
YEAH - Trailblazer
Anton Apostolatos



Trailblazer To-Do

Path breadthFirstSearch(RoadGraph graph, RoadNode* start, RoadNode* end)

Path dijkstrasAlgorithm(RoadGraph graph, RoadNode* start, RoadNode* end)

             Path aStar(RoadGraph graph, RoadNode* start, RoadNode* end)

    Path alternateRoute(RoadGraph graph, RoadNode* start, RoadNode* end)





RoadGraph
class RoadGraph { 

    /* Returns the set of all the nodes adjacent to the given node. */ 

    Set<RoadNode*> neighborsOf(RoadNode* v) const;

    /* Given a start and end node, returns the edge that links them, or

     * nullptr if there is no such edge. */

    RoadEdge* getEdge(RoadNode* start, RoadNode* end) const;

    

    /* Returns the highest speed permitted on any road in the network. */

    double getMaxRoadSpeed() const;

    /* Returns the "straight-line" distance between the two nodes; that is,

     * the distance between them if you just drew a line connecting them. */

    double getCrowFlyDistance(RoadNode* start, RoadNode* end) const; 

};



RoadNode

class RoadNode { 

    string nodeName() const;     // Name of the node, for testing and debugging

    Set<RoadEdge*> outgoingEdges() const; // Outgoing edges from this node

    

    void setColor(Color color); // Should be one of Color::GRAY, Color::YELLOW, or Color::GREEN

// Node: there is no function to read colors

    string toString() const; // For debugging 

};



RoadEdge
class RoadEdge { 

    RoadNode* from() const; // Which node this edge starts from

 

    RoadNode* to() const; // Where node this edge ends at 

    double cost() const; // The cost associated with this edge

    string toString() const; // For debugging 

};



Path

using Path = Vector<RoadNode*>;

RoadNode* current;

Vector<RoadNode*> vec;

vec.add(current);

RoadNode* current;

Path vec;

vec.add(current);





Alternate Path

Goal: Find best path that is at least 20% different than best path

    # of nodes in alt. path not in main path 
  diff =

   # of nodes in alt. path

Strategy:

1. Find optimal path start → end node

2. For each edge in optimal path, find shortest path  start → end  that doesn’t 

use that edge

3. Return best path found in (2) that is at least 20% different than best path



A revolutionary new algorithm...

AntonSearch!



anton-search():

    create an empty path

    make a current node equal to the start node
    color the start node green
    add the start node to the path

    while (the current node is not the end node) {
        randomly sample a new current node that is a neighbor of current
        color current green
        add current to the path
    }

    return the constructed path

Worst case?  O(∞)



Demo!



Extension: What if I don’t want it 
to be O(∞)?



anton-super-search():

    create an empty path

    make a current node equal to the start node
    color the start node green
    add the start node to the path

    while (the current node is not the end node) {
if (current node has been seen more than once) {

return an empty path
}

        randomly sample a new current node that is a neighbor of current
        color current green
        add current to the path
    }

    return the constructed path

Note: this algorithm is a terrible 
graph search algorithm (it will 
rarely give you even a correct 
answer!). It is only meant as an 
exercise in writing pseudo-code.



Demo!



General questions?


