Minimum Spanning Trees

This graph is not
connected.

There is a cycle in this
graph, It can't be The
cheapest way To link
everyThing,

12

A spanning tree in an undirected
graph is a set of edges with
no cycles that connects all nodes.

Cost:
1+3+54+4+1+06+2=22

A minimum spanning tree (or MST) is a
spanning tree with the least total cost.

Applications

Electric Grids

* Given a collection of houses, where do you lay wires to
connect all houses with the least total cost?

* This was the initial motivation for studying minimum
spanning trees in the early 1920's. (work done by Czech
mathematician Otakar Boruvka)

Data Clustering

e More on that later...
Maze Generation

 More on that later...
Computational Biology

e More on that later...

Shortest-Path Trees and MSTs

» Last time, we saw how Dijkstra's algorithm and
A* search can be used to find shortest path
trees in a graph.

 Note that a shortest-path tree might not be an
MST and vice-versa.

Shortest—path
free for The

starred node,

Shortest-Path Trees and MSTs

» Last time, we saw how Dijkstra's algorithm and
A* search can be used to find shortest path
trees in a graph.

 Note that a shortest-path tree might not be an
MST and vice-versa.

Minimum
spanning Tree
in the graph,

Finding an MST

MST Algorithms

 The original MST algorithm (1926) that Boruvka
proposed is now called Boruvka’s algorithm.

« Later, the Czech mathematician Vojtéch Jarnik
(1930) invented an algorithm now called Prim’s
algorithm.

« After that, American mathematician Joseph
Kruskal (1956) developed what’s now called
Kruskal’s algorithm, which is what we’ll
present today.

e There’s been a ton of work since them - come
talk to me after class for details!

Kruskal’s Algorithm:

Remove all edges from the graph.

Repeatedly find the cheapest edge that
doesn’t create a cycle and add it back.

The result is an MST of the overall graph.

Maintaining Connectivity

 The key step in Kruskal's algorithm is
determining whether the two endpoints
of an edge are already connected to one
another.

» Typical approach: break the nodes apart
into clusters.

 Initially, each node is in its own cluster.

 Whenever an edge is added, the clusters for
the endpoints are merged together into a
new cluster.

Implementing Kruskal’s Algorithm

* Place every node into its own cluster.

« Place all edges into a priority queue.

 While there are two or more clusters remaining:
 Dequeue an edge from the priority queue.

« If its endpoints are not in the same cluster:

- Merge the clusters containing the endpoints.
- Add the edge to the resulting spanning tree.
* Return the resulting spanning tree.

Time-Out for Announcements!

Final Exam Logistics

* Final: Monday, March 20t, 8:30AM - 11:30AM, location TBA.

 Format is same as the midterm: closed-book, closed-
computer, limited-note. You get a single, double-sided sheet
of 8.5” X 11” notes decorated however you'd like.

 Cumulative exam, slightly focused on the post-midterm
topics.
e Covers topics from all assignments from this quarter.
* Covers topics from lectures up through and including today.

 We will be holding a practice exam tonight in Hewlett 200
from 7PM - 10PM. The format of the practice final is similar
to the format of the actual final exam.

« Have OAE accommodations? We’ll reach out to you soon to
coordinate alternate exams.

Assignment 7/

* Assignment 7 is due on Friday.

« Recommendation 1: try to complete BFS and
Dijkstra’s algorithm by the end of the
evening.

« Recommendation 2: try to complete A*
search by tomorrow evening.

 No late submissions will be accepted, even
if you have remaining late days - sorry
about that!

Back to CS106B!

Applications of Kruskal's Algorithm

Data Clustering

Data Clustering

» Given a set of points, break those points
apart into clusters.

 Immensely usetful across all disciplines:

* Cluster individuals by phenotype to try to
determine what genes influence which traits.

* Cluster images by pixel color to identify
objects in pictures.

* Cluster essays by various features to see
how students learn to write.

What makes a clustering “good?”

Maximum-Separation Clustering

« A maximum-separation clustering is
one where the distance between the
resulting clusters is as large as possible.

* Specifically, it maximizes the minimum
distance between any two points of
different clusters.

* Very good on many data sets, though not
always ideal.

Maximum-Separation Clustering

» It is extremely easy to adopt Kruskal's
algorithm to produce a maximum-separation
set of clusters.

* Suppose you want k clusters.

* Given the data set, add an edge from each node
to each other node whose length depends on
their similarity.

 Run Kruskal's algorithm until only k clusters
remain.

 The pieces of the graph that have been linked
together are k maximally-separated clusters.

Maximum-Separation Clustering

P4
S

Want to learn more about clustering?

Take CS2406!

Another Application

Mazes with Kruskal's Algorithm

O

<

<

<

3 o 1 @ 4

O

<

O

<

1 5 9
o'0°0’®0

<

2 6 5
o’0°‘0°’®0

3 & 5 o 8

O

Mazes with Kruskal's Algorithm
= = =

2 1
1
o—o O ¢
2 1 8
2 5
o—0 O—90
4 5

2
3
e—0 O e

Mazes with Kruskal's Algorithm

------------------------------ 1
i
i
o—O0—0—0
------- -y -------.
i]
" i
" 0
: 0
i
: i
------- q I
i
i
i
i
i
i
1
------- -l I
| |
i |
i |
i |
| |
i |
L -------------- J ------- L -------

Mazes with Kruskal's Algorithm

Mazes with Kruskal’s Algorithm

 The algorithm:
* Create a grid graph.
* Give each edge a random weight.
« Compute an MST of that graph.

 Put walls between any two cells that aren’t
adjacent in the MST.

« Compared with DFS-based mazes, tends
to produce mazes with a high branching
tfactor and short, twisty corridors.

Application: Stem Cells!

Question: How do you determine the
patterns by which stem cells differentiate
into specialized cells?

Step One: Grab a random collection of cells
you know contains a bunch of stem cells.

O
O QQQ
o © o o
5 e 8%
o O
o 2® 8@@ _
o O O
O O 0
88068 QQ Qo
o, T °,
O

Step Two: Measure a bunch of different features from each
cell and plot those features on a coordinate axis.

@

oO@®
A P ,
\ 4
o

Step Three: Cluster those nodes into smaller groups, which
likely represent cells of the same type.

Step Four: Find an MST. Nodes are clusters and edges are
distances. This is the cheapest tree connecting the clusters.

Step Five: Figure out which cluster represents the original
stem cells. You now have the likely differentiation pattern!

nature
biotechnology

LETTERS

The dynamics and regulators of cell fate decisions are
revealed by pseudotemporal ordering of single cells

Cole Trapnelll-26, Davide Cacchiarellil-36, Jonna Grimsby?, Prapti Pokharel?, Shuqiang Li%, Michael Morsel-2,
Niall] Lennon?, Kenneth] Livak?, Tarjei S Mikkelsen!-3 & John L Rinn1-2>

Defining the transcriptional dynamics of a temporal
process such as cell differentiation is challenging owing to
the high variability in gene expression between individual
cells. Time-series gene expression analyses of bulk cells
have difficulty distinguishing early and late phases of a
transcriptional cascade or identifying rare subpopulations
of cells, and single-cell proteomic methods rely on a priori
knowledge of key distinguishing markersl. Here we describe
Monocle, an unsupervised algorithm that increases the
temporal resolution of transcriptome dynamics using
single-cell RNA-Seq data collected at multiple time points.
Applied to the differentiation of primary human myoblasts,
Monocle revealed switch-like changes in expression of key
regulatory factors, sequential waves of gene regulation,
and expression of regulators that were not known to act

in differentiation. We validated some of these predicted
regulators in a loss-of function screen. Monocle can in
principle be used to recover single-cell gene expression
kinetics from a wide array of cellular processes, including
differentiation, proliferation and oncogenic transformation.

Such averaging artifacts can make factors that are correlated appear
to be uncorrelated or even make positively correlated factors
appear negatively correlated. As a population of cells captured at
the same time may include many distinct intermediate differen-
tiation states, considering only its average properties would mask
trends occurring across individual cells. Solving this problem by
experimental synchronization of cells or by stringent isolation
of precursors at distinct stages is challenging and can sharply alter
differentiation kinetics.

Computational analysis of gene expression data could help
define biological progression between cellular states and reveal regulatory
modules of genes that co-vary in expression across individual cells®.
Previous analyses have used approaches from computational geom-
etry!®11 to order bulk cell populations from time-series microarray
experiments by progress through a biological process independently
of when the samples were collected. The recently developed SPD algo-
rithm can resolve progression along multiple lineages arising from a
progenitor cell type using supervised machine learning!2. However,
because these algorithms operate on bulk expression measurements,
they are sensitive to mixture effects arising from Simpson’s para-

I [P T I S T N T o E S [N [(N & [P,

First the algorithm represents the expression profile of
each cell as a point in a high-dimensional Euclidean space, with one
dimension for each gene. Second, it reduces the dimensionality of
this space using independent component analysis!’. Dimensionality
reduction transforms the cell data from a high-dimensional space into
a low- d1men310nal one that preserves essent1al relationships between

— ATAYA] Ala [AR alrails -)] "_---. 18 -.

Monocle constructs a minimum spanning tree (MST) on the cells, }

previously developed approach now commonly used 1n other single-
cell settings, such as flow or mass cytometry'-13. Fourth, the algorithm
finds the longest path through the MST, corresponding to the long-
est sequence of transcriptionally similar cells. Finally, Monocle uses
this sequence to produce a ‘trajectory’ of an individual cell’s progress
through differentiation.

Building a repertoire of abstractions and
algorithms helps you model and solve
larger and larger classes of problems.

Interested in learning more?

Take CS161!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44

