YEAH - Trailblazer

Anton Apostolatos

Trailblazer To-Do

Path breadthFirstSearch(RoadGraph graph, RoadNode* start, RoadNode* end)
Path dijkstrasAlgorithm(RoadGraph graph, RoadNode* start, RoadNode* end)
Path aStar(RoadGraph graph, RoadNode* start, RoadNode* end)

Path alternateRoute(RoadGraph graph, RoadNode* start, RoadNode* end)

— S) [representing roadmaps. It demonstrates several graph
_Dijkstra %] Delay: (®Run | @ Clear | ialgorithms for finding paths, such as breadth-first
search (BFS), Dijkstra's Algorithm, and Ax search,
You can use alternate route to find a different path.

|Loading world from map-usa.txt ...

Preparing world model ...

\World model completed.

|

]Loading world from map-middleearth.txt ...
Preparing world model ...

World model completed.

|

ILooking for a path from Hobbiton to Mount Doom.
|Executing breadth-first search algorithm ...
|Algorithm complete.

Path length: 7

|Path cost: 186

Locations visited: 14

Looking for a path from Hobbiton to Mount Doom.
Executing Dijkstra's algorithm ...

Algorithm complete.

Path length: 9

Path cost: 175

|Locations visited: 14

RoadGraph

class RoadGraph {
/* Returns the set of all the nodes adjacent to the given node. */
Set<RoadNode*> neighborsOf(RoadNode* v) const;

/* Given a start and end node, returns the edge that links them, or
* nullptr if there is no such edge. */
RoadEdge* getEdge(RoadNode* start, RoadNode* end) const;

/* Returns the highest speed permitted on any road in the network. */
double getMaxRoadSpeed() const;

/* Returns the "straight-line" distance between the two nodes; that is,
* the distance between them if you just drew a line connecting them. */
double getCrowFlyDistance(RoadNode* start, RoadNode* end) const;

}s

RoadNode

class RoadNode {
string nodeName() const; // Name of the node, for testing and debugging

Set<RoadEdge*> outgoingEdges() const; // Outgoing edges from this node

void setColor(Color color); // Should be one of Color::GRAY, Color::YELLOW, or Color::GREEN
// Node: there is no function to read colors

string toString() const; // For debugging
}s5

RoadEdge

class RoadEdge {

RoadNode* from() const; // Which node this edge starts from
RoadNode* to() const; // Where node this edge ends at
double cost() const; // The cost associated with this edge
string toString() const; // For debugging

}s

Path

using Path = Vector<RoadNode*>;

RoadNode* current;
Vector<RoadNode*> vec;
vec.add(current);

&

RoadNode* current;
Path vec;
vec.add(current);

Area 50 Piedmont Las Trampas s
A3 Regianal Blackhawk
Oakland Wilderness
—
5804
Alameda
271 John F Island San Ramon
Kennedy ngri\r_e. Alameds \
[580, Anthony Brookshire
| | Chabot
':) Regional Park
|
] Dougherty
| o5
f= 51 min '§ Castro Valley
57.2 km o — L
\ = 80,
W | 1 & Hayward
S Scuthan Plea
2804 Frangjsco
: Sorenson
35) Garin
Regional Park Vert
1) L
Q Eden'Landing
i (37) Ecological Brightside
ol R{)_.,-rfr.,,-‘. Union City Sunol
LINDA MAR (34)
©)
6RO,
Fremont
Corral \ > ! (24)
iefra Highlands-Baywood ! Bair Island Newark
\Park
e -
. BED
8 S Don Edwards
e San Francisco D
@ Bay National
Wildlife.. Lo
Half
Moan Bay
O] Purisima Creek \ W
Redwooc (D) ®. R Milpitas
Open § @ — VIS0

Alternate Path

Goal: Find best path that is at least 20% different than best path

of nodes in alt. path not in main path

diff =
of nodes in alt. path

Strategy:

1. Find optimal path start — end node

2. For each edge in optimal path, find shortest path start — end that doesn't
use that edge

3. Return best path found in (2) that is at least 20% different than best path

A revolutionary new algorithm...

AntonSearch!

anton-search(): Worst case? 0(°°)

create an empty path

make a current node equal to the start node
color the start node green
add the start node to the path

while (the current node is not the end node) {

randomly sample a new current node that is a neighbor of current
color current green
add current to the path

}

return the constructed path

Demo!

Extension: What if | don't want it
to be O()?

%D

Note: this algorithm is a terrible

anton-super-search(): graph search algorithm (it will
rarely give you even a correct
create an empty path answer!). It is only meant as an

exercise in writing pseudo-code.
make a current node equal to the start node

color the start node green
add the start node to the path

while (the current node is not the end node) {
if (current node has been seen more than once) {
return an empty path

}

randomly sample a new current node that is a neighbor of current
color current green
add current to the path

}

return the constructed path

Demo!

General questions?

