
YEAH - Recursion!
Anton Apostolatos

Source: XKCD

 Karel Goes Home

A3: Recursion!

Subsequences Sierpinksi Human
Pyramids Drill, Baby, Drill! Universal Health

Care

Karel Goes Home

3 paths!

1 path!

1 path!

Write the recursive function

int numPathsHome(int street, int avenue)

returns the number of shortest paths Karel could take back to the
origin from the specified starting position

Note: Karel wants the shortest path, so she should only move south or west!

Subsequences

Write the recursive function

bool hasSubsequence(string text, string subseq)

returns whether the second string is a subsequence of the first

hasSubsequence(“abcde”, “bd”) → true

hasSubsequence(“I love the water”, “I hate”) → true

hasSubsequence(“”, “bd”) → false

hasSubsequence(“I AM THE ALPHA AND OMEGA”, “man”) → false

Sierpinski

Order 0 Order 1 Order 2

Order 3 Order 4 Order 5

Order 6 Order 7 Order 8

Write the recursive function

void drawSierpinskiTriangle(GWindow& window,
double x, double y, double sideLength, int order)

window: where to draw the triangle (see C++ docs!)
(x, y): bottom-left corner of the triangle
sideLength: length of triangle side
order: the order of the triangle to draw

Note: using drawPolarLine will make your life easier!

Human Pyramids

Consider a human pyramid:

0,0

1,0 1,1

2,0 2,22,1

3,0 3,1 3,2 3,3

Consider a human pyramid, where every person weighs 200lbs

What’s the weight on a certain person’s knees?

0

100 100

150 150300

175 425 425 175

Write the recursive function

double weightOnBackOf(int row, int col)

(row, col): row and col of person we’re interested in

Note:

- We only care about the weight on their back, without their own weight.

- Consider edge cases (e.g. negative rows or cols)!

Memoized Human Pyramids

Consider wanting the weight on the back of (3,2)

Consider wanting the weight on the back of (3,2)

Consider wanting the weight on the back of (3,2)

Consider wanting the weight on the back of (3,2)

Consider wanting the weight on the back of (3,2)

Consider wanting the weight on the back of (3,2)

Consider wanting the weight on the back of (3,2)

We already calculated this before!

Consider wanting the weight on the back of (3,2)

Consider wanting the weight on the back of (3,2)

Let’s store it!

We already calculated this before!

Memoization speeds things up!

Drill, Baby, Drill!

A
(0,0)

B
(6,0)

C
(3,3)

E
(6,6)

Consider having a
drill and a number
of drill sites with
name and (x,y)

location

D
(0,6)

A
(0,0)

B
(6,0)

C
(3,3)

E
(6,6)

Q: What’s the
fastest way to
go through all
drills, starting
and ending in

the same spot?

Consider having a
drill and a number
of drill sites with
name and (x,y)

location

D
(0,6)

A
(0,0)

B
(6,0)

C
(3,3)

E
(6,6)

8.48 + 6 + 6 + 6 +
4.24 + 4.24 + 6 =

40.96

D
(0,6)

A
(0,0)

B
(6,0)

C
(3,3)

E
(6,6)

6 + 6 + 6 + 4.24 +
4.24 + 6 + 8.48 =

40.96

(specific start
point doesn’t

matter)

D
(0,6)

A
(0,0)

B
(6,0)

C
(3,3)

E
(6,6)

D
(0,6)

Quickest:
4.24 + 6 + 6 + 6 +

4.24 = 26.5

Drill site:
struct DrillSite {

string name; // The name of the drill site
GPoint pt; // Where the drill site is

}

Write the recursive function

Vector<DrillSite> bestDrillRouteFor(Vector<DrillSite> sites)

returns the optimal order in which the robot should drill holes.

/**

* Helper function that, given two drill sites, returns the distance

* between them.

*/

double drillDistance(const DrillSite& a, const DrillSite& b) {...}

/**

* Helper function that, given a list of drill sites in order, returns

* the cost associated with drilling all of them in order and returning

* to the start point.

*/

double drillRouteLength(const Vector<DrillSite>& path) {...}

We provide:

You have to create two test files!

// FORMAT:
//
// Name (x_coordinate, y_coordinate)

A (0, 0)
B (6, 0)
C (3, 3)
D (0, 6)
E (6, 6)

Include in each test case:

- Why you chose that test
- What the test is testing for
- What the optimal answer is

drill_handout.txt

Universal Health Care

You are the new Minister of Health of Recursia!

You are tasked to build hospitals to cover as many cities as
possible, within a certain budget.

Each potential hospital is represented as such:

struct Hospital {
string name; // Name of hospital
int cost; // How much it costs to build
Set<string> citiesServed; // Cities it covers

}

You want to provide coverage to as many cities as possible.

Imagine you are given $50,000,000 as a budget.

Consider the following hospital sites:

Site 1: Covers Bazekas, Suburb Setz, and Cambinashun. Price: $40,000,000
Site 2: Covers Bazekas, Frak Tell, Suburb Setz, and Perumutation City. Price: $50,000,000
Site 3: Covers Hanoi Towers, Jenuratif, and Hooman Pyramids. Price: $10,000,000
Site 4: Covers Suburb Setz, Permutation City and Baktrak Ing. Price: $10,000,000

Optimal coverage: [Site 3, Site 4] (covers 6 cities) Note: you only
optimize for city
coverage, not for

money!

or

Optimal coverage: [Site 1, Site 3] (also covers 6 cities)

Write the recursive function
Vector<Hospital> bestCoverageFor(Vector<Hospital> sites,

int fundsAvailable)

returns list of hospitals that provide coverage to greatest number
of cities

Tips and Tricks:

- You can break ties arbitrarily (it doesn’t have to be the cheapest one)

- The order of returned hospitals is irrelevant

- If a city is covered twice it can only be counted once

You have to create two test files!

// FORMAT:
//
//[Cities]: City 1, City 2, ...
//[Funds available]: Funds
//[Site]: Cost - City Covered 1, City Covered 2, ...
//[Site]: Cost - City Covered 1, City Covered 2, ...
// ...

[Cities]: Bazekas, Leapofayt, Frak Tell, Hanoi Towers
[Funds available]: 50

[Site]: 13 - Bazekas, Leapofayt, Frak Tell
[Site]: 27 - Hanoi Towers, Frak Tell
[Site]: 62 - Bazekas, Leapofayt, Frak Tell, Hanoi Towers

hospital_simple.txt

Questions?

