
YEAH - Word Play
Anton Apostolatos

Source: XKCD

Word
Ladders

Evil
Hangman

A2: Word Play

Word Ladders

A word ladder is a connection from one word to another, where:

map → mat ✓ map → sit ✘

blame → bhame → shame ✘

bit → sit → fit ✘bit → fit ✓

2) Every word in the ladder is valid

3) Shortest possible!

1) Each word is one character different than the previous

Demo!

Pseudocode
create an empty queue
add the start word to the end of the queue

while (the queue is not empty):
dequeue the first ladder from the queue

if (the final word in this ladder is the destination word):

 return this ladder as the solution

for (each word in the lexicon of English words that differs by one):
if (that word has not been already used in a ladder):

create a copy of the current ladder
add the new word to the end of the copy
add the new ladder to the end of the queue

return that no word ladder exists

How do we know it’s the
shortest path?

How to store ladder? Seen words?
Design Decision

Starter code

#include <iostream>

#include <string>

#include "console.h"

#include "RecordLadders.h"

using namespace std;

int main() {

 // [TODO: Fill this in!]

 return 0;

}

Steps

1. Load the dictionary. The file EnglishWords.dat, which is bundled with
the starter files, contains just about every legal English word.

2. Prompt the user for two words to try to connect with a ladder. For

each of those words, make sure to reprompt the user until they enter
valid English words. They don’t necessarily have to be the same length,
though – if they aren’t, it just means that your search won’t find a word
ladder between them.

3. Find the shortest word ladder. Use breadth-first search, as described
before, to search for a word ladder from the first word to the second.

1.
2.
3.

4. Report what you’ve found. Once your breadth-first search terminates:
a. If you found a word ladder, print it out to the console, then call the

function to report that you’ve found a word ladder:

b. If you don’t find a word ladder, print out some message to that effect,
then call the function

Steps II

recordLadderBetween(start-word, end-word, ladder)

recordNoLadderBetween(start-word, end-word)

1.
2.
3.
4.
5. Ask to continue. Prompt for whether to look for another ladder between

a pair of words.

- Pick data structures wisely: not all ADTs are made equal

Tips and Tricks

- Watch out for case sensitivity

Work ↔ wOrK

bit → bat → fat ✓bit → fit → fat ✓

- Ties don’t matter: don’t worry about multiple ladders
of the same length

- Make sure you call our functions!

http://www.youtube.com/watch?v=75k8sqh5tfQ

Questions?

Evil Hangman

adj - “profoundly immoral
and malevolent”

Your Grandma’s Hangman

1. Secret word chosen: One player chooses a secret word, then writes out a
number of dashes equal to the word length.

2. Word guessing: The other player begins guessing letters. Whenever she
guesses a letter in the hidden word, the first player reveals each instance
of that letter in the word. Otherwise, the guess is wrong.

3. End condition: The game ends when all letters in the word have been
revealed or when no guesses remain.

Demo!

Not Your Grandma’s Hangman

What if the secret word isn’t a specific word, but every possible word?

Word(s):{able, area, … , zone}

Word: {next}----
Computer:Player:

Demo!

-OO-
{good, mood, moon}

Guess: “M”

MOO-
{mood, moon}

-OO-
{good}

{ally, beta, cool, deal, else,

flew, good, hope, ibex}

Guess: “E”

{ally,
cool,
good}

-E--
{beta,
deal}

--E-
{flew,
ibex}

E--E

{else}

---E

{hope}

Starter code

#include <iostream>

#include <string>

#include "console.h"

#include "Recorder.h"

using namespace std;

int main() {

 // [TODO: Fill this in!]

 return 0;

}

Steps

1. Set up the game: prompt, in order, for
a. word length (at least one word of that size must exist)
b. number of guesses (integer greater than zero)
c. ask for running total or not (yes/no)

2. Play the game
a. Print guesses remaining, letters guessed, blanked-out word
b. Call our function:
recordTurnInfo(turn-number, current-blanked-word,

letters-guessed-so-far, num-remaining-words, num-guesses-left)

1.
2.
3. Play the game (cont…)

a. Prompt for a single-letter guess
b. Partition words into word families
c. Find the most common “word family” in the remaining words, remove

all words from the word list that aren't in that family, and report the
positions of the letter guessed (if any) to the user. If the word family
doesn't contain any copies of the letter, subtract a guess from the
user.

d. Repeat until game ends

Steps II

1.
2.
3.
4. Play the game (cont…)

a. If no guesses left, pick any word from remaining word list
b. If word was guessed, print out resulting word!
c. Call our function:

recordGameEnd(final-word, player-won)

5. Ask to play again

Steps III

How to store word families?
Design Decision

Tips and Tricks
- Decompose the problem into smaller pieces

- Letter position matters just as much as letter frequency
-E-E- vs. EE---

- Don’t worry about ties: if two word families are the same size, split
arbitrarily.

- Don’t enumerate word families: if you are working with a word of length
n, then there are 2^n possible word families for each letter.

“supercalifragilisticexpialidocious” → 2^34 ≈ # of galaxies in universe

- Make sure you call our functions!

Questions?

