
This	document	 is	copyright	(C)	Stanford	Computer	Science	 and	Marty	Stepp,	licensed	under	Creative	Commons	Attribution	2.5	License.		All	rights	reserved.
Based	on	 slides	created	by	Keith	Schwarz,	Julie	Zelenski,	Jerry	Cain,	Eric	Roberts,	Mehran	Sahami,	Stuart	Reges,	Cynthia	Lee, and	others.

A6 - Huffman Encoding
YEAH Hours

2

3

Problem

ataata -> 01100001 01110100 01100001 01100001 01110100 01100001

Thought: Let’s represent ‘a’ with less characters!

a a a a

48 characters

4

Proposed Solution

ataata -> 01 01110100 01 01 01110100 01
a

24 characters!

Let’s arbitrarily represent ‘a’ with 01

a a a

Why did we choose ‘a’?

How do we scale this?

5

Huffman encoding
Uses variable lengths for different characters to take advantage of
their relative frequencies.

Char ASCII	value ASCII	(binary) Hypothetical	Huffman
' ' 32 00100000 10

'a' 97 01100001 0001

'b' 98 01100010 01110100

'c' 99 01100011 001100

'e' 101 01100101 1100

'z' 122 01111010 00100011110

6

Huffman Tree

Frequencies: {' ':2, 'a':3, 'b':3, 'c':1, EOF:1}

bac aab b

file.txt

7

Huffman compression
1. Count occurrences of each char in file
{' ':2, 'a':3, 'b':3, 'c':1, EOF:1}

2a. Place chars, counts into priority queue

3. Write logic to free the tree!

4. Traverse tree to find (char → binary) encoding map
{' ':00, 'a':11, 'b':10, 'c':010, EOF=011}

5. Convert to binary (For each char in file, look up binary rep in map)
11 10 00 11 10 00 010 1 1 10 011 00

2b. Use PQ to create Huffman tree →

8

(1) Count occurrences

Map<int, int> buildFrequencyTable(istream& input)

Take as input an istream containing the file to compress, then hands back a
Map associating each character in the file with its frequency.

{' ':2, 'a':3, 'b':3, 'c':1, EOF:1}

bac aab b

9

(2) Build Huffman Tree

HuffmanNode* buildEncodingTree(Map<int, int> freqTable)

Take as input a Map associating each character in the file with its frequency
containing the file to compress, then hands back a Huffman encoding tree

10

HuffmanNode

The character field is declared as type int, but you should think of it as a
char. The character field can take one of three types of values:
• char value
• PSEUDO_EOF which represents the pseudo-EOF value
• NOT_A_CHAR which represents something that isn't actually a character

HuffmanNode* {
int character; // character being represented by this node
int count; // number of occurrences of that character
HuffmanNode* zero; // 0 (left) subtree (nullptr if empty)
HuffmanNode* one; // 1 (right) subtree (nullptr if empty)

}

11

(2a) Place occurrences into PQueue

Map: {' ':2, 'a':3, 'b':3, 'c':1, EOF:1}

PQueue: [EOF:1, 'c':1, ' ':2, 'a':3, 'b':3]

Your PQueue
pq.enqueue(elem)

Stanford PQueue
pq.enqueue(value, priority)

12

(2b) Build tree

13

(3) Tree to binary encodings
• The Huffman tree tells you the binary encodings to use.

– example: 'b' is 10
– example: 'c' is 010

{' ':00, 'a':11, 'b':10, 'c':010, EOF:011}

14

(4) Encode the file

void encodeData(istream input,
Map<int, string> encodingMap,
obistream output)

Take as input an istream of text to compress, a Map associating each character with
the bit sequence to use to encode it, then writes everything to the obitstream

15

obitstream

obitstream: Writes one bit at a time to output.

– obitstream also contains the members from ostream.
•open, read, write, fail, close

void writeBit(int bit) Writes	a	single	bit	(must	be	0	or	1)

16

(4) Encode the file
• Based on the preceding tree, we have the following encodings:

{' ':00, 'a':11, 'b':10, 'c':010, EOF:011}

– The text "ab ab cab" would be encoded as:

– Overall: 1110001110000101110011, (22 bits, ~3 bytes)

char 'a' 'b' ' ' 'a' 'b' ' ' 'c' 'a' 'b' EOF

binary 11 10 00 11 10 00 010 11 10 011

byte 1 2 3

char a b a b c a b EOF

binary 11 10 00 11 10 00 010 1 1 10 011 00

17

Decompressing

1011010001101011011

– Read each bit one at a time.
– If it is 0, go left; if 1, go right.
– If you reach a leaf, output the

character there and go back
to the tree root.

• Output:
bac aca

1011010001101011011
b a c _ a c a

Wait… Don’t you need delimiters?!?

18

Decompressing II

How do we know what the map is for decompressing?

Include the mapping in the file itself!
{32:2, 97:3, 98:3, 99:1, 256:1}

Hint: Maps can easily be read and written to/from
streams using << and >> operators

19

(5) Decode the file

void decodeData(ibitstream input,
HuffmanNode* encodingTree,
ostream out)

Take as input an ibitstream of bits, a pointer encodingTree to the root of an
encoding tree, then writes everything to out

20

ibitstream

ibitstream: Reads one bit at a time from input.

– ibitstream also contains the members from istream.
•open, read, write, fail, close

int readBit() Reads	a	single	1	or	0;
returns	-1	at	end	of	file

21

Putting it all together
void compress(istream& input, obitstream& output)

This is the overall compression function; in this function you should compress
the given input file into the given output file. You will take as parameters an
input file that should be encoded and an output bit stream to which the
compressed bits of that input file should be written. You should:

- Read the input file one character at a time,
- Build an encoding of its contents
- Write a compressed version of that input file, including a header, to the

specified output file.

This function should be built on top of the other encoding functions and should
call them as needed

22

Putting it all together II
void decompress(ibitstream& input, ostream& output)

This function should do the opposite of compress;

- Read the bits from the given input file one at a time, including your header
packed inside the start of the file

- Write the original contents of that file to the file specified by the output
parameter.

23

Good luck Huffman encoding!

David A. Huffman

