Shortest Paths

Part One

Recap from Last Time

A graph is a mathematical structure
for representing relationships.

A graph consists of a set of nodes
connected by edges.

Breadth-First Search

Breadth-First Search

@

SAT
AT @ RAT

CA&
C

MAN.
MAN

BFS Pseudocode

breadth-first-search() {
make a queue of nodes.
enqueue start node.
color the start node yellow.

while (the queue is not empty) {
dequeue a node from the queue.
color that node green.

for (each neighboring node) {
if (that node is gray) {
color the node yellow.
enqueue 1it.

}
}
}
}

The Limits of Breadth-First Search

S
......

L&' ff

LaSw‘-a’E‘n St

L)

Stanford Memoaorial
Auditarium

Sa
18 Mayy
Dohrmann
B
Sarr.
-E-‘.I'f& 'llffalfll

Grove
Stanfurd Art-Gallery

=
L]
=
g
£
]
o
o

€2 Hoover Tower

Gajvﬂ'? May

Each intersection is a node
Edges represent roads.

Different roads have
different lengths.
Question: What's the best
way to get from point A to
point B?

oy,
ralM&#‘_ i
”. By
Serra Grove | . ;
William R. Hewlett o s 8 & S M &
Teaching Center £ all
| = -
= |
Jen-H "ég g Virtual Human
Tﬂnn;arf & § g Interaction Lab
g S H 8
Engineering = [| ;
| Auguste'Rodin - The
CEH ' R | Burghers of Calais
s Stanford
y £ University
o =
[o
|lll |lIl \’ &
£ 11min L2/
0.5 mile 1 £ 11 min N W
— OB 0.5 mile Y
e Memorial Church
G Branner Earth ™ == h : =
Sciences Library H ‘Q r
[| D 12 min
@& The d.school e
.' ."I y
'b-.i'li_”ﬂ T I.'Illlfl
_"'.“--.J 12
2 =
G ! %J.' .1_.
L4 & |
o 2 N
.'..ll ;3";
.". __.ﬂ':.l-"l
L+ S i
e B
Black Community : r
Services Center]
1. " Panda Express
Kennedy @ 3
Grove Q: '
gThe Treehouse @

The Stanford
Faculty Club

B

Stanford Bookstore

Canfield Court

UUS Post Office

©

Stanford Law School

The Model

 We have a graph in
which each edge has a
nonnegative cost or
weight associated with
it.

 We want to find the

lowest-cost path from
point A to point B.

 BFS does not take edge
weights into account.

« How might we go about
solving this problem?

Option 1: Brute-Force!

 We could conceivably
solve this problem
using brute force and
a backtracking
recursion.

* Problem: There can
be a lot of different
paths in a graph!

* This is way too
inefficient to use in
practice.

Option 2: Expand the Graph

« BES works in the
case where each
edge has equal
weight.

 Idea: What if we
split each edge of
length k into k
smaller edges?

Option 2: Expand the Graph

« BES works in the
case where each
edge has equal
weight.

1.618033

* Idea: What if we 2 71828
split each edge of
length k into k
smaller edges?

 What if there are
fractional edges?
Or large weights?

3.14159

Option 2: Expand the Graph

« BES works in the
case where each
edge has equal
weight.

 Idea: What if we
split each edge of
length k into k
smaller edges?

 What if there are
fractional edges?
Or large weights?

Option 3: Look at the problem more closely

The Pattern

\

All yellow nodes
(nodes we’ve
> seen, but dond
know The
distance to.)

The Pattern

The Pattern

No other path to
this node can be
better than the
one we already
know about!

At a Glance

 The approach suggested here gives rise to
Dijkstra’s algorithm, a fast, powerful, and
famous algorithm for computing shortest paths.

 Key idea: As in BFS, split nodes into
* gray nodes we haven’t seen,
. that are on the frontier, and
» green nodes we have the best path to,

then repeatedly turn the lowest-cost yellow
node into a green node.

Implementing Dijkstra’s Algorithm

The Finished Product

dijkstra's-algorithm() { Use a priovity gqueue
make a priority queue of nodes.
enqueue start node at distance 0. rather fhan a
color the start node yellow. standard queue to

sort by distances,
not wnumber of hops.

while (the queue is not empty) {
dequeue a node from the queue.
if (that node isn't green) {
color that node green.

for (each neighboring node) {
if (that node is not green) {
color the node yellow.
enqueue it at the new distance.

The Finished Product

dijkstra's-algorithm() {
make a priority queue of nodes.
enqueue start node at distance 0.
color the start node yellow.

while (the queue is not empty) {
dequeue a node from the queue.
if (that node isn't green) {
color that node green.

for (each neighboring node) {
if (that node is not green) { —
color the node yellow.

enqueue it at the new distance. Allow nodes *9 be
) engueued mulfiple

} fimes, The first fime
} we find the node
} might not be The
best option.,

The Finished Product

dijkstra's-algorithm() {
make a priority queue of nodes.
enqueue start node at distance 0.
color the start node yellow.

while (the queue is not empty) {
dequeue a node from the queue
if (that node isn't green) {

color that node green.

for (each neighboring node) {
if (that node is not green) {
color the node yellow.

enqueue it at the new distance.

N

As a conseguence,
when degueuing
nodes, make sure
we're nof visiting
something we've
already processed.

