
  

Shortest Paths
Part One



  

Recap from Last Time



  

A graph is a mathematical structure
for representing relationships.

A graph consists of a set of nodes 
connected by edges.



  

A graph is a mathematical structure
for representing relationships.

A graph consists of a set of nodes 
connected by edges.



  

A graph is a mathematical structure
for representing relationships.

A graph consists of a set of nodes 
connected by edges.

Nodes



  

A graph is a mathematical structure
for representing relationships.

A graph consists of a set of nodes 
connected by edges.

Edges



  

Breadth-First Search



  

CAT SAT RAT

RANMAN

MAT

CAN

Breadth-First Search



  

A B

E F

C D

G H

I J

L

K

A B

E F

C D

G H

I J

L

K

Breadth-First Search

Gray nodes are 
unexplored.

Yellow nodes 
are in the 

queue.

Green nodes 
have had the 

best path 
discovered.

Gray nodes are 
unexplored.

Yellow nodes 
are in the 

queue.

Green nodes 
have had the 

best path 
discovered.



  

F

A B

E F

C D

G H

I J

L

K

A B

E

C D

G H

I J

L

K

Breadth-First Search

F

Gray nodes are 
unexplored.

Yellow nodes 
are in the 

queue.

Green nodes 
have had the 

best path 
discovered.

Gray nodes are 
unexplored.

Yellow nodes 
are in the 

queue.

Green nodes 
have had the 

best path 
discovered.



  

F

A B

E F

C D

G H

I J

L

K

A B

E

C D

G H

I J

L

K

Breadth-First Search

F

Gray nodes are 
unexplored.

Yellow nodes 
are in the 

queue.

Green nodes 
have had the 

best path 
discovered.

Gray nodes are 
unexplored.

Yellow nodes 
are in the 

queue.

Green nodes 
have had the 

best path 
discovered.



  

F

A B

E F

C D

G H

I J

L

K

A B

E

C D

G H

I J

L

K

Breadth-First Search

F

Gray nodes are 
unexplored.

Yellow nodes 
are in the 

queue.

Green nodes 
have had the 

best path 
discovered.

Gray nodes are 
unexplored.

Yellow nodes 
are in the 

queue.

Green nodes 
have had the 

best path 
discovered.



  

A B

E

D

K

F

A B

E F

C D

G H

I J

L

K

C

G H

I J

L

Breadth-First Search

F

Gray nodes are 
unexplored.

Yellow nodes 
are in the 

queue.

Green nodes 
have had the 

best path 
discovered.

Gray nodes are 
unexplored.

Yellow nodes 
are in the 

queue.

Green nodes 
have had the 

best path 
discovered.



  

A B

E

D

K

F

A B

E F

C D

G H

I J

L

K

C

G H

I J

L

Breadth-First Search

A B D E K

F

Gray nodes are 
unexplored.

Yellow nodes 
are in the 

queue.

Green nodes 
have had the 

best path 
discovered.

Gray nodes are 
unexplored.

Yellow nodes 
are in the 

queue.

Green nodes 
have had the 

best path 
discovered.



  

A B

E

D

K

F

A B

E F

C D

G H

I J

L

K

C

G H

I J

L

Breadth-First Search

A B D E K

Gray nodes are 
unexplored.

Yellow nodes 
are in the 

queue.

Green nodes 
have had the 

best path 
discovered.

Gray nodes are 
unexplored.

Yellow nodes 
are in the 

queue.

Green nodes 
have had the 

best path 
discovered.



  

A B

E

D

K

F

A B

E F

C D

G H

I J

L

K

C

G H

I J

L

Breadth-First Search

B D E K

A

Gray nodes are 
unexplored.

Yellow nodes 
are in the 

queue.

Green nodes 
have had the 

best path 
discovered.

Gray nodes are 
unexplored.

Yellow nodes 
are in the 

queue.

Green nodes 
have had the 

best path 
discovered.



  

A B

E

D

K

F

A B

E F

C D

G H

I J

L

K

C

G H

I J

L

Breadth-First Search

B D E K

A

Gray nodes are 
unexplored.

Yellow nodes 
are in the 

queue.

Green nodes 
have had the 

best path 
discovered.

Gray nodes are 
unexplored.

Yellow nodes 
are in the 

queue.

Green nodes 
have had the 

best path 
discovered.



  

A B

E

D

K

F

A B

E F

C D

G H

I J

L

K

C

G H

I J

L

Breadth-First Search

B D E K

A

Gray nodes are 
unexplored.

Yellow nodes 
are in the 

queue.

Green nodes 
have had the 

best path 
discovered.

Gray nodes are 
unexplored.

Yellow nodes 
are in the 

queue.

Green nodes 
have had the 

best path 
discovered.



  

A B

E

D

K

F

A B

E F

C D

G H

I J

L

K

C

G H

I J

L

Breadth-First Search

B D E K

Gray nodes are 
unexplored.

Yellow nodes 
are in the 

queue.

Green nodes 
have had the 

best path 
discovered.

Gray nodes are 
unexplored.

Yellow nodes 
are in the 

queue.

Green nodes 
have had the 

best path 
discovered.



  

A B

E

D

K

F

A B

E F

C D

G H

I J

L

K

C

G H

I J

L

Breadth-First Search

D E K

B

Gray nodes are 
unexplored.

Yellow nodes 
are in the 

queue.

Green nodes 
have had the 

best path 
discovered.

Gray nodes are 
unexplored.

Yellow nodes 
are in the 

queue.

Green nodes 
have had the 

best path 
discovered.



  

A B

E

D

K

F

A B

E F

C D

G H

I J

L

K

C

G H

I J

L

Breadth-First Search

D E K

B

Gray nodes are 
unexplored.

Yellow nodes 
are in the 

queue.

Green nodes 
have had the 

best path 
discovered.

Gray nodes are 
unexplored.

Yellow nodes 
are in the 

queue.

Green nodes 
have had the 

best path 
discovered.



  

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

K

G

I J

L

Breadth-First Search

D E K

B

Gray nodes are 
unexplored.

Yellow nodes 
are in the 

queue.

Green nodes 
have had the 

best path 
discovered.

Gray nodes are 
unexplored.

Yellow nodes 
are in the 

queue.

Green nodes 
have had the 

best path 
discovered.



  

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

K

G

I J

L

Breadth-First Search

D E K

B

C H

Gray nodes are 
unexplored.

Yellow nodes 
are in the 

queue.

Green nodes 
have had the 

best path 
discovered.

Gray nodes are 
unexplored.

Yellow nodes 
are in the 

queue.

Green nodes 
have had the 

best path 
discovered.



  

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

K

G

I J

L

Breadth-First Search

D E K C H

Gray nodes are 
unexplored.

Yellow nodes 
are in the 

queue.

Green nodes 
have had the 

best path 
discovered.

Gray nodes are 
unexplored.

Yellow nodes 
are in the 

queue.

Green nodes 
have had the 

best path 
discovered.



  

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

K

G

I J

L

Breadth-First Search

E K C H

D

Gray nodes are 
unexplored.

Yellow nodes 
are in the 

queue.

Green nodes 
have had the 

best path 
discovered.

Gray nodes are 
unexplored.

Yellow nodes 
are in the 

queue.

Green nodes 
have had the 

best path 
discovered.



  

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

K

G

I J

L

Breadth-First Search

E K C H

D

Gray nodes are 
unexplored.

Yellow nodes 
are in the 

queue.

Green nodes 
have had the 

best path 
discovered.

Gray nodes are 
unexplored.

Yellow nodes 
are in the 

queue.

Green nodes 
have had the 

best path 
discovered.



  

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

K

G

I J

L

Breadth-First Search

E K C H

D

Gray nodes are 
unexplored.

Yellow nodes 
are in the 

queue.

Green nodes 
have had the 

best path 
discovered.

Gray nodes are 
unexplored.

Yellow nodes 
are in the 

queue.

Green nodes 
have had the 

best path 
discovered.



  

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

K

G

I J

L

Breadth-First Search

E K C H

Gray nodes are 
unexplored.

Yellow nodes 
are in the 

queue.

Green nodes 
have had the 

best path 
discovered.

Gray nodes are 
unexplored.

Yellow nodes 
are in the 

queue.

Green nodes 
have had the 

best path 
discovered.



  

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

K

G

I J

L

Breadth-First Search

K C H

E

Gray nodes are 
unexplored.

Yellow nodes 
are in the 

queue.

Green nodes 
have had the 

best path 
discovered.

Gray nodes are 
unexplored.

Yellow nodes 
are in the 

queue.

Green nodes 
have had the 

best path 
discovered.



  

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

K

G

I J

L

Breadth-First Search

K C H

E

Gray nodes are 
unexplored.

Yellow nodes 
are in the 

queue.

Green nodes 
have had the 

best path 
discovered.

Gray nodes are 
unexplored.

Yellow nodes 
are in the 

queue.

Green nodes 
have had the 

best path 
discovered.



  

I

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

K

G

J

L

Breadth-First Search

K C H

E

Gray nodes are 
unexplored.

Yellow nodes 
are in the 

queue.

Green nodes 
have had the 

best path 
discovered.

Gray nodes are 
unexplored.

Yellow nodes 
are in the 

queue.

Green nodes 
have had the 

best path 
discovered.



  

I

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

K

G

J

L

Breadth-First Search

K C H

E

I

Gray nodes are 
unexplored.

Yellow nodes 
are in the 

queue.

Green nodes 
have had the 

best path 
discovered.

Gray nodes are 
unexplored.

Yellow nodes 
are in the 

queue.

Green nodes 
have had the 

best path 
discovered.



  

I

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

K

G

J

L

Breadth-First Search

K C H I

Gray nodes are 
unexplored.

Yellow nodes 
are in the 

queue.

Green nodes 
have had the 

best path 
discovered.

Gray nodes are 
unexplored.

Yellow nodes 
are in the 

queue.

Green nodes 
have had the 

best path 
discovered.



  

I

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

K

G

J

L

Breadth-First Search

C H I

K

Gray nodes are 
unexplored.

Yellow nodes 
are in the 

queue.

Green nodes 
have had the 

best path 
discovered.

Gray nodes are 
unexplored.

Yellow nodes 
are in the 

queue.

Green nodes 
have had the 

best path 
discovered.



  

I

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

K

G

J

L

Breadth-First Search

C H I

K

Gray nodes are 
unexplored.

Yellow nodes 
are in the 

queue.

Green nodes 
have had the 

best path 
discovered.

Gray nodes are 
unexplored.

Yellow nodes 
are in the 

queue.

Green nodes 
have had the 

best path 
discovered.



  

G

I

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

KJ

L

Breadth-First Search

C H I

K

Gray nodes are 
unexplored.

Yellow nodes 
are in the 

queue.

Green nodes 
have had the 

best path 
discovered.

Gray nodes are 
unexplored.

Yellow nodes 
are in the 

queue.

Green nodes 
have had the 

best path 
discovered.



  

G

I

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

KJ

L

Breadth-First Search

C H I

K

G

Gray nodes are 
unexplored.

Yellow nodes 
are in the 

queue.

Green nodes 
have had the 

best path 
discovered.

Gray nodes are 
unexplored.

Yellow nodes 
are in the 

queue.

Green nodes 
have had the 

best path 
discovered.



  

G

I

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

KJ

L

Breadth-First Search

C H I G

Gray nodes are 
unexplored.

Yellow nodes 
are in the 

queue.

Green nodes 
have had the 

best path 
discovered.

Gray nodes are 
unexplored.

Yellow nodes 
are in the 

queue.

Green nodes 
have had the 

best path 
discovered.



  

G

I

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

KJ

L

Breadth-First Search

H I G

C

Gray nodes are 
unexplored.

Yellow nodes 
are in the 

queue.

Green nodes 
have had the 

best path 
discovered.

Gray nodes are 
unexplored.

Yellow nodes 
are in the 

queue.

Green nodes 
have had the 

best path 
discovered.



  

G

I

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

KJ

L

Breadth-First Search

H I G

C

Gray nodes are 
unexplored.

Yellow nodes 
are in the 

queue.

Green nodes 
have had the 

best path 
discovered.

Gray nodes are 
unexplored.

Yellow nodes 
are in the 

queue.

Green nodes 
have had the 

best path 
discovered.



  

G

I

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

KJ

L

Breadth-First Search

H I G

Gray nodes are 
unexplored.

Yellow nodes 
are in the 

queue.

Green nodes 
have had the 

best path 
discovered.

Gray nodes are 
unexplored.

Yellow nodes 
are in the 

queue.

Green nodes 
have had the 

best path 
discovered.



  

G

I

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

KJ

L

Breadth-First Search

I G

H

Gray nodes are 
unexplored.

Yellow nodes 
are in the 

queue.

Green nodes 
have had the 

best path 
discovered.

Gray nodes are 
unexplored.

Yellow nodes 
are in the 

queue.

Green nodes 
have had the 

best path 
discovered.



  

G

I

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

KJ

L

Breadth-First Search

I G

H

Gray nodes are 
unexplored.

Yellow nodes 
are in the 

queue.

Green nodes 
have had the 

best path 
discovered.

Gray nodes are 
unexplored.

Yellow nodes 
are in the 

queue.

Green nodes 
have had the 

best path 
discovered.



  

G

I

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

KJ

L

Breadth-First Search

I G

H

Gray nodes are 
unexplored.

Yellow nodes 
are in the 

queue.

Green nodes 
have had the 

best path 
discovered.

Gray nodes are 
unexplored.

Yellow nodes 
are in the 

queue.

Green nodes 
have had the 

best path 
discovered.



  

G

I

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

KJ

L

Breadth-First Search

I G

Gray nodes are 
unexplored.

Yellow nodes 
are in the 

queue.

Green nodes 
have had the 

best path 
discovered.

Gray nodes are 
unexplored.

Yellow nodes 
are in the 

queue.

Green nodes 
have had the 

best path 
discovered.



  

G

I

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

KJ

L

Breadth-First Search

G

I

Gray nodes are 
unexplored.

Yellow nodes 
are in the 

queue.

Green nodes 
have had the 

best path 
discovered.

Gray nodes are 
unexplored.

Yellow nodes 
are in the 

queue.

Green nodes 
have had the 

best path 
discovered.



  

G

I

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

KJ

L

Breadth-First Search

G

I

Gray nodes are 
unexplored.

Yellow nodes 
are in the 

queue.

Green nodes 
have had the 

best path 
discovered.

Gray nodes are 
unexplored.

Yellow nodes 
are in the 

queue.

Green nodes 
have had the 

best path 
discovered.



  

L

G

I

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

KJ

Breadth-First Search

G

I

Gray nodes are 
unexplored.

Yellow nodes 
are in the 

queue.

Green nodes 
have had the 

best path 
discovered.

Gray nodes are 
unexplored.

Yellow nodes 
are in the 

queue.

Green nodes 
have had the 

best path 
discovered.



  

L

G

I

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

KJ

Breadth-First Search

G

I

L

Gray nodes are 
unexplored.

Yellow nodes 
are in the 

queue.

Green nodes 
have had the 

best path 
discovered.

Gray nodes are 
unexplored.

Yellow nodes 
are in the 

queue.

Green nodes 
have had the 

best path 
discovered.



  

L

G

I

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

KJ

Breadth-First Search

G L

Gray nodes are 
unexplored.

Yellow nodes 
are in the 

queue.

Green nodes 
have had the 

best path 
discovered.

Gray nodes are 
unexplored.

Yellow nodes 
are in the 

queue.

Green nodes 
have had the 

best path 
discovered.



  

L

G

I

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

KJ

Breadth-First Search

L

G

Gray nodes are 
unexplored.

Yellow nodes 
are in the 

queue.

Green nodes 
have had the 

best path 
discovered.

Gray nodes are 
unexplored.

Yellow nodes 
are in the 

queue.

Green nodes 
have had the 

best path 
discovered.



  

L

G

I

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

KJ

Breadth-First Search

L

G

Gray nodes are 
unexplored.

Yellow nodes 
are in the 

queue.

Green nodes 
have had the 

best path 
discovered.

Gray nodes are 
unexplored.

Yellow nodes 
are in the 

queue.

Green nodes 
have had the 

best path 
discovered.



  

L

G

I

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

KJ

Breadth-First Search

L

Gray nodes are 
unexplored.

Yellow nodes 
are in the 

queue.

Green nodes 
have had the 

best path 
discovered.

Gray nodes are 
unexplored.

Yellow nodes 
are in the 

queue.

Green nodes 
have had the 

best path 
discovered.



  

L

G

I

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

KJ

Breadth-First Search

L

Gray nodes are 
unexplored.

Yellow nodes 
are in the 

queue.

Green nodes 
have had the 

best path 
discovered.

Gray nodes are 
unexplored.

Yellow nodes 
are in the 

queue.

Green nodes 
have had the 

best path 
discovered.



  

L

G

I

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

KJ

Breadth-First Search

L

Gray nodes are 
unexplored.

Yellow nodes 
are in the 

queue.

Green nodes 
have had the 

best path 
discovered.

Gray nodes are 
unexplored.

Yellow nodes 
are in the 

queue.

Green nodes 
have had the 

best path 
discovered.



  

J

L

G

I

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

K

Breadth-First Search

L

Gray nodes are 
unexplored.

Yellow nodes 
are in the 

queue.

Green nodes 
have had the 

best path 
discovered.

Gray nodes are 
unexplored.

Yellow nodes 
are in the 

queue.

Green nodes 
have had the 

best path 
discovered.



  

J

L

G

I

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

K

Breadth-First Search

L
J

Gray nodes are 
unexplored.

Yellow nodes 
are in the 

queue.

Green nodes 
have had the 

best path 
discovered.

Gray nodes are 
unexplored.

Yellow nodes 
are in the 

queue.

Green nodes 
have had the 

best path 
discovered.



  

J

L

G

I

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

K

Breadth-First Search

J

Gray nodes are 
unexplored.

Yellow nodes 
are in the 

queue.

Green nodes 
have had the 

best path 
discovered.

Gray nodes are 
unexplored.

Yellow nodes 
are in the 

queue.

Green nodes 
have had the 

best path 
discovered.



  

J

L

G

I

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

K

Breadth-First Search

J

Gray nodes are 
unexplored.

Yellow nodes 
are in the 

queue.

Green nodes 
have had the 

best path 
discovered.

Gray nodes are 
unexplored.

Yellow nodes 
are in the 

queue.

Green nodes 
have had the 

best path 
discovered.



  

J

L

G

I

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

K

Breadth-First Search

J

Gray nodes are 
unexplored.

Yellow nodes 
are in the 

queue.

Green nodes 
have had the 

best path 
discovered.

Gray nodes are 
unexplored.

Yellow nodes 
are in the 

queue.

Green nodes 
have had the 

best path 
discovered.



  

J

L

G

I

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

K

Breadth-First Search

Gray nodes are 
unexplored.

Yellow nodes 
are in the 

queue.

Green nodes 
have had the 

best path 
discovered.

Gray nodes are 
unexplored.

Yellow nodes 
are in the 

queue.

Green nodes 
have had the 

best path 
discovered.



  

BFS Pseudocode

breadth-first-search() {
  make a queue of nodes.
  enqueue start node.
  color the start node yellow.
 
  while (the queue is not empty) {
    dequeue a node from the queue.
    color that node green.

    for (each neighboring node) {
      if (that node is gray) {
        color the node yellow.
        enqueue it.
      }
    }
  }   
}



  

The Limits of Breadth-First Search



  

Each intersection is a node.
 

Edges represent roads.
 

Different roads have 
different lengths.

 

Question: What’s the best 
way to get from point A to 

point B?

Each intersection is a node.
 

Edges represent roads.
 

Different roads have 
different lengths.

 

Question: What’s the best 
way to get from point A to 

point B?



  

The Model

● We have a graph in 
which each edge has a 
nonnegative cost or 
weight associated with 
it.

● We want to find the 
lowest-cost path from 
point A to point B.

● BFS does not take edge 
weights into account.

● How might we go about 
solving this problem?

A

B

C

D

1

3

6

7

2



  

Option 1: Brute-Force!

● We could conceivably 
solve this problem 
using brute force and 
a backtracking 
recursion.

● Problem: There can 
be a lot of different 
paths in a graph!

● This is way too 
inefficient to use in 
practice.



  

Option 2: Expand the Graph

● BFS works in the 
case where each 
edge has equal 
weight.

● Idea: What if we 
split each edge of 
length k into k 
smaller edges?

A B

C

4

3              2



  

Option 2: Expand the Graph

● BFS works in the 
case where each 
edge has equal 
weight.

● Idea: What if we 
split each edge of 
length k into k 
smaller edges?

A B

C



  

Option 2: Expand the Graph

● BFS works in the 
case where each 
edge has equal 
weight.

● Idea: What if we 
split each edge of 
length k into k 
smaller edges?

● What if there are 
fractional edges? 
Or large weights?

A B

C

1.618033

2.71828                                    3.14159



  

Option 2: Expand the Graph

● BFS works in the 
case where each 
edge has equal 
weight.

● Idea: What if we 
split each edge of 
length k into k 
smaller edges?

● What if there are 
fractional edges? 
Or large weights?

A B

C

1015

914                                      2300



  

Option 3: Look at the problem more closely



  

F

B

A 10

3   

1   

C

D

4

   7

E3

   3



  

F

B

A 10

3   

1   

C

D

4

   7

E3

   3



  

F

B

10

3   

1   

C

D

4

   7

E3

   3

A



  

F

B

10

3   

1   

C

D

4

   7

E3

   3

A0



  

F

B

10

3   

1   

C

D

4

   7

E3

   3

A0



  

F

B

10

3   

1   

C

D

4

   7

E3

   3

A0

1?



  

F

B

10

3   

1   

C

D

4

   7

E3

   3

A0

1?

10?



  

F

B

10

3   

1   

C

D

4

   7

E3

   3

A0

1?

10?

3?



  

F

B

10

3   

1   

C

D

4

   7

E3

   3

A0

1?

10?

3?



  

F

B

10

3   

1   

C

D

4

   7

E3

   3

A0

1?

10?

3?



  

F

B

10

3   

1   

C

D

4

   7

E3

   3

A0

1?

10?

3?



  

F

B

10

3   

1   

C

D

4

   7

E3

   3

A0

1?

10?

3?



  

F

B

10

3   

1   

C

D

4

   7

E3

   3

A0

1?

10?

3?



  

F

B

10

3   

1   

C

D

4

   7

E3

   3

A0

1?

10?

3?



  

F

B

10

3   

1   

C

D

4

   7

E3

   3

A0

1?

10?

3?



  

F

B

10

3   

1   

C

D

4

   7

E3

   3

A0

1?

10?

3?



  

F

B

10

3   

1   

C

D

4

   7

E3

   3

A0

1?

10?

3?



  

F

B

10

3   

1   

C

D

4

   7

E3

   3

A0

1?

10?

3? Observation: The 
shortest path from A to 
F can’t start by going 
directly from A to D.

Observation: The 
shortest path from A to 
F can’t start by going 
directly from A to D.



  

F

B

10

3   

1   

C

D

4

   7

E3

   3

A0

1?

10?

3?



  

F

B

10

3   

1   

C

D

4

   7

E3

   3

A0

1?

10?

3?



  

F

B

10

3   

1   

C

D

4

   7

E3

   3

A0

1?

10?

3?



  

F

B

10

3   

1   

C

D

4

   7

E3

   3

A0

1?

10?

3?



  

F

B

10

3   

1   

C

D

4

   7

E3

   3

A0

1?

10?

3?



  

F

B

10

3   

1   

C

D

4

   7

E3

   3

A0

1?

10?

3?



  

F

B

10

3   

1   

C

D

4

   7

E3

   3

A0

1?

10?

3?

We have a valid path 
that goes from A to B, 
and no alternate path 
could possibly be as 
good. This must be 
the shortest path!

We have a valid path 
that goes from A to B, 
and no alternate path 
could possibly be as 
good. This must be 
the shortest path!



  

F

B

10

3   

1   

C

D

4

   7

E3

   3

A0

1

10?

3?



  

F

B

10

3   

1   

C

D

4

   7

E3

   3

A0

1

10?

3?



  

F

B

10

3   

1   

C

D

4

   7

E3

   3

A0

1

10?

3?



  

F

B

10

3   

1   

C

D

4

   7

E3

   3

A0

1

10?

3?

5?



  

F

B

10

3   

1   

C

D

4

   7

E3

   3

A0

1

10?

3?

5?



  

F

B

10

3   

1   

C

D

4

   7

E3

   3

A0

1

10?

3?

5?



  

F

B

10

3   

1   

C

D

4

   7

E3

   3

A0

1

10?

3?

5?



  

F

B

10

3   

1   

C

D

4

   7

E3

   3

A0

1

10?

3?

5?



  

F

B

10

3   

1   

C

D

4

   7

E3

   3

A0

1

10?

3?

5?



  

F

B

10

3   

1   

C

D

4

   7

E3

   3

A0

1

10?

3?

5?



  

F

B

10

3   

1   

C

D

4

   7

E3

   3

A0

1

10?

3?

5?



  

F

B

10

3   

1   

C

D

4

   7

E3

   3

A0

1

10?

3?

5?



  

F

B

10

3   

1   

C

D

4

   7

E3

   3

A0

1

10?

3?

5?



  

F

B

10

3   

1   

C

D

4

   7

E3

   3

A0

1

10?

3?

5?



  

F

B

10

3   

1   

C

D

4

   7

E3

   3

A0

1

10?

3?

5?



  

F

B

10

3   

1   

C

D

4

   7

E3

   3

A0

1

10?

3?

5?



  

F

B

10

3   

1   

C

D

4

   7

E3

   3

A0

1

10?

3?

5?



  

F

B

10

3   

1   

C

D

4

   7

E3

   3

A0

1

10?

3?

5?



  

F

B

10

3   

1   

C

D

4

   7

E3

   3

A0

1

10?

3?

5?



  

F

B

10

3   

1   

C

D

4

   7

E3

   3

A0

1

10?

3?

5?



  

F

B

10

3   

1   

C

D

4

   7

E3

   3

A0

1

10?

3

5?



  

F

B

10

3   

1   

C

D

4

   7

E3

   3

A0

1

10?

3

5?



  

F

B

10

3   

1   

C

D

4

   7

E3

   3

A0

1

10?

3

5?



  

F

B

10

3   

1   

C

D

4

   7

E3

   3

A0

1

10?

3

5?

6?



  

F

B

10

3   

1   

C

D

4

   7

E3

   3

A0

1

10?

3

5?

6?



  

F

B

10

3   

1   

C

D

4

   7

E3

   3

A0

1

10?

3

5?

6?



  

F

B

10

3   

1   

C

D

4

   7

E3

   3

A0

1

10?

3

5?

6?



  

F

B

10

3   

1   

C

D

4

   7

E3

   3

A0

1

10?

3

5?

6?



  

F

B

10

3   

1   

C

D

4

   7

E3

   3

A0

1

10?

3

5?

6?



  

F

B

10

3   

1   

C

D

4

   7

E3

   3

A0

1

10?

3

5?

6?



  

F

B

10

3   

1   

C

D

4

   7

E3

   3

A0

1

10?

3

5?

6?



  

F

B

10

3   

1   

C

D

4

   7

E3

   3

A0

1

10?

3

5

6?



  

F

B

10

3   

1   

C

D

4

   7

E3

   3

A0

1

10?

3

5

6?



  

F

B

10

3   

1   

C

D

4

   7

E3

   3

A0

1

10?

3

5

6?



  

F

B

10

3   

1   

C

D

4

   7

E3

   3

A0

1

10?

3

5

6?



  

F

B

10

3   

1   

C

D

4

   7

E3

   3

A0

1

10?

3

5

6?



  

F

B

10

3   

1   

C

D

4

   7

E3

   3

A0

1

10?

3

5

6?



  

F

B

10

3   

1   

C

D

4

   7

E3

   3

A0

1

10?

3

5

6?



  

F

B

10

3   

1   

C

D

4

   7

E3

   3

A0

1

10?

3

5

6?



  

F

B

10

3   

1   

C

D

4

   7

E3

   3

A0

1

10?

3

5

6?



  

F

B

10

3   

1   

C

D

4

   7

E3

   3

A0

1

10?

3

5

6



  

F

B

10

3   

1   

C

D

4

   7

E3

   3

A0

1

10?

3

5

6



  

F

B

10

3   

1   

C

D

4

   7

E3

   3

A0

1

10?

3

5

6



  

F

B

10

3   

1   

C

D

4

   7

E3

   3

A0

1

9?

3

5

6



  

F

B

10

3   

1   

C

D

4

   7

E3

   3

A0

1

9?

3

5

6



  

F

B

10

3   

1   

C

D

4

   7

E3

   3

A0

1

9

3

5

6



  

F

B

3   

1   

C

D

4

E3

   3

A0

1

9

3

5

6



  

The Pattern

★

106?

137?

271?

161?

All yellow nodes 
(nodes we’ve 

seen, but don’t 
know the 

distance to.)



  

The Pattern

★

106?

137?

271?

161?

Look at the 
lowest-cost 
yellow node.

Look at the 
lowest-cost 
yellow node.



  

The Pattern

★

106?

137?

271?

161?



  

The Pattern

★

106?

137?

271?

161?



  

The Pattern

★

106?

137?

271?

161?



  

The Pattern

★

106?

137?

271?

161?

No other path to 
this node can be 
better than the 
one we already 

know about!

No other path to 
this node can be 
better than the 
one we already 

know about!



  

The Pattern

★

106?

137?

271?

161?



  

At a Glance

● The approach suggested here gives rise to 
Dijkstra’s algorithm, a fast, powerful, and 
famous algorithm for computing shortest paths.

● Key idea: As in BFS, split nodes into
● gray nodes we haven’t seen,
● yellow nodes that are on the frontier, and
● green nodes we have the best path to,

then repeatedly turn the lowest-cost yellow 
node into a green node.



  

Implementing Dijkstra’s Algorithm



  

breadth-first-search() {
  make a queue of nodes.
  enqueue start node.
  color the start node yellow.
 
  while (the queue is not empty) {
    dequeue a node from the queue.
    
    color that node green.

    for (each neighboring node) {
      if (that node is gray) {
        color the node yellow.
        enqueue it.
      }
    }

  }   
}

A

B

C

D

1     

3     

6

7

2



  

breadth-first-search() {
  make a queue of nodes.
  enqueue start node.
  color the start node yellow.
 
  while (the queue is not empty) {
    dequeue a node from the queue.
    
    color that node green.

    for (each neighboring node) {
      if (that node is gray) {
        color the node yellow.
        enqueue it.
      }
    }

  }   
}

dijkstra's-algorithm() {
  make a queue of nodes.
  enqueue start node.
  color the start node yellow.
 
  while (the queue is not empty) {
    dequeue a node from the queue.
    
    color that node green.

    for (each neighboring node) {
      if (that node is gray) {
        color the node yellow.
        enqueue it.
      }
    }

  }   
}

A

B

C

D

1     

3     

6

7

2

 ⚠ Still under construction! ⚠
Don’t use this as a reference!



  

breadth-first-search() {
  make a queue of nodes.
  enqueue start node.
  color the start node yellow.
 
  while (the queue is not empty) {
    dequeue a node from the queue.
    
    color that node green.

    for (each neighboring node) {
      if (that node is gray) {
        color the node yellow.
        enqueue it.
      }
    }

  }   
}

dijkstra's-algorithm() {
  make a queue of nodes.
  enqueue start node.
  color the start node yellow.
 
  while (the queue is not empty) {
    dequeue a node from the queue.
    
    color that node green.

    for (each neighboring node) {
      if (that node is gray) {
        color the node yellow.
        enqueue it.
      }
    }

  }   
}

A

B

C

D

1     

3     

6

7

2

 ⚠ Still under construction! ⚠
Don’t use this as a reference!



  

breadth-first-search() {
  make a queue of nodes.
  enqueue start node.
  color the start node yellow.
 
  while (the queue is not empty) {
    dequeue a node from the queue.
    
    color that node green.

    for (each neighboring node) {
      if (that node is gray) {
        color the node yellow.
        enqueue it.
      }
    }

  }   
}

dijkstra's-algorithm() {
  make a queue of nodes.
  enqueue start node.
  color the start node yellow.
 
  while (the queue is not empty) {
    dequeue a node from the queue.
    
    color that node green.

    for (each neighboring node) {
      if (that node is gray) {
        color the node yellow.
        enqueue it.
      }
    }

  }   
}

 ⚠ Still under construction! ⚠
Don’t use this as a reference!

A

B

C

D

1     

3     

6

7

2



  

breadth-first-search() {
  make a queue of nodes.
  enqueue start node.
  color the start node yellow.
 
  while (the queue is not empty) {
    dequeue a node from the queue.
    
    color that node green.

    for (each neighboring node) {
      if (that node is gray) {
        color the node yellow.
        enqueue it.
      }
    }

  }   
}

dijkstra's-algorithm() {
  make a queue of nodes.
  enqueue start node.
  color the start node yellow.
 
  while (the queue is not empty) {
    dequeue a node from the queue.
    
    color that node green.

    for (each neighboring node) {
      if (that node is gray) {
        color the node yellow.
        enqueue it.
      }
    }

  }   
}

 ⚠ Still under construction! ⚠
Don’t use this as a reference!

A

B

C

D

1     

3     

6

7

2



  

breadth-first-search() {
  make a queue of nodes.
  enqueue start node.
  color the start node yellow.
 
  while (the queue is not empty) {
    dequeue a node from the queue.
    
    color that node green.

    for (each neighboring node) {
      if (that node is gray) {
        color the node yellow.
        enqueue it.
      }
    }

  }   
}

dijkstra's-algorithm() {
  make a priority queue of nodes.
  enqueue start node.
  color the start node yellow.
 
  while (the queue is not empty) {
    dequeue a node from the queue.
    
    color that node green.

    for (each neighboring node) {
      if (that node is gray) {
        color the node yellow.
        enqueue it.
      }
    }

  }   
}

 ⚠ Still under construction! ⚠
Don’t use this as a reference!

A

B

C

D

1     

3     

6

7

2



  

breadth-first-search() {
  make a queue of nodes.
  enqueue start node.
  color the start node yellow.
 
  while (the queue is not empty) {
    dequeue a node from the queue.
    
    color that node green.

    for (each neighboring node) {
      if (that node is gray) {
        color the node yellow.
        enqueue it.
      }
    }

  }   
}

dijkstra's-algorithm() {
  make a priority queue of nodes.
  enqueue start node.
  color the start node yellow.
 
  while (the queue is not empty) {
    dequeue a node from the queue.
    
    color that node green.

    for (each neighboring node) {
      if (that node is gray) {
        color the node yellow.
        enqueue it.
      }
    }

  }   
}

 ⚠ Still under construction! ⚠
Don’t use this as a reference!

A

B

C

D

1     

3     

6

7

2



  

breadth-first-search() {
  make a queue of nodes.
  enqueue start node.
  color the start node yellow.
 
  while (the queue is not empty) {
    dequeue a node from the queue.
    
    color that node green.

    for (each neighboring node) {
      if (that node is gray) {
        color the node yellow.
        enqueue it.
      }
    }

  }   
}

dijkstra's-algorithm() {
  make a priority queue of nodes.
  enqueue start node at distance 0.
  color the start node yellow.
 
  while (the queue is not empty) {
    dequeue a node from the queue.
    
    color that node green.

    for (each neighboring node) {
      if (that node is gray) {
        color the node yellow.
        enqueue it.
      }
    }

  }   
}

 ⚠ Still under construction! ⚠
Don’t use this as a reference!

A

B

C

D

1     

3     

6

7

2



  

breadth-first-search() {
  make a queue of nodes.
  enqueue start node.
  color the start node yellow.
 
  while (the queue is not empty) {
    dequeue a node from the queue.
    
    color that node green.

    for (each neighboring node) {
      if (that node is gray) {
        color the node yellow.
        enqueue it.
      }
    }

  }   
}

dijkstra's-algorithm() {
  make a priority queue of nodes.
  enqueue start node at distance 0.
  color the start node yellow.
 
  while (the queue is not empty) {
    dequeue a node from the queue.
    
    color that node green.

    for (each neighboring node) {
      if (that node is gray) {
        color the node yellow.
        enqueue it.
      }
    }

  }   
}

 ⚠ Still under construction! ⚠
Don’t use this as a reference!

A

0
A

B

C

D

1     

3     

6

7

2



  

breadth-first-search() {
  make a queue of nodes.
  enqueue start node.
  color the start node yellow.
 
  while (the queue is not empty) {
    dequeue a node from the queue.
    
    color that node green.

    for (each neighboring node) {
      if (that node is gray) {
        color the node yellow.
        enqueue it.
      }
    }

  }   
}

dijkstra's-algorithm() {
  make a priority queue of nodes.
  enqueue start node at distance 0.
  color the start node yellow.
 
  while (the queue is not empty) {
    dequeue a node from the queue.
    
    color that node green.

    for (each neighboring node) {
      if (that node is gray) {
        color the node yellow.
        enqueue it.
      }
    }

  }   
}

 ⚠ Still under construction! ⚠
Don’t use this as a reference!

A

0
A

B

C

D

1     

3     

6

7

2



  

breadth-first-search() {
  make a queue of nodes.
  enqueue start node.
  color the start node yellow.
 
  while (the queue is not empty) {
    dequeue a node from the queue.
    
    color that node green.

    for (each neighboring node) {
      if (that node is gray) {
        color the node yellow.
        enqueue it.
      }
    }

  }   
}

dijkstra's-algorithm() {
  make a priority queue of nodes.
  enqueue start node at distance 0.
  color the start node yellow.
 
  while (the queue is not empty) {
    dequeue a node from the queue.
    
    color that node green.

    for (each neighboring node) {
      if (that node is gray) {
        color the node yellow.
        enqueue it.
      }
    }

  }   
}

 ⚠ Still under construction! ⚠
Don’t use this as a reference!

A

0
A

B

C

D

1     

3     

6

7

2



  

breadth-first-search() {
  make a queue of nodes.
  enqueue start node.
  color the start node yellow.
 
  while (the queue is not empty) {
    dequeue a node from the queue.
    
    color that node green.

    for (each neighboring node) {
      if (that node is gray) {
        color the node yellow.
        enqueue it.
      }
    }

  }   
}

dijkstra's-algorithm() {
  make a priority queue of nodes.
  enqueue start node at distance 0.
  color the start node yellow.
 
  while (the queue is not empty) {
    dequeue a node from the queue.
    
    color that node green.

    for (each neighboring node) {
      if (that node is gray) {
        color the node yellow.
        enqueue it.
      }
    }

  }   
}

 ⚠ Still under construction! ⚠
Don’t use this as a reference!

A

0
A

B

C

D

1     

3     

6

7

2



  

breadth-first-search() {
  make a queue of nodes.
  enqueue start node.
  color the start node yellow.
 
  while (the queue is not empty) {
    dequeue a node from the queue.
    
    color that node green.

    for (each neighboring node) {
      if (that node is gray) {
        color the node yellow.
        enqueue it.
      }
    }

  }   
}

dijkstra's-algorithm() {
  make a priority queue of nodes.
  enqueue start node at distance 0.
  color the start node yellow.
 
  while (the queue is not empty) {
    dequeue a node from the queue.
    
    color that node green.

    for (each neighboring node) {
      if (that node is gray) {
        color the node yellow.
        enqueue it.
      }
    }

  }   
}

 ⚠ Still under construction! ⚠
Don’t use this as a reference!

A

0
A

B

C

D

1     

3     

6

7

2



  

breadth-first-search() {
  make a queue of nodes.
  enqueue start node.
  color the start node yellow.
 
  while (the queue is not empty) {
    dequeue a node from the queue.
    
    color that node green.

    for (each neighboring node) {
      if (that node is gray) {
        color the node yellow.
        enqueue it.
      }
    }

  }   
}

dijkstra's-algorithm() {
  make a priority queue of nodes.
  enqueue start node at distance 0.
  color the start node yellow.
 
  while (the queue is not empty) {
    dequeue a node from the queue.
    
    color that node green.

    for (each neighboring node) {
      if (that node is gray) {
        color the node yellow.
        enqueue it.
      }
    }

  }   
}

 ⚠ Still under construction! ⚠
Don’t use this as a reference!

A

B

C

D

1     

3     

6

7

2



  

breadth-first-search() {
  make a queue of nodes.
  enqueue start node.
  color the start node yellow.
 
  while (the queue is not empty) {
    dequeue a node from the queue.
    
    color that node green.

    for (each neighboring node) {
      if (that node is gray) {
        color the node yellow.
        enqueue it.
      }
    }

  }   
}

dijkstra's-algorithm() {
  make a priority queue of nodes.
  enqueue start node at distance 0.
  color the start node yellow.
 
  while (the queue is not empty) {
    dequeue a node from the queue.
    
    color that node green.

    for (each neighboring node) {
      if (that node is gray) {
        color the node yellow.
        enqueue it.
      }
    }

  }   
}

 ⚠ Still under construction! ⚠
Don’t use this as a reference!

A

B

C

D

1     

3     

6

7

2



  

breadth-first-search() {
  make a queue of nodes.
  enqueue start node.
  color the start node yellow.
 
  while (the queue is not empty) {
    dequeue a node from the queue.
    
    color that node green.

    for (each neighboring node) {
      if (that node is gray) {
        color the node yellow.
        enqueue it.
      }
    }

  }   
}

dijkstra's-algorithm() {
  make a priority queue of nodes.
  enqueue start node at distance 0.
  color the start node yellow.
 
  while (the queue is not empty) {
    dequeue a node from the queue.
    
    color that node green.

    for (each neighboring node) {
      if (that node is gray) {
        color the node yellow.
        enqueue it.
      }
    }

  }   
}

 ⚠ Still under construction! ⚠
Don’t use this as a reference!

A

B

C

D

1     

3     

6

7

2

0



  

breadth-first-search() {
  make a queue of nodes.
  enqueue start node.
  color the start node yellow.
 
  while (the queue is not empty) {
    dequeue a node from the queue.
    
    color that node green.

    for (each neighboring node) {
      if (that node is gray) {
        color the node yellow.
        enqueue it.
      }
    }

  }   
}

dijkstra's-algorithm() {
  make a priority queue of nodes.
  enqueue start node at distance 0.
  color the start node yellow.
 
  while (the queue is not empty) {
    dequeue a node from the queue.
    
    color that node green.

    for (each neighboring node) {
      if (that node is gray) {
        color the node yellow.
        enqueue it.
      }
    }

  }   
}

 ⚠ Still under construction! ⚠
Don’t use this as a reference!

A

B

C

D

1     

3     

6

7

2

0



  

breadth-first-search() {
  make a queue of nodes.
  enqueue start node.
  color the start node yellow.
 
  while (the queue is not empty) {
    dequeue a node from the queue.
    
    color that node green.

    for (each neighboring node) {
      if (that node is gray) {
        color the node yellow.
        enqueue it.
      }
    }

  }   
}

dijkstra's-algorithm() {
  make a priority queue of nodes.
  enqueue start node at distance 0.
  color the start node yellow.
 
  while (the queue is not empty) {
    dequeue a node from the queue.
    
    color that node green.

    for (each neighboring node) {
      if (that node is gray) {
        color the node yellow.
        enqueue it.
      }
    }

  }   
}

 ⚠ Still under construction! ⚠
Don’t use this as a reference!

A

B

C

D

1     

3     

6

7

2

0



  

breadth-first-search() {
  make a queue of nodes.
  enqueue start node.
  color the start node yellow.
 
  while (the queue is not empty) {
    dequeue a node from the queue.
    
    color that node green.

    for (each neighboring node) {
      if (that node is gray) {
        color the node yellow.
        enqueue it.
      }
    }

  }   
}

dijkstra's-algorithm() {
  make a priority queue of nodes.
  enqueue start node at distance 0.
  color the start node yellow.
 
  while (the queue is not empty) {
    dequeue a node from the queue.
    
    color that node green.

    for (each neighboring node) {
      if (that node is gray) {
        color the node yellow.
        enqueue it.
      }
    }

  }   
}

 ⚠ Still under construction! ⚠
Don’t use this as a reference!

A

B

C

D

1     

3     

6

7

2

0



  

breadth-first-search() {
  make a queue of nodes.
  enqueue start node.
  color the start node yellow.
 
  while (the queue is not empty) {
    dequeue a node from the queue.
    
    color that node green.

    for (each neighboring node) {
      if (that node is gray) {
        color the node yellow.
        enqueue it.
      }
    }

  }   
}

dijkstra's-algorithm() {
  make a priority queue of nodes.
  enqueue start node at distance 0.
  color the start node yellow.
 
  while (the queue is not empty) {
    dequeue a node from the queue.
    
    color that node green.

    for (each neighboring node) {
      if (that node is gray) {
        color the node yellow.
        enqueue it.
      }
    }

  }   
}

 ⚠ Still under construction! ⚠
Don’t use this as a reference!

A

B

C

D

1     

3     

6

7

2

0



  

breadth-first-search() {
  make a queue of nodes.
  enqueue start node.
  color the start node yellow.
 
  while (the queue is not empty) {
    dequeue a node from the queue.
    
    color that node green.

    for (each neighboring node) {
      if (that node is gray) {
        color the node yellow.
        enqueue it.
      }
    }

  }   
}

dijkstra's-algorithm() {
  make a priority queue of nodes.
  enqueue start node at distance 0.
  color the start node yellow.
 
  while (the queue is not empty) {
    dequeue a node from the queue.
    
    color that node green.

    for (each neighboring node) {
      if (that node is gray) {
        color the node yellow.
        enqueue it.
      }
    }

  }   
}

 ⚠ Still under construction! ⚠
Don’t use this as a reference!

A

B

C

D

1     

3     

6

7

2

0



  

breadth-first-search() {
  make a queue of nodes.
  enqueue start node.
  color the start node yellow.
 
  while (the queue is not empty) {
    dequeue a node from the queue.
    
    color that node green.

    for (each neighboring node) {
      if (that node is gray) {
        color the node yellow.
        enqueue it.
      }
    }

  }   
}

dijkstra's-algorithm() {
  make a priority queue of nodes.
  enqueue start node at distance 0.
  color the start node yellow.
 
  while (the queue is not empty) {
    dequeue a node from the queue.
    
    color that node green.

    for (each neighboring node) {
      if (that node is gray) {
        color the node yellow.
        enqueue it at the new distance.
      }
    }

  }   
}

 ⚠ Still under construction! ⚠
Don’t use this as a reference!

A

B

C

D

1     

3     

6

7

2

0



  

breadth-first-search() {
  make a queue of nodes.
  enqueue start node.
  color the start node yellow.
 
  while (the queue is not empty) {
    dequeue a node from the queue.
    
    color that node green.

    for (each neighboring node) {
      if (that node is gray) {
        color the node yellow.
        enqueue it.
      }
    }

  }   
}

dijkstra's-algorithm() {
  make a priority queue of nodes.
  enqueue start node at distance 0.
  color the start node yellow.
 
  while (the queue is not empty) {
    dequeue a node from the queue.
    
    color that node green.

    for (each neighboring node) {
      if (that node is gray) {
        color the node yellow.
        enqueue it at the new distance.
      }
    }

  }   
}

 ⚠ Still under construction! ⚠
Don’t use this as a reference!

A

B

C

D

1     

3     

6

7

2

0

1?

6?

3?

B C D

1 3 6



  

breadth-first-search() {
  make a queue of nodes.
  enqueue start node.
  color the start node yellow.
 
  while (the queue is not empty) {
    dequeue a node from the queue.
    
    color that node green.

    for (each neighboring node) {
      if (that node is gray) {
        color the node yellow.
        enqueue it.
      }
    }

  }   
}

dijkstra's-algorithm() {
  make a priority queue of nodes.
  enqueue start node at distance 0.
  color the start node yellow.
 
  while (the queue is not empty) {
    dequeue a node from the queue.
    
    color that node green.

    for (each neighboring node) {
      if (that node is gray) {
        color the node yellow.
        enqueue it at the new distance.
      }
    }

  }   
}

 ⚠ Still under construction! ⚠
Don’t use this as a reference!

A

B

C

D

1     

3     

6

7

2

0

1?

6?

3?

B C D

1 3 6



  

breadth-first-search() {
  make a queue of nodes.
  enqueue start node.
  color the start node yellow.
 
  while (the queue is not empty) {
    dequeue a node from the queue.
    
    color that node green.

    for (each neighboring node) {
      if (that node is gray) {
        color the node yellow.
        enqueue it.
      }
    }

  }   
}

dijkstra's-algorithm() {
  make a priority queue of nodes.
  enqueue start node at distance 0.
  color the start node yellow.
 
  while (the queue is not empty) {
    dequeue a node from the queue.
    
    color that node green.

    for (each neighboring node) {
      if (that node is gray) {
        color the node yellow.
        enqueue it at the new distance.
      }
    }

  }   
}

 ⚠ Still under construction! ⚠
Don’t use this as a reference!

A

B

C

D

1     

3     

6

7

2

0

1?

6?

3?

B C D

1 3 6



  

breadth-first-search() {
  make a queue of nodes.
  enqueue start node.
  color the start node yellow.
 
  while (the queue is not empty) {
    dequeue a node from the queue.
    
    color that node green.

    for (each neighboring node) {
      if (that node is gray) {
        color the node yellow.
        enqueue it.
      }
    }

  }   
}

dijkstra's-algorithm() {
  make a priority queue of nodes.
  enqueue start node at distance 0.
  color the start node yellow.
 
  while (the queue is not empty) {
    dequeue a node from the queue.
    
    color that node green.

    for (each neighboring node) {
      if (that node is gray) {
        color the node yellow.
        enqueue it at the new distance.
      }
    }

  }   
}

 ⚠ Still under construction! ⚠
Don’t use this as a reference!

A

B

C

D

1     

3     

6

7

2

0

1?

6?

3?

C D

3 6



  

breadth-first-search() {
  make a queue of nodes.
  enqueue start node.
  color the start node yellow.
 
  while (the queue is not empty) {
    dequeue a node from the queue.
    
    color that node green.

    for (each neighboring node) {
      if (that node is gray) {
        color the node yellow.
        enqueue it.
      }
    }

  }   
}

dijkstra's-algorithm() {
  make a priority queue of nodes.
  enqueue start node at distance 0.
  color the start node yellow.
 
  while (the queue is not empty) {
    dequeue a node from the queue.
    
    color that node green.

    for (each neighboring node) {
      if (that node is gray) {
        color the node yellow.
        enqueue it at the new distance.
      }
    }

  }   
}

 ⚠ Still under construction! ⚠
Don’t use this as a reference!

A

B

C

D

1     

3     

6

7

2

0

1?

6?

3?

C D

3 6



  

breadth-first-search() {
  make a queue of nodes.
  enqueue start node.
  color the start node yellow.
 
  while (the queue is not empty) {
    dequeue a node from the queue.
    
    color that node green.

    for (each neighboring node) {
      if (that node is gray) {
        color the node yellow.
        enqueue it.
      }
    }

  }   
}

dijkstra's-algorithm() {
  make a priority queue of nodes.
  enqueue start node at distance 0.
  color the start node yellow.
 
  while (the queue is not empty) {
    dequeue a node from the queue.
    
    color that node green.

    for (each neighboring node) {
      if (that node is gray) {
        color the node yellow.
        enqueue it at the new distance.
      }
    }

  }   
}

 ⚠ Still under construction! ⚠
Don’t use this as a reference!

A

B

C

D

1     

3     

6

7

2

0

1

6?

3?

C D

3 6



  

breadth-first-search() {
  make a queue of nodes.
  enqueue start node.
  color the start node yellow.
 
  while (the queue is not empty) {
    dequeue a node from the queue.
    
    color that node green.

    for (each neighboring node) {
      if (that node is gray) {
        color the node yellow.
        enqueue it.
      }
    }

  }   
}

dijkstra's-algorithm() {
  make a priority queue of nodes.
  enqueue start node at distance 0.
  color the start node yellow.
 
  while (the queue is not empty) {
    dequeue a node from the queue.
    
    color that node green.

    for (each neighboring node) {
      if (that node is gray) {
        color the node yellow.
        enqueue it at the new distance.
      }
    }

  }   
}

 ⚠ Still under construction! ⚠
Don’t use this as a reference!

A

B

C

D

1     

3     

6

7

2

0

1

6?

3?

C D

3 6



  

breadth-first-search() {
  make a queue of nodes.
  enqueue start node.
  color the start node yellow.
 
  while (the queue is not empty) {
    dequeue a node from the queue.
    
    color that node green.

    for (each neighboring node) {
      if (that node is gray) {
        color the node yellow.
        enqueue it.
      }
    }

  }   
}

dijkstra's-algorithm() {
  make a priority queue of nodes.
  enqueue start node at distance 0.
  color the start node yellow.
 
  while (the queue is not empty) {
    dequeue a node from the queue.
    
    color that node green.

    for (each neighboring node) {
      if (that node is gray) {
        color the node yellow.
        enqueue it at the new distance.
      }
    }

  }   
}

 ⚠ Still under construction! ⚠
Don’t use this as a reference!

A

B

C

D

1     

3     

6

7

2

0

1

6?

3?

C D

3 6



  

breadth-first-search() {
  make a queue of nodes.
  enqueue start node.
  color the start node yellow.
 
  while (the queue is not empty) {
    dequeue a node from the queue.
    
    color that node green.

    for (each neighboring node) {
      if (that node is gray) {
        color the node yellow.
        enqueue it.
      }
    }

  }   
}

dijkstra's-algorithm() {
  make a priority queue of nodes.
  enqueue start node at distance 0.
  color the start node yellow.
 
  while (the queue is not empty) {
    dequeue a node from the queue.
    
    color that node green.

    for (each neighboring node) {
      if (that node is gray) {
        color the node yellow.
        enqueue it at the new distance.
      }
    }

  }   
}

 ⚠ Still under construction! ⚠
Don’t use this as a reference!

A

B

C

D

1     

3     

6

7

2

0

1

6?

3?

C D

3 6



  

breadth-first-search() {
  make a queue of nodes.
  enqueue start node.
  color the start node yellow.
 
  while (the queue is not empty) {
    dequeue a node from the queue.
    
    color that node green.

    for (each neighboring node) {
      if (that node is gray) {
        color the node yellow.
        enqueue it.
      }
    }

  }   
}

dijkstra's-algorithm() {
  make a priority queue of nodes.
  enqueue start node at distance 0.
  color the start node yellow.
 
  while (the queue is not empty) {
    dequeue a node from the queue.
    
    color that node green.

    for (each neighboring node) {
      if (that node is gray) {
        color the node yellow.
        enqueue it at the new distance.
      }
    }

  }   
}

 ⚠ Still under construction! ⚠
Don’t use this as a reference!

A

B

C

D

1     

3     

6

7

2

0

1

6?

3?

C D

3 6



  

breadth-first-search() {
  make a queue of nodes.
  enqueue start node.
  color the start node yellow.
 
  while (the queue is not empty) {
    dequeue a node from the queue.
    
    color that node green.

    for (each neighboring node) {
      if (that node is gray) {
        color the node yellow.
        enqueue it.
      }
    }

  }   
}

dijkstra's-algorithm() {
  make a priority queue of nodes.
  enqueue start node at distance 0.
  color the start node yellow.
 
  while (the queue is not empty) {
    dequeue a node from the queue.
    
    color that node green.

    for (each neighboring node) {
      if (that node is gray) {
        color the node yellow.
        enqueue it at the new distance.
      }
    }

  }   
}

 ⚠ Still under construction! ⚠
Don’t use this as a reference!

A

B

C

D

1     

3     

6

7

2

0

1

6?

3?

C D

3 6



  

breadth-first-search() {
  make a queue of nodes.
  enqueue start node.
  color the start node yellow.
 
  while (the queue is not empty) {
    dequeue a node from the queue.
    
    color that node green.

    for (each neighboring node) {
      if (that node is gray) {
        color the node yellow.
        enqueue it.
      }
    }

  }   
}

dijkstra's-algorithm() {
  make a priority queue of nodes.
  enqueue start node at distance 0.
  color the start node yellow.
 
  while (the queue is not empty) {
    dequeue a node from the queue.
    
    color that node green.

    for (each neighboring node) {
      if (that node is gray) {
        color the node yellow.
        enqueue it at the new distance.
      }
    }

  }   
}

 ⚠ Still under construction! ⚠
Don’t use this as a reference!

A

B

C

D

1     

3     

6

7

2

0

1

6?

3?

D

6



  

breadth-first-search() {
  make a queue of nodes.
  enqueue start node.
  color the start node yellow.
 
  while (the queue is not empty) {
    dequeue a node from the queue.
    
    color that node green.

    for (each neighboring node) {
      if (that node is gray) {
        color the node yellow.
        enqueue it.
      }
    }

  }   
}

dijkstra's-algorithm() {
  make a priority queue of nodes.
  enqueue start node at distance 0.
  color the start node yellow.
 
  while (the queue is not empty) {
    dequeue a node from the queue.
    
    color that node green.

    for (each neighboring node) {
      if (that node is gray) {
        color the node yellow.
        enqueue it at the new distance.
      }
    }

  }   
}

 ⚠ Still under construction! ⚠
Don’t use this as a reference!

A

B

C

D

1     

3     

6

7

2

0

1

6?

3?

D

6



  

breadth-first-search() {
  make a queue of nodes.
  enqueue start node.
  color the start node yellow.
 
  while (the queue is not empty) {
    dequeue a node from the queue.
    
    color that node green.

    for (each neighboring node) {
      if (that node is gray) {
        color the node yellow.
        enqueue it.
      }
    }

  }   
}

dijkstra's-algorithm() {
  make a priority queue of nodes.
  enqueue start node at distance 0.
  color the start node yellow.
 
  while (the queue is not empty) {
    dequeue a node from the queue.
    
    color that node green.

    for (each neighboring node) {
      if (that node is gray) {
        color the node yellow.
        enqueue it at the new distance.
      }
    }

  }   
}

 ⚠ Still under construction! ⚠
Don’t use this as a reference!

A

B

C

D

1     

3     

6

7

2

0

1

6?

3

D

6



  

breadth-first-search() {
  make a queue of nodes.
  enqueue start node.
  color the start node yellow.
 
  while (the queue is not empty) {
    dequeue a node from the queue.
    
    color that node green.

    for (each neighboring node) {
      if (that node is gray) {
        color the node yellow.
        enqueue it.
      }
    }

  }   
}

dijkstra's-algorithm() {
  make a priority queue of nodes.
  enqueue start node at distance 0.
  color the start node yellow.
 
  while (the queue is not empty) {
    dequeue a node from the queue.
    
    color that node green.

    for (each neighboring node) {
      if (that node is gray) {
        color the node yellow.
        enqueue it at the new distance.
      }
    }

  }   
}

 ⚠ Still under construction! ⚠
Don’t use this as a reference!

A

B

C

D

1     

3     

6

7

2

0

1

6?

3

D

6



  

breadth-first-search() {
  make a queue of nodes.
  enqueue start node.
  color the start node yellow.
 
  while (the queue is not empty) {
    dequeue a node from the queue.
    
    color that node green.

    for (each neighboring node) {
      if (that node is gray) {
        color the node yellow.
        enqueue it.
      }
    }

  }   
}

dijkstra's-algorithm() {
  make a priority queue of nodes.
  enqueue start node at distance 0.
  color the start node yellow.
 
  while (the queue is not empty) {
    dequeue a node from the queue.
    
    color that node green.

    for (each neighboring node) {
      if (that node is gray) {
        color the node yellow.
        enqueue it at the new distance.
      }
    }

  }   
}

 ⚠ Still under construction! ⚠
Don’t use this as a reference!

A

B

C

D

1     

3     

6

7

2

0

1

6?

3

D

6



  

breadth-first-search() {
  make a queue of nodes.
  enqueue start node.
  color the start node yellow.
 
  while (the queue is not empty) {
    dequeue a node from the queue.
    
    color that node green.

    for (each neighboring node) {
      if (that node is gray) {
        color the node yellow.
        enqueue it.
      }
    }

  }   
}

dijkstra's-algorithm() {
  make a priority queue of nodes.
  enqueue start node at distance 0.
  color the start node yellow.
 
  while (the queue is not empty) {
    dequeue a node from the queue.
    
    color that node green.

    for (each neighboring node) {
      if (that node is gray) {
        color the node yellow.
        enqueue it at the new distance.
      }
    }

  }   
}

 ⚠ Still under construction! ⚠
Don’t use this as a reference!

A

B

C

D

1     

3     

6

7

2

0

1

6?

3

D

6



  

breadth-first-search() {
  make a queue of nodes.
  enqueue start node.
  color the start node yellow.
 
  while (the queue is not empty) {
    dequeue a node from the queue.
    
    color that node green.

    for (each neighboring node) {
      if (that node is gray) {
        color the node yellow.
        enqueue it.
      }
    }

  }   
}

dijkstra's-algorithm() {
  make a priority queue of nodes.
  enqueue start node at distance 0.
  color the start node yellow.
 
  while (the queue is not empty) {
    dequeue a node from the queue.
    
    color that node green.

    for (each neighboring node) {
      if (that node is not green) {
        color the node yellow.
        enqueue it at the new distance.
      }
    }

  }   
}

 ⚠ Still under construction! ⚠
Don’t use this as a reference!

A

B

C

D

1     

3     

6

7

2

0

1

6?

3

D

6



  

breadth-first-search() {
  make a queue of nodes.
  enqueue start node.
  color the start node yellow.
 
  while (the queue is not empty) {
    dequeue a node from the queue.
    
    color that node green.

    for (each neighboring node) {
      if (that node is gray) {
        color the node yellow.
        enqueue it.
      }
    }

  }   
}

dijkstra's-algorithm() {
  make a priority queue of nodes.
  enqueue start node at distance 0.
  color the start node yellow.
 
  while (the queue is not empty) {
    dequeue a node from the queue.
    
    color that node green.

    for (each neighboring node) {
      if (that node is not green) {
        color the node yellow.
        enqueue it at the new distance.
      }
    }

  }   
}

 ⚠ Still under construction! ⚠
Don’t use this as a reference!

A

B

C

D

1     

3     

6

7

2

0

1

6?

3

D

6



  

breadth-first-search() {
  make a queue of nodes.
  enqueue start node.
  color the start node yellow.
 
  while (the queue is not empty) {
    dequeue a node from the queue.
    
    color that node green.

    for (each neighboring node) {
      if (that node is gray) {
        color the node yellow.
        enqueue it.
      }
    }

  }   
}

dijkstra's-algorithm() {
  make a priority queue of nodes.
  enqueue start node at distance 0.
  color the start node yellow.
 
  while (the queue is not empty) {
    dequeue a node from the queue.
    
    color that node green.

    for (each neighboring node) {
      if (that node is not green) {
        color the node yellow.
        enqueue it at the new distance.
      }
    }

  }   
}

 ⚠ Still under construction! ⚠
Don’t use this as a reference!

A

B

C

D

1     

3     

6

7

2

0

1

6?

3

D

6



  

breadth-first-search() {
  make a queue of nodes.
  enqueue start node.
  color the start node yellow.
 
  while (the queue is not empty) {
    dequeue a node from the queue.
    
    color that node green.

    for (each neighboring node) {
      if (that node is gray) {
        color the node yellow.
        enqueue it.
      }
    }

  }   
}

dijkstra's-algorithm() {
  make a priority queue of nodes.
  enqueue start node at distance 0.
  color the start node yellow.
 
  while (the queue is not empty) {
    dequeue a node from the queue.
    
    color that node green.

    for (each neighboring node) {
      if (that node is not green) {
        color the node yellow.
        enqueue it at the new distance.
      }
    }

  }   
}

 ⚠ Still under construction! ⚠
Don’t use this as a reference!

A

B

C

D

1     

3     

6

7

2

0

1

5?

3

D

5

D

6



  

breadth-first-search() {
  make a queue of nodes.
  enqueue start node.
  color the start node yellow.
 
  while (the queue is not empty) {
    dequeue a node from the queue.
    
    color that node green.

    for (each neighboring node) {
      if (that node is gray) {
        color the node yellow.
        enqueue it.
      }
    }

  }   
}

dijkstra's-algorithm() {
  make a priority queue of nodes.
  enqueue start node at distance 0.
  color the start node yellow.
 
  while (the queue is not empty) {
    dequeue a node from the queue.
    
    color that node green.

    for (each neighboring node) {
      if (that node is not green) {
        color the node yellow.
        enqueue it at the new distance.
      }
    }

  }   
}

 ⚠ Still under construction! ⚠
Don’t use this as a reference!

A

B

C

D

1     

3     

6

7

2

0

1

5?

3

D

5

D

6



  

breadth-first-search() {
  make a queue of nodes.
  enqueue start node.
  color the start node yellow.
 
  while (the queue is not empty) {
    dequeue a node from the queue.
    
    color that node green.

    for (each neighboring node) {
      if (that node is gray) {
        color the node yellow.
        enqueue it.
      }
    }

  }   
}

dijkstra's-algorithm() {
  make a priority queue of nodes.
  enqueue start node at distance 0.
  color the start node yellow.
 
  while (the queue is not empty) {
    dequeue a node from the queue.
    
    color that node green.

    for (each neighboring node) {
      if (that node is not green) {
        color the node yellow.
        enqueue it at the new distance.
      }
    }

  }   
}

 ⚠ Still under construction! ⚠
Don’t use this as a reference!

A

B

C

D

1     

3     

6

7

2

0

1

5?

3

D

5

D

6



  

breadth-first-search() {
  make a queue of nodes.
  enqueue start node.
  color the start node yellow.
 
  while (the queue is not empty) {
    dequeue a node from the queue.
    
    color that node green.

    for (each neighboring node) {
      if (that node is gray) {
        color the node yellow.
        enqueue it.
      }
    }

  }   
}

dijkstra's-algorithm() {
  make a priority queue of nodes.
  enqueue start node at distance 0.
  color the start node yellow.
 
  while (the queue is not empty) {
    dequeue a node from the queue.
    
    color that node green.

    for (each neighboring node) {
      if (that node is not green) {
        color the node yellow.
        enqueue it at the new distance.
      }
    }

  }   
}

 ⚠ Still under construction! ⚠
Don’t use this as a reference!

A

B

C

D

1     

3     

6

7

2

0

1

5?

3

D

6



  

breadth-first-search() {
  make a queue of nodes.
  enqueue start node.
  color the start node yellow.
 
  while (the queue is not empty) {
    dequeue a node from the queue.
    
    color that node green.

    for (each neighboring node) {
      if (that node is gray) {
        color the node yellow.
        enqueue it.
      }
    }

  }   
}

dijkstra's-algorithm() {
  make a priority queue of nodes.
  enqueue start node at distance 0.
  color the start node yellow.
 
  while (the queue is not empty) {
    dequeue a node from the queue.
    
    color that node green.

    for (each neighboring node) {
      if (that node is not green) {
        color the node yellow.
        enqueue it at the new distance.
      }
    }

  }   
}

 ⚠ Still under construction! ⚠
Don’t use this as a reference!

A

B

C

D

1     

3     

6

7

2

0

1

5?

3

D

6



  

breadth-first-search() {
  make a queue of nodes.
  enqueue start node.
  color the start node yellow.
 
  while (the queue is not empty) {
    dequeue a node from the queue.
    
    color that node green.

    for (each neighboring node) {
      if (that node is gray) {
        color the node yellow.
        enqueue it.
      }
    }

  }   
}

dijkstra's-algorithm() {
  make a priority queue of nodes.
  enqueue start node at distance 0.
  color the start node yellow.
 
  while (the queue is not empty) {
    dequeue a node from the queue.
    
    color that node green.

    for (each neighboring node) {
      if (that node is not green) {
        color the node yellow.
        enqueue it at the new distance.
      }
    }

  }   
}

 ⚠ Still under construction! ⚠
Don’t use this as a reference!

A

B

C

D

1     

3     

6

7

2

0

1

5

3

D

6



  

breadth-first-search() {
  make a queue of nodes.
  enqueue start node.
  color the start node yellow.
 
  while (the queue is not empty) {
    dequeue a node from the queue.
    
    color that node green.

    for (each neighboring node) {
      if (that node is gray) {
        color the node yellow.
        enqueue it.
      }
    }

  }   
}

dijkstra's-algorithm() {
  make a priority queue of nodes.
  enqueue start node at distance 0.
  color the start node yellow.
 
  while (the queue is not empty) {
    dequeue a node from the queue.
    
    color that node green.

    for (each neighboring node) {
      if (that node is not green) {
        color the node yellow.
        enqueue it at the new distance.
      }
    }

  }   
}

 ⚠ Still under construction! ⚠
Don’t use this as a reference!

A

B

C

D

1     

3     

6

7

2

0

1

5

3

D

6



  

breadth-first-search() {
  make a queue of nodes.
  enqueue start node.
  color the start node yellow.
 
  while (the queue is not empty) {
    dequeue a node from the queue.
    
    color that node green.

    for (each neighboring node) {
      if (that node is gray) {
        color the node yellow.
        enqueue it.
      }
    }

  }   
}

dijkstra's-algorithm() {
  make a priority queue of nodes.
  enqueue start node at distance 0.
  color the start node yellow.
 
  while (the queue is not empty) {
    dequeue a node from the queue.
    
    color that node green.

    for (each neighboring node) {
      if (that node is not green) {
        color the node yellow.
        enqueue it at the new distance.
      }
    }

  }   
}

 ⚠ Still under construction! ⚠
Don’t use this as a reference!

A

B

C

D

1     

3     

6

7

2

0

1

5

3

D

6



  

breadth-first-search() {
  make a queue of nodes.
  enqueue start node.
  color the start node yellow.
 
  while (the queue is not empty) {
    dequeue a node from the queue.
    
    color that node green.

    for (each neighboring node) {
      if (that node is gray) {
        color the node yellow.
        enqueue it.
      }
    }

  }   
}

dijkstra's-algorithm() {
  make a priority queue of nodes.
  enqueue start node at distance 0.
  color the start node yellow.
 
  while (the queue is not empty) {
    dequeue a node from the queue.
    
    color that node green.

    for (each neighboring node) {
      if (that node is not green) {
        color the node yellow.
        enqueue it at the new distance.
      }
    }

  }   
}

 ⚠ Still under construction! ⚠
Don’t use this as a reference!

A

B

C

D

1     

3     

6

7

2

0

1

5

3

D

6



  

breadth-first-search() {
  make a queue of nodes.
  enqueue start node.
  color the start node yellow.
 
  while (the queue is not empty) {
    dequeue a node from the queue.
    
    color that node green.

    for (each neighboring node) {
      if (that node is gray) {
        color the node yellow.
        enqueue it.
      }
    }

  }   
}

dijkstra's-algorithm() {
  make a priority queue of nodes.
  enqueue start node at distance 0.
  color the start node yellow.
 
  while (the queue is not empty) {
    dequeue a node from the queue.
    
    color that node green.

    for (each neighboring node) {
      if (that node is not green) {
        color the node yellow.
        enqueue it at the new distance.
      }
    }

  }   
}

 ⚠ Still under construction! ⚠
Don’t use this as a reference!

A

B

C

D

1     

3     

6

7

2

0

1

5

3



  

breadth-first-search() {
  make a queue of nodes.
  enqueue start node.
  color the start node yellow.
 
  while (the queue is not empty) {
    dequeue a node from the queue.
    
    color that node green.

    for (each neighboring node) {
      if (that node is gray) {
        color the node yellow.
        enqueue it.
      }
    }

  }   
}

dijkstra's-algorithm() {
  make a priority queue of nodes.
  enqueue start node at distance 0.
  color the start node yellow.
 
  while (the queue is not empty) {
    dequeue a node from the queue.
    
    color that node green.

    for (each neighboring node) {
      if (that node is not green) {
        color the node yellow.
        enqueue it at the new distance.
      }
    }

  }   
}

 ⚠ Still under construction! ⚠
Don’t use this as a reference!

A

B

C

D

1     

3     

6

7

2

0

1

5

3



  

breadth-first-search() {
  make a queue of nodes.
  enqueue start node.
  color the start node yellow.
 
  while (the queue is not empty) {
    dequeue a node from the queue.
    
    color that node green.

    for (each neighboring node) {
      if (that node is gray) {
        color the node yellow.
        enqueue it.
      }
    }

  }   
}

dijkstra's-algorithm() {
  make a priority queue of nodes.
  enqueue start node at distance 0.
  color the start node yellow.
 
  while (the queue is not empty) {
    dequeue a node from the queue.
    if (that node isn't green) {
      color that node green.

      for (each neighboring node) {
        if (that node is not green) {
          color the node yellow.
          enqueue it at the new distance.
        }
      }
    }
  }   
}

 ⚠ Still under construction! ⚠
Don’t use this as a reference!

A

B

C

D

1     

3     

6

7

2

0

1

5

3



  

breadth-first-search() {
  make a queue of nodes.
  enqueue start node.
  color the start node yellow.
 
  while (the queue is not empty) {
    dequeue a node from the queue.
    
    color that node green.

    for (each neighboring node) {
      if (that node is gray) {
        color the node yellow.
        enqueue it.
      }
    }

  }   
}

dijkstra's-algorithm() {
  make a priority queue of nodes.
  enqueue start node at distance 0.
  color the start node yellow.
 
  while (the queue is not empty) {
    dequeue a node from the queue.
    if (that node isn't green) {
      color that node green.

      for (each neighboring node) {
        if (that node is not green) {
          color the node yellow.
          enqueue it at the new distance.
        }
      }
    }
  }   
}

 ⚠ Still under construction! ⚠
Don’t use this as a reference!

A

B

C

D

1     

3     

6

7

2

0

1

5

3



  

breadth-first-search() {
  make a queue of nodes.
  enqueue start node.
  color the start node yellow.
 
  while (the queue is not empty) {
    dequeue a node from the queue.
    
    color that node green.

    for (each neighboring node) {
      if (that node is gray) {
        color the node yellow.
        enqueue it.
      }
    }

  }   
}

dijkstra's-algorithm() {
  make a priority queue of nodes.
  enqueue start node at distance 0.
  color the start node yellow.
 
  while (the queue is not empty) {
    dequeue a node from the queue.
    if (that node isn't green) {
      color that node green.

      for (each neighboring node) {
        if (that node is not green) {
          color the node yellow.
          enqueue it at the new distance.
        }
      }
    }
  }   
}

 ⚠ Still under construction! ⚠
Don’t use this as a reference!

A

B

C

D

1     

3     

6

7

2

0

1

5

3



  

The Finished Product
dijkstra's-algorithm() {
  make a priority queue of nodes.
  enqueue start node at distance 0.
  color the start node yellow.
 
  while (the queue is not empty) {
    dequeue a node from the queue.
    if (that node isn't green) {
      color that node green.

      for (each neighboring node) {
        if (that node is not green) {
          color the node yellow.
          enqueue it at the new distance.
        }
      }
    }
  }   
}



  

The Finished Product
dijkstra's-algorithm() {
  make a priority queue of nodes.
  enqueue start node at distance 0.
  color the start node yellow.
 
  while (the queue is not empty) {
    dequeue a node from the queue.
    if (that node isn't green) {
      color that node green.

      for (each neighboring node) {
        if (that node is not green) {
          color the node yellow.
          enqueue it at the new distance.
        }
      }
    }
  }   
}

Use a priority queue 
rather than a 

standard queue to 
sort by distances, 

not number of hops.

Use a priority queue 
rather than a 

standard queue to 
sort by distances, 

not number of hops.



  

The Finished Product
dijkstra's-algorithm() {
  make a priority queue of nodes.
  enqueue start node at distance 0.
  color the start node yellow.
 
  while (the queue is not empty) {
    dequeue a node from the queue.
    if (that node isn't green) {
      color that node green.

      for (each neighboring node) {
        if (that node is not green) {
          color the node yellow.
          enqueue it at the new distance.
        }
      }
    }
  }   
}

Allow nodes to be 
enqueued multiple 

times. The first time 
we find the node 
might not be the 

best option.

Allow nodes to be 
enqueued multiple 

times. The first time 
we find the node 
might not be the 

best option.



  

The Finished Product
dijkstra's-algorithm() {
  make a priority queue of nodes.
  enqueue start node at distance 0.
  color the start node yellow.
 
  while (the queue is not empty) {
    dequeue a node from the queue.
    if (that node isn't green) {
      color that node green.

      for (each neighboring node) {
        if (that node is not green) {
          color the node yellow.
          enqueue it at the new distance.
        }
      }
    }
  }   
}

As a consequence, 
when dequeuing 
nodes, make sure 
we’re not visiting 
something we’ve 

already processed.

As a consequence, 
when dequeuing 
nodes, make sure 
we’re not visiting 
something we’ve 

already processed.


