
YEAH - Priority Queue
Anton Apostolatos

Source: XKCD

Queue: order items by when they were placed - first in, first out (FIFO)

Functions
void enqueue(string s) // Inserts an element into the queue
string dequeue() // Returns and removes the first element placed
string peek() // Returns the first element placed
int size() // Returns the number of elements
bool isEmpty() // Returns whether the queue is empty

PriorityQueue: order items by rank

Functions
void enqueue(string s) // Inserts an element into the priority queue
string dequeueMin() // Returns and removes the highest-ranked item
string peek() // Returns the highest-ranked item
int size() // Returns the number of elements
bool isEmpty() // Returns whether the queue is empty

Order is lexicographic/alphabetic!

“Albus” < “Ginny” < “Harry” < “Hermione” < “Ronald” < “Tom Marvolo”

PQueue pq;

pq.enqueue(“There”);
pq.enqueue(“And”);
pq.enqueue(“Back”);
pq.enqueue(“Again”);

cout << pq.dequeue << endl;
cout << pq.dequeue << endl;

Again
And

Console

Unsorted Vector

A5: PQueue

Sorted Singly-Linked List

Unsorted Doubly-Linked List

Binary Heap

Unsorted Vector

Unsorted and Vector wrapper - Simplest to implement and think about!

-> Enqueue: append to a vector!
-> Dequeue/peek: scan the vector and find the smallest element

dequeueMin()

Sorted Singly-Linked List

Draw as
you code!

You need to create a Linked List and enforce that all elements are
stored in lexicographic order

-> Enqueue: look for its place in the list and place it there
-> Dequeue/peek: first element!

enqueue()

Unsorted
Doubly-Linked List

Unsorted, but every cell now has a next and prev pointer

New functionality: You can splice (remove) a cell without needing to
keep a second pointer!

-> Enqueue: prepend new item to the list
-> Dequeue/peek: loop through list to find smallest element

Binary Heap
Slides by Chris Gregg!

Binary Heaps

A heap is a tree-based structure that satisfies
the heap property:

Parents have a higher priority than any of
their children.

Binary Heaps
•There are two types of heaps:

Min Heap

(root is the smallest element)

22

12

43

5

11

810

1314

2

17

7

50

3

3619

125

Max Heap

(root is the largest element)

Binary Heaps

•There are no implied orderings between siblings, so both of
the trees below are min-heaps:

5

1210

5

1012

Binary Heaps

•Circle the min-heap(s):

22

12

11

5

85

810

1314

25

24

26

13

99

3619

4246

Binary Heaps

•Circle the min-heap(s):

22

12

11

5

85

810

1314

25

24

26

13

99

3619

4246

Binary Heaps

Heaps are completely filled, with the exception
of the bottom level. They are, therefore,
"complete binary trees":

complete: all levels filled except the bottom

binary: two children per node (parent)
22

12

43

5

11

810

1314

height? log(n)

Binary Heaps

What is the best way to store a heap?

22

12

43

5

11

810

1314

We could use a node-based solution, but…

Binary Heaps

It turns out that an array works great for
storing a binary heap!

We will put the root at index 1 instead of
index 0 (this makes the math work out just a
bit nicer).

22

12

43

5

11

810

1314

5 10 8 12 11 14 13 22 43
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11]

Binary Heaps

The array representation makes determining parents and
children a matter of simple arithmetic:

For an element at position i:
- left child is at 2i
- right child is at 2i+1
- parent is at ⌊i/2⌋

5 10 8 12 11 14 13 22 43
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11]

22

12

43

5

11

810

1314

Heap Operations
Remember that there are three important
priority queue operations:

- peek(): return an element of h with the
smallest key.

- enqueue(e): insert element e into the
heap.

- dequeueMin(): removes the smallest
element from h.

We can accomplish this with a heap!
22

12

43

5

11

810

1314

Heap Operations: peek()

peek()

Just return the root!

return heap[1]

22

12

43

5

11

810

1314

5 10 8 12 11 14 13 22 43
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11]

Heap Operations: enqueue(k)

enqueue(k)

How might we go about inserting into a binary
heap?

22

12

43

5

11

810

1314

5 10 8 12 11 14 13 22 43
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11]

Heap Operations: enqueue(k)

Insert item at element array[heap.size()+1]
(this probably destroys the heap property)

Perform a “bubble up” operation:
- Compare the added element with its parent

- if in correct order, stop
- If not, swap and repeat

Heap Operations: enqueue(k)

22

12

43

5

11

810

1314

22

12

43

5

11

810

1314

5 10 8 12 11 14 13 22 43
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11]

Start by inserting the key at the first empty
position. This is always at index

heap.size()+1.

Heap Operations: enqueue(9)

22

12

43

5

11

810

1314

5 10 8 12 11 14 13 22 43 9
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11]

Start by inserting the key at the first empty
position. This is always at index

heap.size()+1.9

Heap Operations: enqueue(9)

Heap Operations: enqueue(9)

5 10 8 12 11 14 13 22 43 9
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11]

22

12

43

5

11

810

1314

9

Look at parent of index 10, and compare:
do we meet the heap property

requirement?

Heap Operations: enqueue(9)

5 10 8 12 11 14 13 22 43 9
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11]

22

12

43

5

11

810

1314

9

Look at parent of index 10, and compare:
do we meet the heap property

requirement?

No -- we must swap.

Heap Operations: enqueue(9)

22

12

43

5

9

810

1314

5 10 8 12 9 14 13 22 43 11
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11]

11

Heap Operations: enqueue(9)

22

12

43

5

9

810

1314

5 10 8 12 9 14 13 22 43 11
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11]

11
Look at parent of index 5, and compare: do

we meet the heap property requirement?

No -- we must swap.

Heap Operations: enqueue(9)

22

12

43

5

9

810

1314

5 10 8 12 9 14 13 22 43 11
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11]

11

Heap Operations: enqueue(9)

22

12

43

5

9 8

10 1314

5 9 8 12 10 14 13 22 43 11
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11]

11

Heap Operations: enqueue(9) 35

22

12

43

5

9 8

10 1314

5 9 8 12 10 14 13 22 43 11
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11]

11

No swap necessary between index 2 and its parent.
We're done bubbling up!

Demo!

http://www.cs.usfca.edu/~galles/visualization/Heap.html

http://www.cs.usfca.edu/~galles/visualization/Heap.html
http://www.cs.usfca.edu/~galles/visualization/Heap.html

Heap Operations: dequeue()

•How might we go about removing the
minimum?

dequeue()

5 9 8 12 10 14 11 22 43 13
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] 22

12

43

5

9 8

10 1114

13

Heap Operations: dequeue()

22

12

43

5

9 8

10 1114

13

We are removing the root, and we need to retain a
complete tree: replace root with last element.

“bubble-down” or “down-heap” the new root:

- Compare the root with its children:
- if in correct order, stop.
- if not, swap with smallest child, and repeat

Heap Operations: dequeue()

5 9 8 12 10 14 11 22 43 13
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11]

22

12

43

5

9 8

10 1114

13

Heap Operations: dequeue()

5 9 8 12 10 14 11 22 43 13
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11]

22

12

43

5

9 8

10 1114

13

Remove root (will return at the end)

Heap Operations: dequeue()
Move last element (at

heap[heap.size()]) to the root (this may
be unintuitive!) to begin bubble-down

5 9 8 12 10 14 11 22 43 13
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11]

22

12

43

9 8

10 1114

13

Heap Operations: dequeue()

Compare children of root with root: swap root with the smaller one (why?)

22

12

43

9 8

10 1114

13
13 9 8 12 10 14 11 22 43

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11]

Heap Operations: dequeue()
Keep swapping new element if necessary. In this case: compare 13 to 11

and 14, and swap with smallest (11).

22

12

43

9

8

10 1114

13
8 9 13 12 10 14 11 22 43

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11]

Heap Operations: dequeue()

13 has now bubbled down until it has no more children, so we are done!

22

12

43

9

8

10

11

14 13

8 9 11 12 10 14 13 22 43
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11]

Questions?

Tips and Tricks
- Height of a binary heap is O(log(n))

- Before writing any code, go through simple toy examples by hand to
make sure your proposed solution’s logic is sound

- Don’t forget the semicolon after a struct or class definition!

- Bad idea to declare multiple pointers on the same line:

Node * head, tail;

Tips and Tricks: Continued
- Nested structs are weird. If we create a cell inside of PQueue then a

helper function that returns a Cell* would be declared as:

Cell* helperFunction(Cell* ptr);

- And would be implemented as

PQueue::Cell* PQueue::helperFunction(Cell* ptr);

- Do your best to make your size functions not O(n)! → how?

- We’ll ask you for Big-O of every function you write!

General questions?

