smaller problems with the same
 structure as the original.

 Solve each of those smaller problems.

 Combine the results to get the overall
 solution.

 Return the overall solution.

}

These simple cases
are called base

cases.

These simple cases
are called base

cases.

These are the
recursive cases.

These are the
recursive cases.

Digital Roots

Digital Roots

9 2 5 8The digital root of

Digital Roots

9 2 5 8The digital root of is the same as

Digital Roots

9 2 5 8The digital root of

The digital root of

is the same as

9 2 5 8+ + +

Digital Roots

9 2 5 8The digital root of

The digital root of

is the same as

2 4

Digital Roots

9 2 5 8The digital root of

The digital root of

is the same as

2 4 which is the same as

Digital Roots

9 2 5 8The digital root of

The digital root of

is the same as

2 4 which is the same as

The digital root of 2 4+

Digital Roots

9 2 5 8The digital root of

The digital root of

is the same as

2 4 which is the same as

The digital root of 6

Strings in C++

C++ Strings

● C++ strings are represented with the string type.
● To use string, you must

#include <string>

at the top of your program.
● You can get the number of characters in a string

by calling either of these functions:

str.length() str.size()
● You can read a single character in a string by

writing

str[index]

Strings and Characters

● In C++, there are two types for
representing text:
● The char type (character) represents a single

glyph (letter, punctuation symbol, space, etc.)
● The string type represents a sequence of zero

or more characters.
● Keep this in mind if you’re transitioning

to C++ from Python or JavaScript.

Strings are Mutable

● Unlike Java, JavaScript, and Python strings,
C++ strings are mutable and their contents
can be modified.

● To change an individual character of a string,
write

str[index] = ch;
● To append more text, you can write

str += text;
● These operations directly change the string

itself, rather than making a copy of the string.

Other Important Differences

● In C++, the == operator can directly be used to compare
strings:

 if (str1 == str2) {
 /* strings match */
 }

● You can get a substring of a string by calling the substr
method. substr takes in a start position and optional length
(not an end position!)

 string allButFirstChar = str.substr(1);
 string allButFirstAndLast = str.substr(1, str.length() - 2);

p r a i s i n g
0 1 2 3 4 5 6 7

Other Important Differences

● In C++, the == operator can directly be used to compare
strings:

 if (str1 == str2) {
 /* strings match */
 }

● You can get a substring of a string by calling the substr
method. substr takes in a start position and optional length
(not an end position!)

 string allButFirstChar = str.substr(1);
 string allButFirstAndLast = str.substr(1, str.length() - 2);

p r a i s i n g
0 1 2 3 4 5 6 7

Other Important Differences

● In C++, the == operator can directly be used to compare
strings:

 if (str1 == str2) {
 /* strings match */
 }

● You can get a substring of a string by calling the substr
method. substr takes in a start position and optional length
(not an end position!)

 string allButFirstChar = str.substr(1);
 string allButFirstAndLast = str.substr(1, str.length() - 2);

p r a i s i n g
0 1 2 3 4 5 6 7

p g

Other Important Differences

● In C++, the == operator can directly be used to compare
strings:

 if (str1 == str2) {
 /* strings match */
 }

● You can get a substring of a string by calling the substr
method. substr takes in a start position and optional length
(not an end position!)

 string allButFirstChar = str.substr(1);
 string allButFirstAndLast = str.substr(1, str.length() - 2);

r a i s i n
0 1 2 3 4 5 6 7

Even More Differences

● In Java and JavaScript you can
concatenate just about anything with a
string.

● In C++, you can only concatenate strings
and characters onto other strings.

● Use the to_string function to convert
things to strings:

string s = "He really likes " + to_string(137);

s += "And also apparently " + to_string(2.718);

Time-Out for Announcements!

Migrating to C++ Session

● We’ll be holding an extra about migrating
from Python or JavaScript to C++.
Details below:

Monday, January 14th

7:00PM – 8:30PM
Hewlett 102

● Feel free to stop on by!

Assignment 0

● Assignment 0 was due at the start of
today’s lecture.

● Didn’t finish it in time? Don’t worry – you
can use your late days to extend the
deadline.

Assignment 1

● Assignment 1: Welcome to C++ goes out today.
It’s due on Friday, January 18th at the start of class.
● Play around with C++ and the Stanford libraries!
● Get some practice with recursion.
● Explore the debugger!
● Teach the computer to read, sorta. ☺

● We recommend making slow and steady progress on
this assignment throughout the course of the week.

● There’s a recommended timetable on the front page
of the handout.

Late Days

● Everyone has two free “late days” to use
as needed.

● A “late day” is an automatic extension for
one class period (Monday to Wednesday,
Wednesday to Friday, or Friday to
Monday).

● If you need an extension beyond late
days, please talk to Kate. Your section
leader cannot grant extensions.

Assignment Grading

● Your coding assignments are graded on both functionality
and on coding style.

● The functionality score is based on correctness.
● Do your programs produce the correct output?
● Do they work on all inputs?
● etc.

● The style score is based on how well your program is
written.

● Are your programs well-structured?
● Do you decompose problems into smaller pieces?
● Do you use variable naming conventions consistently?
● etc.

Section Signups

● Section signups are open right now.
They close Sunday at 5PM.

● Sign up for section at

https://cs198.stanford.edu/
● Click on “CS106 Sections Login,” then

choose “Section Signup.”

https://cs198.stanford.edu/

One More Unto the Breach!

Recursion and Strings

Thinking Recursively

1 2 5 8

1 2 5 8

Thinking Recursively

I B E X

I B E X

Reversing a String

N u b i a n I b e x

x e b I n a i b u N

Reversing a String

N u b i a n I b e x

x e b I n a i b u N

Reversing a String

N u b i a n I b e x

x e b I n a i b u N

Reversing a String

N b i a n I b e x

x e b I n a i b Nu

u

Reversing a String

N b i a n I b e x

x e b I n a i b Nu

u

Reversing a String Recursively

T O PreverseOf(" ") =

O Preverse(" ") =

Preverse(" ") =

TO Preverse(" ") +

OPreverse(" ") +

Preverse(" ") +

Reversing a String Recursively

T O PreverseOf(" ") =

O Preverse(" ") =

Preverse(" ") =

OPreverse(" ") +

Preverse(" ") +

TO PreverseOf(" ") +

Reversing a String Recursively

T O PreverseOf(" ") =

O PreverseOf(" ") =

Preverse(" ") =

OPreverse(" ") +

Preverse(" ") +

TO PreverseOf(" ") +

Reversing a String Recursively

T O PreverseOf(" ") =

O PreverseOf(" ") =

Preverse(" ") = Preverse(" ") +

TO PreverseOf(" ") +

OPreverseOf(" ") +

Reversing a String Recursively

T O PreverseOf(" ") =

O PreverseOf(" ") =

PreverseOf(" ") = Preverse(" ") +

TO PreverseOf(" ") +

OPreverseOf(" ") +

Reversing a String Recursively

T O PreverseOf(" ") =

O PreverseOf(" ") =

PreverseOf(" ") =

TO PreverseOf(" ") +

OPreverseOf(" ") +

PreverseOf("") +

Reversing a String Recursively

T O PreverseOf(" ") =

O PreverseOf(" ") =

PreverseOf(" ") =

reverseOf("") = ""

TO PreverseOf(" ") +

OPreverseOf(" ") +

PreverseOf("") +

Reversing a String Recursively

T O PreverseOf(" ") =

O PreverseOf(" ") =

PreverseOf(" ") =

reverseOf("") = ""

P"" +

TO PreverseOf(" ") +

OPreverseOf(" ") +

Reversing a String Recursively

T O PreverseOf(" ") =

O PreverseOf(" ") =

PreverseOf(" ") =

reverseOf("") = ""

P

TO PreverseOf(" ") +

OPreverseOf(" ") +

Reversing a String Recursively

T O PreverseOf(" ") =

O PreverseOf(" ") =

PreverseOf(" ") =

reverseOf("") = ""

O +

P

P

TO PreverseOf(" ") +

Reversing a String Recursively

T O PreverseOf(" ") =

O PreverseOf(" ") =

PreverseOf(" ") =

reverseOf("") = ""

O

P

P

TO PreverseOf(" ") +

Reversing a String Recursively

T O PreverseOf(" ") =

O PreverseOf(" ") =

PreverseOf(" ") =

reverseOf("") = ""

T +

O

P

P

OP

Reversing a String Recursively

T O PreverseOf(" ") =

O PreverseOf(" ") =

PreverseOf(" ") =

reverseOf("") = ""

T

O

P

P

OP

Thinking Recursively

if (The problem is very simple) {

 Directly solve the problem.

 Return the solution.

 } else {

 Split the problem into one or more
 smaller problems with the same
 structure as the original.

 Solve each of those smaller problems.

 Combine the results to get the overall
 solution.

 Return the overall solution.

}

These simple cases
are called base

cases.

These simple cases
are called base

cases.

These are the
recursive cases.

These are the
recursive cases.

DNA Strands

DNA Strands

● Each strand of DNA consists of a series of
nucleotides. There are four nucleotides,
abbreviated A, C, G, and T.

● Each nucleotide pairs with another:

A pairs with T C pairs with G
● Two strands are called complementary if

each nucleotide in the first pairs with the
corresponding nucleotide in the second.

A T T G C C GT A TC A

T A A C G G CA T AG T

DNA Strands

● Let’s write a recursive function

bool areComplementary(string one, string two);

that takes as input two strings representing DNA
strands, then returns whether they’re complementary.

● Questions to keep in mind as we work through this:
● What are our base cases? That is, what are the simplest

cases we can consider?
● What is our recursive step? That is, how do we simplify the

problem down?

A T T G C C GT A TC A

T A A C G G CA T AG T

Legal PairsLegal Pairs

A

T

C

G

A

T

Because
these bases

pair…

Because
these bases

pair…

…we can see whether
these entire strands
are complements…

…we can see whether
these entire strands
are complements…

G

C

C

G

T

A

… by seeing whether
these smaller strands are

complements.

… by seeing whether
these smaller strands are

complements.

Legal PairsLegal Pairs

A

T

C

G

A

T

G

C

C

G

T

A

If both strands are empty,
then they complement one

another because there aren’t
any mismatches!

If both strands are empty,
then they complement one

another because there aren’t
any mismatches!

Legal PairsLegal Pairs

A

T

C

G

A

T

C

A

A

T

T

A

The first characters of
these strands don’t pair,

so we’re done!

The first characters of
these strands don’t pair,

so we’re done!

Legal PairsLegal Pairs

A

T

C

G

A

T

G

C

C

G

A

T

T

The other string is
empty, so this letter

can’t pair with anything!

The other string is
empty, so this letter

can’t pair with anything!

Legal PairsLegal Pairs

A

T

C

G

DNA Strands

● Base Cases:
● If both strands are empty, they are

complementary.
● If one strand is empty and the other

isn’t, they are not complementary.
● If the first characters don’t pair,

they are not complementary.
● Recursive Step:

● If the first characters do match,
drop them and see whether the rest
matches.

Thinking Recursively

if (The problem is very simple) {

 Directly solve the problem.

 Return the solution.

 } else {

 Split the problem into one or more
 smaller problems with the same
 structure as the original.

 Solve each of those smaller problems.

 Combine the results to get the overall
 solution.

 Return the overall solution.

}

These simple cases
are called base

cases.

These simple cases
are called base

cases.

These are the
recursive cases.

These are the
recursive cases.

Recap from Today

● Recursion works by identifying
● one or more base cases, simple cases that can be

solved directly, and
● one or more recursive cases, where a larger problem

is turned into a smaller one.
● C++ strings have some endearing quirks

compared to other languages. Importantly,
they’re mutable.

● Recursion is everywhere! And you can use it on
strings.

Your Action Items

● Read Chapter 3 and Chapter 4 of the
textbook to learn more about strings and
to get an intro to file processing.

● Start working on Assignment 1. Aim to
complete Stack Overflows and one or two
of the recursion problems by Monday.

Next Time

● The Vector Type
● Storing sequences in C++!

● Recursion on Vectors.
● Of course. ☺

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	After this slide, do a quick char-by-char printing example.
	Slide 18
	Do "convertToUpperCase"
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66

