

Minimum Spanning Trees

 6
1

5

4

 8 7 6

7

12

 2

 9 1

3

 6
1

5

4

 8 7 6

7

12

 2

 9 1

3

This graph is not
connected.

This graph is not
connected.

 6
1

5

4

 8 7 6

7

12

 2

 9 1

3

There is a cycle in this
graph. It can’t be the
cheapest way to link

everything.

There is a cycle in this
graph. It can’t be the
cheapest way to link

everything.

A spanning tree in an undirected
graph is a set of edges with

no cycles that connects all nodes.

 6
1

5

4

 8 7 6

7

12

 2

 9 1

3

Cost:
1 + 3 + 5 + 4 + 1 + 6 + 2 = 22

A minimum spanning tree (or MST) is a
spanning tree with the least total cost.

Applications

● Electric Grids
● Given a collection of houses, where do you lay wires to

connect all houses with the least total cost?
● This was the initial motivation for studying minimum

spanning trees in the early 1920's. (work done by Czech
mathematician Otakar Borůvka)

● Data Clustering
● More on that later...

● Maze Generation

● More on that later…
● Computational Biology

● More on that later...

Shortest-Path Trees and MSTs

● Last time, we saw how Dijkstra's algorithm and
A* search can be used to find shortest path
trees in a graph.

● Note that a shortest-path tree might not be an
MST and vice-versa.

★ 5

3

2

1
Shortest-path
tree for the
starred node.

Shortest-path
tree for the
starred node.

Shortest-Path Trees and MSTs

● Last time, we saw how Dijkstra's algorithm and
A* search can be used to find shortest path
trees in a graph.

● Note that a shortest-path tree might not be an
MST and vice-versa.

5

3

2

1
Minimum

spanning tree
in the graph.

Minimum
spanning tree
in the graph.

★

Finding an MST

MST Algorithms

● The original MST algorithm (1926) that Borůvka
proposed is now called Borůvka’s algorithm.

● Later, the Czech mathematician Vojtěch Jarník
(1930) invented an algorithm now called Prim’s
algorithm.

● After that, American mathematician Joseph
Kruskal (1956) developed what’s now called
Kruskal’s algorithm, which is what we’ll
present today.

● There’s been a ton of work since them – come
talk to me after class for details!

Kruskal’s Algorithm:

Remove all edges from the graph.

Repeatedly find the cheapest edge that
doesn’t create a cycle and add it back.

The result is an MST of the overall graph.

Maintaining Connectivity

● The key step in Kruskal's algorithm is
determining whether the two endpoints
of an edge are already connected to one
another.

● Typical approach: break the nodes apart
into clusters.
● Initially, each node is in its own cluster.
● Whenever an edge is added, the clusters for

the endpoints are merged together into a
new cluster.

Implementing Kruskal’s Algorithm

● Place every node into its own cluster.

● Place all edges into a priority queue.

● While there are two or more clusters remaining:

● Dequeue an edge from the priority queue.
● If its endpoints are not in the same cluster:

– Merge the clusters containing the endpoints.
– Add the edge to the resulting spanning tree.

● Return the resulting spanning tree.

Time-Out for Announcements!

Final Exam Logistics

● Final: Monday, March 20th, 8:30AM – 11:30AM, location TBA.
● Format is same as the midterm: closed-book, closed-

computer, limited-note. You get a single, double-sided sheet
of 8.5” × 11” notes decorated however you’d like.

● Cumulative exam, slightly focused on the post-midterm
topics.
● Covers topics from all assignments from this quarter.
● Covers topics from lectures up through and including today.

● We will be holding a practice exam tonight in Hewlett 200
from 7PM – 10PM. The format of the practice final is similar
to the format of the actual final exam.

● Have OAE accommodations? We’ll reach out to you soon to
coordinate alternate exams.

Assignment 7

● Assignment 7 is due on Friday.
● Recommendation 1: try to complete BFS and

Dijkstra’s algorithm by the end of the
evening.

● Recommendation 2: try to complete A*
search by tomorrow evening.

● No late submissions will be accepted, even
if you have remaining late days – sorry
about that!

Back to CS106B!

Applications of Kruskal's Algorithm

Data Clustering

Data Clustering

● Given a set of points, break those points
apart into clusters.

● Immensely useful across all disciplines:
● Cluster individuals by phenotype to try to

determine what genes influence which traits.
● Cluster images by pixel color to identify

objects in pictures.
● Cluster essays by various features to see

how students learn to write.

What makes a clustering “good?”

Maximum-Separation Clustering

● A maximum-separation clustering is
one where the distance between the
resulting clusters is as large as possible.

● Specifically, it maximizes the minimum
distance between any two points of
different clusters.

● Very good on many data sets, though not
always ideal.

Maximum-Separation Clustering

● It is extremely easy to adopt Kruskal's
algorithm to produce a maximum-separation
set of clusters.
● Suppose you want k clusters.
● Given the data set, add an edge from each node

to each other node whose length depends on
their similarity.

● Run Kruskal's algorithm until only k clusters
remain.

● The pieces of the graph that have been linked
together are k maximally-separated clusters.

Maximum-Separation Clustering

Want to learn more about clustering?

Take CS246!

Another Application

Mazes with Kruskal's Algorithm

3 1 4

1 5 9

2 7 1 8

2 6 5

3 5 8

2 8 4 5

2 8 1 8

Mazes with Kruskal's Algorithm

3 1 4

1

2 1

2 5

3

2 4 5

2 1 8

Mazes with Kruskal's Algorithm

Mazes with Kruskal's Algorithm

Mazes with Kruskal’s Algorithm

● The algorithm:
● Create a grid graph.
● Give each edge a random weight.
● Compute an MST of that graph.
● Put walls between any two cells that aren’t

adjacent in the MST.
● Compared with DFS-based mazes, tends

to produce mazes with a high branching
factor and short, twisty corridors.

Application: Stem Cells!

Question: How do you determine the
patterns by which stem cells differentiate

into specialized cells?

 Step One: Grab a random collection of cells
you know contains a bunch of stem cells.

 Step Two: Measure a bunch of different features from each
cell and plot those features on a coordinate axis.

 Step Three: Cluster those nodes into smaller groups, which
likely represent cells of the same type.

 Step Four: Find an MST. Nodes are clusters and edges are
distances. This is the cheapest tree connecting the clusters.

 Step Five: Figure out which cluster represents the original
stem cells. You now have the likely differentiation pattern!

Building a repertoire of abstractions and
algorithms helps you model and solve
larger and larger classes of problems.

Interested in learning more?

Take CS161!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44

