
  

Minimum Spanning Trees
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connected.
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There is a cycle in this 
graph. It can’t be the 
cheapest way to link 

everything.

There is a cycle in this 
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cheapest way to link 

everything.



  

A spanning tree in an undirected
graph is a set of edges with

no cycles that connects all nodes.
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Cost:
1 + 3 + 5 + 4 + 1 + 6 + 2 = 22



  

A minimum spanning tree (or MST) is a
spanning tree with the least total cost.



  

Applications

● Electric Grids
● Given a collection of houses, where do you lay wires to 

connect all houses with the least total cost?
● This was the initial motivation for studying minimum 

spanning trees in the early 1920's. (work done by Czech 
mathematician Otakar Borůvka)

● Data Clustering
● More on that later...

● Maze Generation

● More on that later…
● Computational Biology

● More on that later...



  

Shortest-Path Trees and MSTs

● Last time, we saw how Dijkstra's algorithm and 
A* search can be used to find shortest path 
trees in a graph.

● Note that a shortest-path tree might not be an 
MST and vice-versa.
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Shortest-Path Trees and MSTs

● Last time, we saw how Dijkstra's algorithm and 
A* search can be used to find shortest path 
trees in a graph.
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Finding an MST



  

MST Algorithms

● The original MST algorithm (1926) that Borůvka 
proposed is now called Borůvka’s algorithm.

● Later, the Czech mathematician Vojtěch Jarník 
(1930) invented an algorithm now called Prim’s 
algorithm.

● After that, American mathematician Joseph 
Kruskal (1956) developed what’s now called 
Kruskal’s algorithm, which is what we’ll 
present today.

● There’s been a ton of work since them – come 
talk to me after class for details!



  

Kruskal’s Algorithm:

Remove all edges from the graph.
 

Repeatedly find the cheapest edge that 
doesn’t create a cycle and add it back.

 

The result is an MST of the overall graph.



  

Maintaining Connectivity

● The key step in Kruskal's algorithm is 
determining whether the two endpoints 
of an edge are already connected to one 
another.

● Typical approach: break the nodes apart 
into clusters.
● Initially, each node is in its own cluster.
● Whenever an edge is added, the clusters for 

the endpoints are merged together into a 
new cluster.



  

Implementing Kruskal’s Algorithm

● Place every node into its own cluster.

● Place all edges into a priority queue.

● While there are two or more clusters remaining:

● Dequeue an edge from the priority queue.
● If its endpoints are not in the same cluster:

– Merge the clusters containing the endpoints.
– Add the edge to the resulting spanning tree.

● Return the resulting spanning tree.



  

Time-Out for Announcements!



  

Final Exam Logistics

● Final: Monday, March 20th, 8:30AM – 11:30AM, location TBA.
● Format is same as the midterm: closed-book, closed-

computer, limited-note. You get a single, double-sided sheet 
of 8.5” × 11” notes decorated however you’d like.

● Cumulative exam, slightly focused on the post-midterm 
topics.
● Covers topics from all assignments from this quarter.
● Covers topics from lectures up through and including today.

● We will be holding a practice exam tonight in Hewlett 200 
from 7PM – 10PM. The format of the practice final is similar 
to the format of the actual final exam.

● Have OAE accommodations? We’ll reach out to you soon to 
coordinate alternate exams.



  

Assignment 7

● Assignment 7 is due on Friday.
● Recommendation 1: try to complete BFS and 

Dijkstra’s algorithm by the end of the 
evening.

● Recommendation 2: try to complete A* 
search by tomorrow evening.

● No late submissions will be accepted, even 
if you have remaining late days – sorry 
about that!



  

Back to CS106B!



  

Applications of Kruskal's Algorithm



  

Data Clustering



  

Data Clustering

● Given a set of points, break those points 
apart into clusters.

● Immensely useful across all disciplines:
● Cluster individuals by phenotype to try to 

determine what genes influence which traits.
● Cluster images by pixel color to identify 

objects in pictures.
● Cluster essays by various features to see 

how students learn to write.



  

What makes a clustering “good?”



  

Maximum-Separation Clustering

● A maximum-separation clustering is 
one where the distance between the 
resulting clusters is as large as possible.

● Specifically, it maximizes the minimum 
distance between any two points of 
different clusters.

● Very good on many data sets, though not 
always ideal.



  

Maximum-Separation Clustering

● It is extremely easy to adopt Kruskal's 
algorithm to produce a maximum-separation 
set of clusters.
● Suppose you want k clusters.
● Given the data set, add an edge from each node 

to each other node whose length depends on 
their similarity.

● Run Kruskal's algorithm until only k clusters 
remain.

● The pieces of the graph that have been linked 
together are k maximally-separated clusters.



  

Maximum-Separation Clustering



  

Want to learn more about clustering?

Take CS246!



  

Another Application



  

Mazes with Kruskal's Algorithm
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Mazes with Kruskal's Algorithm
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Mazes with Kruskal's Algorithm

    

  

      



  

Mazes with Kruskal's Algorithm



  

Mazes with Kruskal’s Algorithm

● The algorithm:
● Create a grid graph.
● Give each edge a random weight.
● Compute an MST of that graph.
● Put walls between any two cells that aren’t 

adjacent in the MST.
● Compared with DFS-based mazes, tends 

to produce mazes with a high branching 
factor and short, twisty corridors.



  

Application: Stem Cells!



  

Question: How do you determine the 
patterns by which stem cells differentiate 

into specialized cells?



  Step One: Grab a random collection of cells
you know contains a bunch of stem cells.



  Step Two: Measure a bunch of different features from each 
cell and plot those features on a coordinate axis.



  Step Three: Cluster those nodes into smaller groups, which 
likely represent cells of the same type.



  Step Four: Find an MST. Nodes are clusters and edges are 
distances. This is the cheapest tree connecting the clusters.



  Step Five: Figure out which cluster represents the original 
stem cells. You now have the likely differentiation pattern!



  



  



  

Building a repertoire of abstractions and 
algorithms helps you model and solve 
larger and larger classes of problems.



  

Interested in learning more?

Take CS161!
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