
  

Shortest Paths
Part Two



  

Some Practical Concerns



  

F

B

10

3   

1   

C

D

4

   7

E3

   3

A0

1

9

3

5

6

How do we actually 
find the shortest 
paths to any of 
these nodes?

How do we actually 
find the shortest 
paths to any of 
these nodes?



  

Option 1: Explicitly Store Paths
(Easier, less efficient)



  

dijkstra's-algorithm() {
  make a priority queue of paths.
  enqueue start node at distance 0.
  color the start node yellow.
 
  while (the queue is not empty) {
    dequeue a path from the queue.
    look at the last node on that path.
    if (that node isn't green) {
      color that node green.

      for (each neighboring node) {
        if (that node is not green) {
          color the node yellow.
          extend the current path with that node.
          enqueue it at the new distance.
        }
      }
    }
  }   
}

Just like in
Word Ladders!

Just like in
Word Ladders!



  

Option 2: Store Parent Pointers
(Harder, faster)
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Time-Out for Announcements!



  

Assignment 6

● Assignment 7 (Trailblazer) goes out today. It’s due next Friday, 
March 17th, at the start of class.
● Play around with BFS, Dijkstra’s algorithm, and A* search (coming up!) in 

The Real World!
● You are encouraged to complete this assignment in pairs. You don’t 

need to write much code, but you’ll need to have a good conceptual 
handle on these algorithms.

● No late days may be used, and no late submissions will be 
accepted. This is a university policy (thanks, federalism!) and we don’t 
have any wiggle room with it.

● Recommendation: Complete BFS and Dijkstra’s algorithm by Monday.
● Anton will be holding YEAH hours today from 2:30PM – 3:30PM 

in 370-370.
● Assignment 6 was due at the start of class today.

● Be strategic about taking late days on this assignment. You’ll be 
cutting into the time you need to spend on Assignment 7.



  



  

Final Exam Logistics
● Our final exam is on Monday, March 20th from 8:30AM – 11:30AM, 

location TBA.
● Sorry about the timing! That was the registrar’s decision.

● Format is same as the midterm: closed-book, closed-computer, 
limited-note. You get a single, double-sided sheet of 8.5” × 11” notes 
decorated however you’d like.

● Cumulative exam, slightly focused on the post-midterm topics.
● Covers topics from all assignments from this quarter.
● Covers topics from lectures up through and including this upcoming Monday.

● We will be holding a practice exam on Monday, March 13th from 
7:00PM – 10:00PM, location TBA. Same deal as the practice 
midterm: I’m drafting two final exams, one which will be the 
practice, and one of which will be the main alternate.

● Have OAE accommodations? We’ll reach out to you soon to 
coordinate alternate exams.



  

Back to CS106B!



  

One Detail with Dijkstra's Algorithm
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How Dijkstra's Works

● Dijkstra's algorithm works by computing 
the shortest paths to lots of intermediary 
nodes in case they prove to be useful.

● Most of these nodes are in the 
completely wrong direction.

● Two questions:
● What is Dijkstra thinking when it does this?
● Can we get Dijkstra to change its mind?
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Dijkstra’s algorithm does 
not know anything about 
the overall graph. It only 

looks at edges when it 
expands out nodes.

Dijkstra’s algorithm does 
not know anything about 
the overall graph. It only 

looks at edges when it 
expands out nodes.

So for all it knows, there’s 
an edge directly from this 

node to the goal.

So for all it knows, there’s 
an edge directly from this 

node to the goal.

As a result, it has to 
expand this node, since 

otherwise it risks getting 
the wrong answer.

As a result, it has to 
expand this node, since 

otherwise it risks getting 
the wrong answer.



  

2? 2?1

2?

2?

2? 1

2?

2?

2?1

1

The fundamental issue here is that 
the distance estimates Dijkstra’s 
algorithm uses do not take into 

account the remaining distance 
to the target.

The fundamental issue here is that 
the distance estimates Dijkstra’s 
algorithm uses do not take into 

account the remaining distance 
to the target.

This is a consequence of the fact that 
Dijkstra’s algorithm doesn’t look at 

the entire graph. It just looks 
locally around each expanded node.

This is a consequence of the fact that 
Dijkstra’s algorithm doesn’t look at 

the entire graph. It just looks 
locally around each expanded node.



  

To Recap

● When Dijkstra’s algorithm sees a yellow 
node, it’s “nervous” that there might be a 
free path from there to the destination:

● Idea: What if we gave the algorithm 
some more information about how far 
away the end node really is?

start
node

rando
node

end
node

distance to
intermediate

node no idea! could be 0!
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isn’t as good as the best 

possible option to the 
right.

It doesn’t make sense to 
expand this node! The best 
possible option from here 
isn’t as good as the best 

possible option to the 
right.
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1 +
? We’re supposed to say 

what the remaining 
distance is, but we can’t 

know that unless we 
already know the best 

way to get to the target!

We’re supposed to say 
what the remaining 

distance is, but we can’t 
know that unless we 

already know the best 
way to get to the target!



  

The Golden Mean

● We’re looking for a virtuous golden mean 
between two extremes:
● The vice of deficiency: making no 

assumptions whatsoever about the graph 
structure.

● The vice of excess: having to know 
everything about the graph in order to 
provide assistance.

● Idea: Look for some kind of compromise 
between the two.



  

In the absolute best 
case, the distance is

| x| + | y|Δ Δ

In the absolute best 
case, the distance is

| x| + | y|Δ Δ



  

Heuristic Functions

● In the context of a graph search, a 
heuristic function is a function that 
makes a “guess” of the distance from a 
node to the destination node.

 

 

 
● An admissible heuristic is one that 

never overestimates the true distance.
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A* Search

● The approach described here (using not 
just the estimated distance to each node, 
but also the heuristic distance to the 
target) is called A* search.

● Provided you have an admissible 
heuristic, A* can be dramatically faster 
than Dijkstra’s algorithm.

● Oh, and the code is a trivial modification 
on Dijkstra’s algorithm…



  

A* Search
a*-search() {
  make a priority queue of nodes.
  enqueue start node at distance 0.
  color the start node yellow.
 
  while (the queue is not empty) {
    dequeue a node from the queue.
    if (that node isn't green) {
      color that node green.

      for (each neighboring node) {
        if (that node is not green) {
          color the node yellow.
          enqueue it at the new distance plus the heuristic.
        }
      }
    }
  }   
}



  

Questions to Ponder

● Why must the heuristic never 
overestimate the distance to the target?
● Hint: Think about the reason why Dijkstra’s 

algorithm is correct in the first place.
● A heuristic of zero is always admissible, 

since it never overestimates distances. 
What do you get if you run A* search 
with a zero heuristic function?



  

Next Time

● Minimum Spanning Trees
● Data Clustering
● Applications to Computational Biology


