YEAH - Priority Queue

Anton Apostolatos

MAN, | SUCK AT THIS GAME..
CAN YOU GIVE ME.
A FEW POINTERS?

0x3A28213A
0x6339232C,
Ox 7363682E.

| HATE YOU.

N

Source: XKCD

Queue: order items by when they were placed - first in, first out (FIFO)

Functions
void enqueue(string s) // Inserts an element into the queue
string dequeue() // Returns and removes the first element placed
string peek() // Returns the first element placed
int size() // Returns the number of elements

bool isEmpty() // Returns whether the queue is empty

PriorityQueue: order items by rank

void enqueue(string s)
string dequeueMin()
string peek()

int size()

bool isEmpty()

//
//
//
//
//

Functions
Inserts an element into the priority queue
Returns and removes the highest-ranked item
Returns the highest-ranked item
Returns the number of elements
Returns whether the queue is empty

Order is lexicographic/alphabetic!

“Albus®” < “Ginny” < “Harry” < “Hermione” < “Ronald” < “Tom Marvolo”

PQueue 5

E o Console
pg.enqueue(“There”); (@)
pg.enqueue(“And”); Again
pg.enqueue(“Back”); And
pg.enqueue(“Again”);

cout << pg.dequeue << endl; @&

cout << pg.dequeue << endl;

/ Unsorted Vector

"Little" | "Teresa" | "Kevin" "Paula"

Sorted Singly-Linked List

guokka j dikdik: /®

AS : P Q u e u e Unsorted Doubly-Linked List

Dora > Faye > Marten
Bianchi — Whitaker —— Reed
Binary Heap

Unsorted Vector

"Little"

"Teresa"

"Kevin"

"Paula"

Unsorted and Vector wrapper - Simplest to implement and think about!

-> Enqueue: append to a vector!
-> Dequeue/peek: scan the vector and find the smallest element

dequeueMin()
Tito Jermaine | Marlon | Michael Jermaine

U

Tito Marlon | Michael

Sorted Singly-Linked List

guokkar f dikdik: j®

Draw as
you code!

You need to create a Linked List and enforce that all elements are
stored in lexicographic order

-> Enqueue: look for its place in the list and place it there
-> Dequeue/peek: first element!

Gale Katniss Peeta Primrose
Hawthorne - Everdeen - Mellark - Everdeen

enqueue()

Haymitch

Abernathy

Gale o Haymitch Katniss I Peeta - Primrose
Hawthorne Abernathy e Everdeen Mellark Everdeen

Unsorted
Doubly-Linked List

Dora > Faye > Marten
Bianchi o Whitaker — Reed

Unsorted, but every cell now has a next and prev pointer

New functionality: You can splice (remove) a cell without needing to
keep a second pointer!

-> Enqueue: prepend new item to the list
-> Dequeue/peek: loop through list to find smallest element

listData I—P

Delete Joshua

—_——

location

Binary Heap

Slides by Chris Gregg!

1 2 3 4 5 & 7 & 5 10

18

15

5

1411

2

7

B

12

3

Binary Heaps

A heap is a tree-based structure that satisfies
the heap property:

Parents have a higher priority than any of
their children.

Binary Heaps

¢ There are two types of heaps:
Min Heap i Max Heap

(root is the smallest element) = (root is the largest element)

-5 _ ~50
10 8 19 36
/' \ /\ /' \ /' \
12 11 14 13 n 17 3 25 1
/ \ / \

22 43 I 2 7

Binary Heaps

eThere are no implied orderings between siblings, so both of
the trees below are min-heaps:

PN /2N
10 12 12 10

Binary Heaps

eCircle the min-heap(s):

2 N
10 8
7\ /' \
12 85 14

/\

22

11

13

13

N
19 36
/7 \ ‘' \
24 99 46 42

/\

25 26

Binary Heaps

eCircle the min-heap(s):

s N
10 8
/ \ /' \
12 85 14 13

/\

22 11

Binary Heaps

Heaps are completely filled, with the exception

of the bottom level. They are, therefore, P .
"complete binary trees": 10 8
/
complete: all levels filled except the bottom \ /N
12 11 14 13
binary: two children per node (parent) / \ I \ I\ I\
22 43

height? log(n)

Binary Heaps

What is the best way to store a heap?

- \

/\ /
12

/\ I\ I\
22 43

We could use a node-based solution, but...

Binary Heaps

It turns out that an array works great for
storing a binary heap!

N0
We will put the root at index 1 instead of 10 8
index 0 (this makes the math work out just a / \ / \
bit nicer).
12 11 14 13
NN NN

22 43

(o1 | [11 | [2] | [3]1 | [4] | [5]1 | [6]1 | [7] | [8] | [9] |[10]([11]

Binary Heaps

The array representation makes determining parents and

children a matter of simple arithmetic: P N\
10 8
For an element at position i:
- left child is at 2i £\ 7\
- right child is at 2i+1 12 11 14 13
- parent is at Li/2 /\ I\ I\ I\
22 43

(o1 | [11 | [2] | [3]1 | [4] | [5]1 | [6]1 | [7] | [8] | [9] |[10]([11]

Heap Operations

Remember that there are three important
priority queue operations:

peek(): return an element of h with the 2N
smallest key. 10 8
enqueue(e): insert element e into the / \ / \
heap.

. 12 14
dequeueMin(): removes the smallest /\ 11 13
element from h. I\ l\ I\

22 43
We can accomplish this with a heap!

Heap Operations: peek()

peek () _s q

Just return the root! /10\ /8 \
return heap[1] 12 11) (1a 13
/NN N

22 43

(o1 | [11 | [2] | [3]1 | [4] | [5]1 | [6]1 | [7] | [8] | [9] |[10]([11]

Heap Operations: enqueue(k)

enqueue (k)
2N
How might we go about inserting into a binary 10 8
heap? / \ / \
12 11 14 13
S AN A\

22 43

(o1 | [11 | [2] | [3]1 | [4] | [5]1 | [6]1 | [7] | [8] | [9] |[10]([11]

Heap Operations: enqueue(k)

Heap Operations: enqueue (k)

Insert item at element array[heap.size () +1] N
(this probably destroys the heap property) /10\ 8
/
Perform a “bubble up” operation: 12 11 14 \13
- Compare the added element with its parent /\
- if in correct order, stop I\ I\ I\
- If not, swap and repeat 22 43

Heap Operations: enqueue(9)

PR
/10\ 8 5 [10] 8 [12]11]14[13]22]43
/ \ [0] ([1] | [2] ([3] |[4] | [5]1 |61 | [7]1 | [8]1]| [9] |[10]]|[11]

12 11 14 13
/ \ Start by inserting the key at the first empty
I\ I\ I\ position. This is always at index
22 43 heap.size () +1.

Heap Operations: enqueue(9)

PR
/10\ 8 5 [10] 8 [12]11]14]13]22]43] o
/ \ [0] ([1] | [2] ([3] |[4] | [5]1 |61 | [7]1 | [8]1]| [9] |[10]]|[11]

12 11 14 13
/ \ i Start by inserting the key at the first empty
\ I\ I\ position. This is always at index
22)\8B3A2 heap.size () +1.

Heap Operations: enqueue(9)

I
10 8 5 [10] 8 [12[11]14[13]22]43] o
/ \ / \
[0] | [1] ([2] | [3]1 | [4]1|[5] | ([6]1]|I([7] | (8] | [9] |[10]([11]

12 11 14 13
/ \ I\ I\ I\ Look at parent of index 10, and compare:
22 43 9 do we meet the heap property
requirement?

Heap Operations: enqueue(9)

< 5 \\\~ "””__———--—~.--~‘;
8

10 5 [10] 8 [12[11|14[13]22]43] o
/ \ / \
[0] | [1] ([2] | [3]1 | [4]1|[5] | ([6]1]|I([7] | (8] | [9] |[10]([11]

12 11 14 13
/ \ < I\ I\ I\ Look at parent of index 10, and compare:

22 43 9 do we meet the heap property
requirement?

No -- we must swap.

Heap Operations: enqueue(9)

/NCIN N N

22 43 11

10

12

14

13

22

43

11

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

Heap Operations: enqueue(9)

PR
/10\ 8 5 [10] 8 [12] o [14[13]22[43]11
/ \ [0 ([1] | [2] ([3]1 |[4] |51 |61 | [7]1 | [8]1] [9] |[10]]|[11]

12 9 14 13
/ \ I\ I\ I\ Look at parent of index 5, and compare: do
22 43 11 we meet the heap property requirement?

No -- we must swap.

Heap Operations: enqueue(9)

10

12

14

13

22

43

11

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

Heap Operations: enqueue(9)

12

10

14

13

22

43

11

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

Heap Operations: enqueue(9)

No swap necessary between index 2 and its parent.
We're done bubbling up!

PR

2 8 5 o] 8[12]/10]/14]13]22]43[11
/ \ / \
[0 ([1] | [2] ([3] | [4] |51 |61 | [7]1 | [8]1] [9] |[10]]|[11]

/NN

22 43 11

Demo!

http://www.cs.usfca.edu/~qgalles/visualization/Heap.html

http://www.cs.usfca.edu/~galles/visualization/Heap.html
http://www.cs.usfca.edu/~galles/visualization/Heap.html

Heap Operations: dequeue()

eHow might we go about removing the

minimum?
PR
dequeue () 9 8
/ \ / \
12 10 14 11
5(9|8(12|{10(14(11|22|43 |13 /\ I\ I\ I\

[01 | [11| 121|131 | 1[41 |51 61| [71 81|91 |[101|[11] 22 43 13

Heap Operations: dequeue()

We are removing the root, and we need to retain a
complete tree: replace root with last element.

“bubble-down” or “down-heap” the new root: 5 .

- Compare the root with its children: 9 8
- if in correct order, stop. / \ / \
- if not, swap with smallest child, and repeat 12

/N N\ N\

22 43 13

Heap Operations: dequeue()

« N 5/9|8(|12|10(14(11(22|43|13
[0] | [1] ([2]1 | [3] | [4] | (51|61]| [7] | [8]]| [9] |[10]([11]
/ \ / \

/NN

22 43 13

Heap Operations: dequeue()

Remove root (will return at the end)

R
9/ N 5|9 (8 (12|10(14(11|22(43(13
8
[0] | [1] | [2] | [3]1 | [4] | (51|61]| [7] | [8]1]| [9] |[10]([11]
/ \ / \

/NN NN

22 43 13

Heap Operations: dequeue()

Move last element (at
heap[heap.size ()]) to the root (this may
be unintuitive!) to begin bubble-down

— \
9/ \8 5/9|8[12/10|14(11|22|43|13
[0] | [1] ([2]1 | [3] | [4]1 | (51|61 | [7] | [8]1 | [9] |[10]([11]
/ / \

AN AW A

22 43 13

Heap Operations: dequeue()

Compare children of root with root: swap root with the smaller one (why?)

/13\\ /\
8 13/9 |18 (12(10(14|11|22(43

9
/ \ / \ [01 | [11 | [2] | [3] | [4]1 | [5]1 | [6]1 | [7] | [8] | [9] |[10]([11]

/NN

22 43

Heap Operations: dequeue()

Keep swapping new element if necessary. In this case: compare 13 to 11
and 14, and swap with smallest (11).

/ \
« N 8|9 (13(12(10(14|11(22(43

/9\ \\ (ol | [11j[21) [31 41| [5]1 | [el | [71 | [81 | [9] |[10])[11]
12
A NN R

22 43

Heap Operations: dequeue()

13 has now bubbled down until it has no more children, so we are done!

8
9/ N 8(9(11(12(10|/14|13(22(43
11
[0] | [1] | [2]1 | [3]1 | [4] | (51|61]| [7] | [8]]| [9] |[10]([11]
/ \ / \

/N NN

22 43

Questions?

Tips and Tricks

Height of a binary heap is O(log(n))

Before writing any code, go through simple toy examples by hand to
make sure your proposed solution’s logic is sound

Don't forget the semicolon after a struct or class definition!

Bad idea to declare multiple pointers on the same line:

Node * head, tail;

Tips and Tricks: Continued

Nested structs are weird. If we create a cell inside of PQueue then a
helper function that returns a Cell* would be declared as:

Cell* helperFunction(Cell* ptr);

And would be implemented as

PQueue: :Cell* PQueue::helperFunction(Cell* ptr);

Do your best to make your size functions not O(n)! — how?

We'll ask you for Big-O of every function you write!

General questions?

