Shortest Paths

Part One



Recap from Last Time



A graph is a mathematical structure
for representing relationships.

A graph consists of a set of nodes
connected by edges.




Breadth-First Search



Breadth-First Search
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BFS Pseudocode

breadth-first-search() {
make a queue of nodes.
enqueue start node.
color the start node yellow.

while (the queue is not empty) {
dequeue a node from the queue.
color that node green.

for (each neighboring node) {
if (that node is gray) {
color the node yellow.
enqueue 1it.

}
}
}
}



The Limits of Breadth-First Search
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Different roads have
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The Model

 We have a graph in
which each edge has a
nonnegative cost or
weight associated with
it.

 We want to find the

lowest-cost path from
point A to point B.

 BFS does not take edge
weights into account.

« How might we go about
solving this problem?



Option 1: Brute-Force!

 We could conceivably
solve this problem
using brute force and
a backtracking
recursion.

* Problem: There can
be a lot of different
paths in a graph!

* This is way too
inefficient to use in
practice.



Option 2: Expand the Graph

« BES works in the
case where each
edge has equal
weight.

 Idea: What if we
split each edge of
length k into k
smaller edges?




Option 2: Expand the Graph

« BES works in the
case where each
edge has equal
weight.
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split each edge of
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Option 2: Expand the Graph

« BES works in the
case where each
edge has equal
weight.

 Idea: What if we
split each edge of
length k into k
smaller edges?

 What if there are
fractional edges?
Or large weights?




Option 3: Look at the problem more closely



The Pattern

\

All yellow nodes
(nodes we’ve
> seen, but dond
know The
distance to.)



The Pattern




The Pattern

No other path to
this node can be
better than the
one we already
know about!




At a Glance

 The approach suggested here gives rise to
Dijkstra’s algorithm, a fast, powerful, and
famous algorithm for computing shortest paths.

 Key idea: As in BFS, split nodes into
* gray nodes we haven’t seen,
. that are on the frontier, and
» green nodes we have the best path to,

then repeatedly turn the lowest-cost yellow
node into a green node.



Implementing Dijkstra’s Algorithm



The Finished Product

dijkstra's-algorithm() { Use a priovity gqueue
make a priority queue of nodes.
enqueue start node at distance 0. rather fhan a
color the start node yellow. standard queue to

sort by distances,
not wnumber of hops.

while (the queue is not empty) {
dequeue a node from the queue.
if (that node isn't green) {
color that node green.

for (each neighboring node) {
if (that node is not green) {
color the node yellow.
enqueue it at the new distance.



The Finished Product

dijkstra's-algorithm() {
make a priority queue of nodes.
enqueue start node at distance 0.
color the start node yellow.

while (the queue is not empty) {
dequeue a node from the queue.
if (that node isn't green) {
color that node green.

for (each neighboring node) {
if (that node is not green) { —
color the node yellow.

enqueue it at the new distance. Allow nodes *9 be
) engueued mulfiple

} fimes, The first fime
} we find the node
} might not be The
best option.,




The Finished Product

dijkstra's-algorithm() {
make a priority queue of nodes.
enqueue start node at distance 0.
color the start node yellow.

while (the queue is not empty) {
dequeue a node from the queue
if (that node isn't green) {

color that node green.

for (each neighboring node) {
if (that node is not green) {
color the node yellow.

enqueue it at the new distance.

N

As a conseguence,
when degueuing
nodes, make sure
we're nof visiting
something we've
already processed.



