Shortest Paths

Part One

Recap from Last Time

A graph is a mathematical structure
for representing relationships.

A graph is a mathematical structure
for representing relationships.

A graph consists of a set of nodes
connected by edges.

A graph is a mathematical structure
for representing relationships.

=
==,

P
@ ©

A graph consists of a set of nodes
connected by edges.

A graph is a mathematical structure
for representing relationships.

A=
v

A graph consists of a set of nodes
connected by edges.

Breadth-First Search

Breadth-First Search

@

SAT
AT @ RAT

CA&
C

MAN.
MAN

Breadth-First Search

Gray nodes are
unexplored.

nodes
are in the
queue.

Green nodes

have had the
best path
discovered.

Breadth-First Search

Gray nodes are
unexplored.

nodes
are in the
queue.

Green nodes
have had the

@ best path

discovered.

Breadth-First Search

Gray nodes are
unexplored.

nodes
are in the
queue.

Green nodes

have had the
best path
discovered.

Breadth-First Search

Gray nodes are
unexplored.

Yellow nodes
are in the
queue.

Green nodes

have had the
best path
discovered.

Breadth-First Search

Gray nodes are
unexplored.

Yellow nodes
are in the
queue.

Green nodes

have had the
best path
discovered.

Breadth-First Search

Gray nodes are
unexplored.

nodes
are in the
queue.

Green nodes

have had the
best path

discovered.

Breadth-First Search

Gray nodes are
unexplored.

nodes
are in the
queue.

Green nodes

have had the
best path
discovered.

Breadth-First Search

Gray nodes are
unexplored.

nodes
are in the
queue.

Green nodes

have had the
best path

discovered.

vA ¢

B

Breadth-First Search

Gray nodes are
unexplored.

Yellow nodes
are in the
queue.

Green nodes

have had the
best path

discovered.

Breadth-First Search

‘4

Gray nodes are
unexplored.

Yellow nodes
are in the
queue.

Green nodes

have had the
best path

discovered.

Breadth-First Search

Gray nodes are
unexplored.

Yellow nodes
are in the
queue.

Green nodes

have had the
best path
discovered.

Breadth-First Search

U

Gray nodes are
unexplored.

Yellow nodes
are in the
queue.

Green nodes

have had the
best path
discovered.

Breadth-First Search

Gray nodes are
unexplored.

Yellow nodes
are in the
queue.

Green nodes

have had the
best path
discovered.

Breadth-First Search

\ 4

Gray nodes are
unexplored.

Yellow nodes
are in the
queue.

Green nodes

have had the
best path

discovered.

Breadth-First Search

\ 4

Gray nodes are
unexplored.

Yellow nodes
are in the
queue.

Green nodes

have had the
best path

discovered.

Breadth-First Search

Gray nodes are
unexplored.

Yellow nodes
are in the
queue.

Green nodes

have had the
best path
discovered.

Breadth-First Search

Gray nodes are
unexplored.

Yellow nodes
are in the
queue.

Green nodes

have had the
best path

discovered.

Breadth-First Search

\ 4

Gray nodes are
unexplored.

Yellow nodes
are in the
queue.

Green nodes

have had the
EXCH best path

discovered.

Breadth-First Search

\ 4

Gray nodes are
unexplored.

Yellow nodes
are in the
queue.

Green nodes

have had the
EXCH best path

discovered.

Breadth-First Search

Gray nodes are
unexplored.

Yellow nodes
are in the
queue.

Green nodes

have had the
best path
discovered.

Breadth-First Search

Gray nodes are
unexplored.

Yellow nodes
are in the
queue.

Green nodes

have had the
K/ CH best path

discovered.

Breadth-First Search

Gray nodes are
unexplored.

Yellow nodes
are in the
queue.

Green nodes

have had the
K/ CH best path

discovered.

Breadth-First Search

Gray nodes are
unexplored.

Yellow nodes
are in the
queue.

Green nodes

have had the
K/ CH best path

discovered.

Breadth-First Search

Gray nodes are
unexplored.

Yellow nodes
are in the
queue.

Green nodes

have had the
best path

discovered.

Breadth-First Search

Gray nodes are
unexplored.

Yellow nodes
are in the
queue.

Green nodes

have had the
best path
discovered.

Breadth-First Search

Gray nodes are
unexplored.

Yellow nodes
are in the
queue.

Green nodes

have had the
CHII best path

discovered.

Breadth-First Search

Gray nodes are
unexplored.

Yellow nodes
are in the
queue.

Green nodes

have had the
@@@ best path

discovered.

Breadth-First Search

Gray nodes are
unexplored.

Yellow nodes
are in the
queue.

Green nodes

have had the
CHII best path

discovered.

Breadth-First Search

Gray nodes are
unexplored.

Yellow nodes
are in the
queue.

Green nodes

have had the
best path
discovered.

Breadth-First Search

Gray nodes are
unexplored.

Yellow nodes
are in the
queue.

Green nodes

have had the
best path
discovered.

Breadth-First Search

Gray nodes are
unexplored.

Yellow nodes
are in the
queue.

Green nodes

have had the
H IG best path

discovered.

Breadth-First Search

Gray nodes are
unexplored.

Yellow nodes
are in the
queue.

Green nodes

have had the
@@@ best path

discovered.

Breadth-First Search

Gray nodes are
unexplored.

Yellow nodes
are in the
queue.

Green nodes

have had the
@@@ best path

discovered.

Breadth-First Search

Gray nodes are
unexplored.

Yellow nodes
are in the
queue.

Green nodes

have had the
@@ best path

discovered.

Breadth-First Search

Gray nodes are
unexplored.

Yellow nodes
are in the
queue.

Green nodes

have had the
@@ best path

discovered.

Breadth-First Search

Gray nodes are
unexplored.

Yellow nodes
are in the
queue.

Green nodes

have had the
@@ best path

discovered.

Breadth-First Search

Gray nodes are
unexplored.

Yellow nodes
are in the
queue.

Green nodes

have had the
@@ best path

discovered.

Breadth-First Search

Gray nodes are
unexplored.

Yellow nodes
are in the
queue.

Green nodes
have had the

@ best path

discovered.

Breadth-First Search

Gray nodes are
unexplored.

Yellow nodes
are in the
queue.

Green nodes
have had the

@ best path

discovered.

Breadth-First Search

Gray nodes are
unexplored.

Yellow nodes
are in the
queue.

Green nodes

have had the
best path
discovered.

Breadth-First Search

Gray nodes are
unexplored.

Yellow nodes
are in the
queue.

Green nodes

have had the
best path
discovered.

Breadth-First Search

Gray nodes are
unexplored.

Yellow nodes
are in the
queue.

Green nodes

have had the
best path
discovered.

Breadth-First Search

Gray nodes are
unexplored.

Yellow nodes
are in the
queue.

Green nodes

have had the
best path
discovered.

Breadth-First Search

Gray nodes are
unexplored.

Yellow nodes
are in the
queue.

Green nodes

have had the
best path
discovered.

Breadth-First Search

Gray nodes are
unexplored.

Yellow nodes
are in the
queue.

Green nodes

have had the
best path
discovered.

Breadth-First Search

Gray nodes are
unexplored.

Yellow nodes

are in the
queue.
Ayl Green nodes
<] = have had the
L v 4 best path

discovered.

Breadth-First Search

Gray nodes are
unexplored.

Yellow nodes

are in the
queue.
-4 Green nodes
=] [have had the
» v Q best path

discovered.

Breadth-First Search

Gray nodes are
unexplored.

Yellow nodes
are in the
queue.

Green nodes

have had the
best path
discovered.

Breadth-First Search

Gray nodes are
unexplored.

Yellow nodes
are in the
queue.

Green nodes

have had the
best path
discovered.

Breadth-First Search

Gray nodes are
unexplored.

Yellow nodes
are in the
queue.

Green nodes

have had the
best path
discovered.

Breadth-First Search

Gray nodes are
unexplored.

Yellow nodes
are in the
queue.

Green nodes

have had the
best path
discovered.

Breadth-First Search

Gray nodes are
unexplored.

Yellow nodes
are in the
queue.

Green nodes

have had the
best path
discovered.

Breadth-First Search

Gray nodes are
unexplored.

Yellow nodes
are in the
queue.

Green nodes

have had the
best path
discovered.

BFS Pseudocode

breadth-first-search() {
make a queue of nodes.
enqueue start node.
color the start node yellow.

while (the queue is not empty) {
dequeue a node from the queue.
color that node green.

for (each neighboring node) {
if (that node is gray) {
color the node yellow.
enqueue 1it.

}
}
}
}

The Limits of Breadth-First Search

S
......

L&' ff

LaSw‘-a’E‘n St

L)

Stanford Memoaorial
Auditarium

Sa
18 Mayy
Dohrmann
B
Sarr.
-E-‘.I'f& 'llffalfll

Grove
Stanfurd Art-Gallery

=
L]
=
g
£
]
o
o

€2 Hoover Tower

Gajvﬂ'? May

Each intersection is a node
Edges represent roads.

Different roads have
different lengths.
Question: What's the best
way to get from point A to
point B?

oy,
ralM&#‘_ i
”. By
Serra Grove | . ;
William R. Hewlett o s 8 & S M &
Teaching Center £ all
| = -
= |
Jen-H "ég g Virtual Human
Tﬂnn;arf & § g Interaction Lab
g S H 8
Engineering = [| ;
| Auguste'Rodin - The
CEH ' R | Burghers of Calais
s Stanford
y £ University
o =
[o
|lll |lIl \’ &
£ 11min L2/
0.5 mile 1 £ 11 min N W
— OB 0.5 mile Y
e Memorial Church
G Branner Earth ™ == h : =
Sciences Library H ‘Q r
[| D 12 min
@& The d.school e
.' ."I y
'b-.i'li_”ﬂ T I.'Illlfl
_"'.“--.J 12
2 =
G ! %J.' .1_.
L4 & |
o 2 N
.'..ll ;3";
.". __.ﬂ':.l-"l
L+ S i
e B
Black Community : r
Services Center]
1. " Panda Express
Kennedy @ 3
Grove Q: '
gThe Treehouse @

The Stanford
Faculty Club

B

Stanford Bookstore

Canfield Court

UUS Post Office

©

Stanford Law School

The Model

 We have a graph in
which each edge has a
nonnegative cost or
weight associated with
it.

 We want to find the

lowest-cost path from
point A to point B.

 BFS does not take edge
weights into account.

« How might we go about
solving this problem?

Option 1: Brute-Force!

 We could conceivably
solve this problem
using brute force and
a backtracking
recursion.

* Problem: There can
be a lot of different
paths in a graph!

* This is way too
inefficient to use in
practice.

Option 2: Expand the Graph

« BES works in the
case where each
edge has equal
weight.

 Idea: What if we
split each edge of
length k into k
smaller edges?

Option 2: Expand the Graph

« BES works in the
case where each
edge has equal
weight.

 Idea: What if we
split each edge of
length k into k
smaller edges?

Option 2: Expand the Graph

« BES works in the
case where each
edge has equal
weight.

1.618033

* Idea: What if we 2 71828
split each edge of
length k into k
smaller edges?

 What if there are
fractional edges?
Or large weights?

3.14159

Option 2: Expand the Graph

« BES works in the
case where each
edge has equal
weight.

 Idea: What if we
split each edge of
length k into k
smaller edges?

 What if there are
fractional edges?
Or large weights?

Option 3: Look at the problem more closely

10

10

1?

10

1?

10

37?7

10

10

10

10

Observation: The
shortest path from A to
F can’t start by going
directly from A to D.

10

10

10

We have a valid path
that goes from A to B,
and no alternate path
could possibly be as
good. This must be
the shortest path!

10

37?

D

10
(
D 10?

37?

10
(
D 10?

37?

'D
107

37?

10

10
(
D 10?

37?

5?

07?

10

37?

57?7

10

10
(
D 10?

37?

10
(
D 10?

37?

10
(
D 10?

37?

5?

10

5?

—c,
10
s E

‘D 1107

‘D 10?

5?

—c,
10
s E

67

10

67

10

67

D 10?

10

67

10

10

The Pattern

\

All yellow nodes
(nodes we’ve
> seen, but dond
know The
distance to.)

The Pattern

The Pattern

The Pattern

O
:
—'

The Pattern

The Pattern

No other path to
this node can be
better than the
one we already
know about!

The Pattern

o

At a Glance

 The approach suggested here gives rise to
Dijkstra’s algorithm, a fast, powerful, and
famous algorithm for computing shortest paths.

 Key idea: As in BFS, split nodes into
* gray nodes we haven’t seen,
. that are on the frontier, and
» green nodes we have the best path to,

then repeatedly turn the lowest-cost yellow
node into a green node.

Implementing Dijkstra’s Algorithm

breadth-first-search() {
make a queue of nodes.
enqueue start node.
color the start node yellow.

while (the queue is not empty) {
dequeue a node from the queue.

color that node green.

for (each neighboring node) {
if (that node is gray) {
color the node yellow.
enqueue 1it.

}
}

breadth-first-search() {
make a queue of nodes.
enqueue start node.
color the start node yellow.

while (the queue is not empty) {
dequeue a node from the queue.

color that node green.

for (each neighboring node) {
if (that node is gray) {
color the node yellow.
enqueue 1it.

}
}

dijkstra's-algorithm() {
make a queue of nodes.
enqueue start node.
color the start node yellow.

while (the queue is not empty) {
dequeue a node from the queue.

color that node green.

for (each neighboring node) {
if (that node is gray) {
color the node yellow.
enqueue 1it.

}
}

} A\ Still under construction! A\
} Don’t use this as a reference!

breadth-first-search() {
make a queue of nodes.
enqueue start node.
color the start node yellow.

while (the queue is not empty) {
dequeue a node from the queue.

color that node green.

for (each neighboring node) {
if (that node is gray) {
color the node yellow.
enqueue 1it.

}
}

dijkstra's-algorithm() {
make a queue of nodes.
enqueue start node.
color the start node yellow.

while (the queue is not empty) {
dequeue a node from the queue.

color that node green.

for (each neighboring node) {
if (that node is gray) {
color the node yellow.
enqueue 1it.

}
}

} A\ Still under construction! A\
} Don’t use this as a reference!

breadth-first-search() {
make a queue of nodes.
enqueue start node.
color the start node yellow.

while (the queue is not empty) {
dequeue a node from the queue.

color that node green.

for (each neighboring node) {
if (that node is gray) {
color the node yellow.
enqueue 1it.

}
}

3 a9l et Tl ancad+bon/) [

\-JI\J\-IU =4 U\-yvl \-\-Illl\/ L

make a queue of nodes.

color the start node yellow.

while (the queue is not empty) {
dequeue a node from the queue.

color that node green.

for (each neighboring node) {
if (that node is gray) {
color the node yellow.
enqueue 1it.

}
}

} A\ Still under construction! A\
Don’t use this as a reference!

breadth-first-search() {
make a queue of nodes.
enqueue start node.
color the start node yellow.

while (the queue is not empty) {
dequeue a node from the queue.

color that node green.

for (each neighboring node) {
if (that node is gray) {
color the node yellow.
enqueue 1it.

}
}

3 a9l et Tl ancad+bon/) [

\-JI\J\-IU =4 U\-yvl \-\-Illl\/ L

make a queue of nodes.

color the start node yellow.

while (the queue is not empty) {
dequeue a node from the queue.

color that node green.

for (each neighboring node) {
if (that node is gray) {
color the node yellow.
enqueue 1it.

}
}

} A\ Still under construction! A\
Don’t use this as a reference!

breadth-first-search() {
make a queue of nodes.
enqueue start node.
color the start node yellow.

while (the queue is not empty) {
dequeue a node from the queue.

color that node green.

for (each neighboring node) {
if (that node is gray) {
color the node yellow.
enqueue 1it.

}
}

3 a9l et Tl ancad+bon/) [

\-JI\J\-IU =4 U\-yvl \-\-Illl\/ L

make a priority queue of nodes.

color the start node yellow.

while (the queue is not empty) {
dequeue a node from the queue.

color that node green.

for (each neighboring node) {
if (that node is gray) {
color the node yellow.
enqueue 1it.

}
}

} A\ Still under construction! A\
Don’t use this as a reference!

breadth-first-search() {
make a queue of nodes.
enqueue start node.
color the start node yellow.

while (the queue is not empty) {
dequeue a node from the queue.

color that node green.

for (each neighboring node) {
if (that node is gray) {
color the node yellow.
enqueue 1it.

}
}

dijkstra's-algorithm() {
make 2o PI::iOI:it!‘ GUSLS of _nodas

enqueue start node.

=1 P | . g 1 b |
COLUT LIS Stdl LU 110U yC LLUW,

while (the queue is not empty) {
dequeue a node from the queue.

color that node green.

for (each neighboring node) {
if (that node is gray) {
color the node yellow.
enqueue 1it.

}
}

} A\ Still under construction! A\
} Don’t use this as a reference!

breadth-first-search() {
make a queue of nodes.
enqueue start node.
color the start node yellow.

while (the queue is not empty) {
dequeue a node from the queue.

color that node green.

for (each neighboring node) {
if (that node is gray) {
color the node yellow.
enqueue 1it.

}
}

dijkstra's-algorithm() {
make 3 pl::l'Ol::itgl GUSUS of _nodas
enqueue start node at distance 0.

=1 P | . g 1 b |
COLUT LIS Stdl LU 110U yC LLUW,

while (the queue is not empty) {
dequeue a node from the queue.

color that node green.

for (each neighboring node) {
if (that node is gray) {
color the node yellow.
enqueue 1it.

}
}

} A\ Still under construction! A\
} Don’t use this as a reference!

breadth-first-search() {
make a queue of nodes.
enqueue start node.
color the start node yellow.

while (the queue is not empty) {
dequeue a node from the queue.

color that node green.

for (each neighboring node) {
if (that node is gray) {
color the node yellow.
enqueue 1it.

}
}

dijkstra's-algorithm() {
make 3 pl::l'Ol::itgl GUSUS of _nodas
enqueue start node at distance 0.

=1 P | . g 1 b |
COLUT LIS Stdl LU 110U yC LLUW,

while (the queue is not empty) {
dequeue a node from the queue.

color that node green.

for (each neighboring node) {
if (that node is gray) {
color the node yellow.
enqueue 1it.

}
}

} A\ Still under construction! A\
} Don’t use this as a reference!

A)

breadth-first-search() {
make a queue of nodes.
enqueue start node.
color the start node yellow.

while (the queue is not empty) {
dequeue a node from the queue.

color that node green.

for (each neighboring node) {
if (that node is gray) {
color the node yellow.
enqueue 1it.

}
}

dijkstra's-algorithm() {
make a priority queue of nodes.

—eRguiede—start—node—at—distance—0-—

color the start node yellow.

while (the queue is not empty) {
dequeue a node from the queue.

color that node green.

for (each neighboring node) {
if (that node is gray) {
color the node yellow.
enqueue 1it.

}
}

} A\ Still under construction! A\
} Don’t use this as a reference!

A)

breadth-first-search() {
make a queue of nodes.
enqueue start node.
color the start node yellow.

while (the queue is not empty) {
dequeue a node from the queue.

color that node green.

for (each neighboring node) {
if (that node is gray) {
color the node yellow.
enqueue 1it.

}
}

dijkstra's-algorithm() {
make a priority queue of nodes.

—eRguiede—start—node—at—distance—0-—

color the start node yellow.

while (the queue is not empty) {
dequeue a node from the queue.

color that node green.

for (each neighboring node) {
if (that node is gray) {
color the node yellow.
enqueue 1it.

}
}

} A\ Still under construction! A\
} Don’t use this as a reference!

A)

breadth-first-search() {
make a queue of nodes.
enqueue start node.
color the start node yellow.

while (the queue is not empty) {
dequeue a node from the queue.

color that node green.

for (each neighboring node) {
if (that node is gray) {
color the node yellow.
enqueue 1it.

}
}

dijkstra's-algorithm() {
make a priority queue of nodes.
enqueue start node at distance 0.
color the start node yellow.

while (the queue is not empty) {
equeue a node Trom the queue.

color that node green.

for (each neighboring node) {
if (that node is gray) {
color the node yellow.
enqueue 1it.

}
}

} A\ Still under construction! A\
} Don’t use this as a reference!

A)

breadth-first-search() {
make a queue of nodes.
enqueue start node.
color the start node yellow.

while (the queue is not empty) {
dequeue a node from the queue.

color that node green.

for (each neighboring node) {
if (that node is gray) {
color the node yellow.
enqueue 1it.

}
}

dijkstra's-algorithm() {
make a priority queue of nodes.
enqueue start node at distance 0.
color the start node yellow.

hile(t : N,

dequeue a node from the queue.

color that node green.

for (each neighboring node) {
if (that node is gray) {
color the node yellow.
enqueue 1it.

}
}

} A\ Still under construction! A\
} Don’t use this as a reference!

A)

breadth-first-search() {
make a queue of nodes.
enqueue start node.
color the start node yellow.

while (the queue is not empty) {
dequeue a node from the queue.

color that node green.

for (each neighboring node) {
if (that node is gray) {
color the node yellow.
enqueue 1it.

}
}

dijkstra's-algorithm() {
make a priority queue of nodes.
enqueue start node at distance 0.
color the start node yellow.

hile(t : N,

dequeue a node from the queue.

color that node green.

for (each neighboring node) {
if (that node is gray) {
color the node yellow.
enqueue 1it.

}
}

} A\ Still under construction! A\
} Don’t use this as a reference!

wA g
AN
L\)K7<&

breadth-first-search() {
make a queue of nodes.
enqueue start node.
color the start node yellow.

while (the queue is not empty) {
dequeue a node from the queue.

color that node green.

for (each neighboring node) {
if (that node is gray) {
color the node yellow.
enqueue 1it.

}
}

dijkstra's-algorithm() {
make a priority queue of nodes.
enqueue start node at distance 0.
color the start node yellow.

while (the queue is not empty) {
dequeue a node from the queue.

color that node green.

for (each neighboring node) {
if (that node is gray) {
color the node yellow.
enqueue 1it.

}
}

} A\ Still under construction! A\
} Don’t use this as a reference!

wA g
AN
L\)K7<&

breadth-first-search() {
make a queue of nodes.
enqueue start node.
color the start node yellow.

while (the queue is not empty) {
dequeue a node from the queue.

color that node green.
for (each neighboring node) {

if (that node is gray) {
color the node yellow.

dijkstra's-algorithm() {
make a priority queue of nodes.
enqueue start node at distance 0.
color the start node yellow.

while (the queue is not empty) {
dequeue a node from the queue.

color that node green.

for (each neighboring node) {
if (that node is gray) {
color the node yellow.

enqueue 1it. enqueue 1it.
} }
} }
} } A\ Still under construction! A\
} } Don’t use this as a reference!
Ve

breadth-first-search() {
make a queue of nodes.
enqueue start node.
color the start node yellow.

while (the queue is not empty) {
dequeue a node from the queue.

color that node green.
for (each neighboring node) {

if (that node is gray) {
color the node yellow.

dijkstra's-algorithm() {
make a priority queue of nodes.
enqueue start node at distance 0.
color the start node yellow.

while (the queue is not empty) {
dequeue a node from the queue.

color that node green.

for (each neighboring ngdg) {

et ode tSgray) |
color the node yellow.

enqueue 1it. enqueue 1it.
} }
} }
} } A\ Still under construction! A\
} } Don’t use this as a reference!
Ve

breadth-first-search() {
make a queue of nodes.
enqueue start node.
color the start node yellow.

while (the queue is not empty) {
dequeue a node from the queue.

color that node green.
for (each neighboring node) {

if (that node is gray) {
color the node yellow.

dijkstra's-algorithm() {

make a priority queue of nodes.
enqueue start node at distance 0.
color the start node yellow.

while (the queue is not empty) {
dequeue a node from the queue.

color that node green.

' L

\ =T LA™ \-3 TWVT T LA A~ A~

lf (that node is gray) {

cotor the node yertow.

enqueue 1it. enqueue 1it.
} }
} }
} } A\ Still under construction! A\
} Don’t use this as a reference!
Ve

breadth-first-search() {
make a queue of nodes.
enqueue start node.
color the start node yellow.

while (the queue is not empty) {
dequeue a node from the queue.

color that node green.
for (each neighboring node) {

if (that node is gray) {
color the node yellow.

dijkstra's-algorithm() {
make a priority queue of nodes.
enqueue start node at distance 0.
color the start node yellow.

while (the queue is not empty) {
dequeue a node from the queue.

color that node green.

for (each nelghborlng node) {

-L'F f'l;h_a_t gde ;|S g;a\l\ f

color the node yellow

enqueue 1it. ETqueTett
} }
} }
} } A\ Still under construction! A\
} } Don’t use this as a reference!
Ve

breadth-first-search() {
make a queue of nodes.
enqueue start node.
color the start node yellow.

while (the queue is not empty) {
dequeue a node from the queue.

color that node green.

for (each neighboring node) {
if (that node is gray) {
color the node yellow.
enqueue 1it.

}
}

dijkstra's-algorithm() {
make a priority queue of nodes.
enqueue start node at distance 0.
color the start node yellow.

while (the queue is not empty) {
dequeue a node from the queue.

color that node green.
for (each nelghborlng node) {

-L'F f'l;h_a_t gde ;|S g;a\l\ f

color the node yellow

ETqueTett

}
}

} A\ Still under construction! A\
} Don’t use this as a reference!

breadth-first-search() {
make a queue of nodes.
enqueue start node.
color the start node yellow.

while (the queue is not empty) {
dequeue a node from the queue.

color that node green.

for (each neighboring node) {
if (that node is gray) {
color the node yellow.
enqueue 1it.

}
}

dijkstra's-algorithm() {
make a priority queue of nodes.
enqueue start node at distance 0.
color the start node yellow.

while (the queue is not empty) {
dequeue a node from the queue.

color that node green.

for (each neighboring node) {
if (that node is gray) {

colors tho nodo vnllow,
enqueue 1it.
3
}
} A\ Still under construction! A\
} Don’t use this as a reference!

breadth-first-search() {
make a queue of nodes.
enqueue start node.
color the start node yellow.

while (the queue is not empty) {
dequeue a node from the queue.

color that node green.

for (each neighboring node) {
if (that node is gray) {
color the node yellow.
enqueue 1it.

}
}

dijkstra's-algorithm() {
make a priority queue of nodes.
enqueue start node at distance 0.
color the start node yellow.

while (the queue is not empty) {
dequeue a node from the queue.

color that node green.

for (each neighboring node) {
if (that node is gray) {

colors tho nodo vnllow,

enqueue it at the new distance.
J
}

} A\ Still under construction! A\
} Don’t use this as a reference!

breadth-first-search() {
make a queue of nodes.
enqueue start node.
color the start node yellow.

while (the queue is not empty) {
dequeue a node from the queue.

color that node green.
for (each neighboring node) {

if (that node is gray) {
color the node yellow.

dijkstra's-algorithm() {
make a priority queue of nodes.
enqueue start node at distance 0.
color the start node yellow.

while (the queue is not empty) {
dequeue a node from the queue.

color that node green.

for (each neighboring node) {
if (that node is gray) {

colors tho nodo vnllow,

enqueue it. _enqueue it at the new distance.
} b
} }
} } A\ Still under construction! A\
} } Don’t use this as a reference!
1?2

breadth-first-search() {
make a queue of nodes.
enqueue start node.
color the start node yellow.

while (the queue is not empty) {
dequeue a node from the queue.

color that node green.
for (each neighboring node) {

if (that node is gray) {
color the node yellow.

dijkstra's-algorithm() {
make a priority queue of nodes.
enqueue start node at distance 0.
color the start node yellow.

while (the queue is not empty) {

—tequete—a—Trode—fromtire—quete-

color that node green.

for (each neighboring node) {
if (that node is gray) {
color the node yellow.

enqueue it. enqueue it at the new distance.
} }
} }
} } A\ Still under construction! A\
} } Don’t use this as a reference!
1?2
0 D, 67?

breadth-first-search() {
make a queue of nodes.
enqueue start node.
color the start node yellow.

while (the queue is not empty) {
dequeue a node from the queue.

color that node green.
for (each neighboring node) {

if (that node is gray) {
color the node yellow.

dijkstra's-algorithm() {
make a priority queue of nodes.
enqueue start node at distance 0.
color the start node yellow.

while (the gueue is not empiy) L
dequeue a node from the queue.

color that node green.

for (each neighboring node) {
if (that node is gray) {
color the node yellow.

enqueue it. enqueue it at the new distance.
} }
} }
} } A\ Still under construction! A\
} } Don’t use this as a reference!
1?2
0 D, 67?

breadth-first-search() {
make a queue of nodes.
enqueue start node.
color the start node yellow.

while (the queue is not empty) {
dequeue a node from the queue.

color that node green.
for (each neighboring node) {

if (that node is gray) {
color the node yellow.

dijkstra's-algorithm() {
make a priority queue of nodes.
enqueue start node at distance 0.
color the start node yellow.

while (the gueue is not empiy) L
dequeue a node from the queue.

color that node green.

for (each neighboring node) {
if (that node is gray) {
color the node yellow.

enqueue it. enqueue it at the new distance.
} }
} }
} } A\ Still under construction! A\
} } Don’t use this as a reference!
0 D, 67?

N

breadth-first-search() {
make a queue of nodes.
enqueue start node.
color the start node yellow.

while (the queue is not empty) {
dequeue a node from the queue.

color that node green.
for (each neighboring node) {

if (that node is gray) {
color the node yellow.

dijkstra's-algorithm() {
make a priority queue of nodes.
enqueue start node at distance 0.
color the start node yellow.

while (the queue is not empty) {
dequeue a node from the queue.

color that node green.

for (each neighboring node) {
if (that node is gray) {
color the node yellow.

enqueue it. enqueue it at the new distance.
} }
} }
} } A\ Still under construction! A\
} } Don’t use this as a reference!
0 D, 67?

N

breadth-first-search() {
make a queue of nodes.
enqueue start node.
color the start node yellow.

while (the queue is not empty) {
dequeue a node from the queue.

color that node green.
for (each neighboring node) {

if (that node is gray) {
color the node yellow.

dijkstra's-algorithm() {
make a priority queue of nodes.
enqueue start node at distance 0.
color the start node yellow.

while (the queue is not empty) {
dequeue a node from the queue.

color that node green.

for (each neighboring node) {
if (that node is gray) {
color the node yellow.

enqueue it. enqueue it at the new distance.
} }
} }
} } A\ Still under construction! A\
} } Don’t use this as a reference!
0 D, 67?

N

breadth-first-search() { dijkstra's-algorithm() {
make a queue of nodes. make a priority queue of nodes.
enqueue start node. enqueue start node at distance 0.
color the start node yellow. color the start node yellow.
while (the queue is not empty) { while (the queue is not empty) {
dequeue a node from the queue. dequeue a node from the queue.
color that node green. color that node green.
for (each neighboring node) { for (each nelghborlng node) {
if (that node is gray) { of—¢tirat—Tode—ts—gray <
color the node yellow. color the node yellow.
enqueue it. enqueue it at the new distance.
} }
} }
} } A\ Still under construction! /A
} } Don’t use this as a reference!

D) 6? (?(?

breadth-first-search() {
make a queue of nodes.
enqueue start node.
color the start node yellow.

while (the queue is not empty) {
dequeue a node from the queue.

color that node green.
for (each neighboring node) {

if (that node is gray) {
color the node yellow.

dijkstra's-algorithm() {
make a priority queue of nodes.
enqueue start node at distance 0.
color the start node yellow.

while (the queue is not empty) {
dequeue a node from the queue.

color that node green.

for (each nelghborlng node) {

tf—¢tihatTode—ts—gray)<
color the node yellow.

enqueue it. enqueue it at the new distance.
} }
} }
} } A\ Still under construction! A\
} } Don’t use this as a reference!
0

N

breadth-first-search() {
make a queue of nodes.
enqueue start node.
color the start node yellow.

while (the queue is not empty)

{

dequeue a node from the queue.

color that node green.

for (each neighboring node) {
if (that node is gray) {
color the node yellow.

dijkstra's-algorithm() {
make a priority queue of nodes.
enqueue start node at distance 0.
color the start node yellow.

while (the queue is not empty) {
dequeue a node from the queue.

color that node green.

——Ffor—(each—peighboring—hode)—{
if (that node is gray) {

TOtoT— theTTodeyet towW.

enqueue it. enqueue it at the new distance.
} }
} }
} } A\ Still under construction! A\
} } Don’t use this as a reference!
0

N

breadth-first-search() {
make a queue of nodes.
enqueue start node.
color the start node yellow.

while (the queue is not empty)

{

dequeue a node from the queue.

color that node green.

for (each neighboring node) {
if (that node is gray) {
color the node yellow.

dijkstra's-algorithm() {
make a priority queue of nodes.
enqueue start node at distance 0.
color the start node yellow.

while (the queue is not empty) {

color that node green.

for (each neighboring node) {
if (that node is gray) {
color the node yellow.

enqueue it. enqueue it at the new distance.
} }
} }
} } A\ Still under construction! A\
} } Don’t use this as a reference!
1
0

N

breadth-first-search() {
make a queue of nodes.
enqueue start node.
color the start node yellow.

while (the queue is not empty)

{

dequeue a node from the queue.

color that node green.

for (each neighboring node) {
if (that node is gray) {
color the node yellow.

dijkstra's-algorithm() {
make a priority queue of nodes.
enqueue start node at distance 0.
color the start node yellow.

white—(the—guede—is—het—empty)—F
7 C

dequeue a node from the queue.

color that node green.

for (each neighboring node) {
if (that node is gray) {
color the node yellow.

enqueue it. enqueue it at the new distance.
} }
} }
} } A\ Still under construction! A\
} } Don’t use this as a reference!
1
0

N

breadth-first-search() {
make a queue of nodes.
enqueue start node.
color the start node yellow.

while (the queue is not empty) {
dequeue a node from the queue.

color that node green.
for (each neighboring node) {

if (that node is gray) {
color the node yellow.

dijkstra's-algorithm() {
make a priority queue of nodes.
enqueue start node at distance 0.
color the start node yellow.

white—(the—guede—is—het—empty)—F
7 C

dequeue a node from the queue.

color that node green.

for (each neighboring node) {
if (that node is gray) {
color the node yellow.

enqueue it. enqueue it at the new distance.
} }
} }
} } A\ Still under construction! A\
} } Don’t use this as a reference!
: 2 | o

breadth-first-search() {
make a queue of nodes.
enqueue start node.
color the start node yellow.

while (the queue is not empty) {
dequeue a node from the queue.

color that node green.
for (each neighboring node) {

if (that node is gray) {
color the node yellow.

dijkstra's-algorithm() {
make a priority queue of nodes.
enqueue start node at distance 0.
color the start node yellow.

while (the queue is not empty) {
dequeue a node from the queue.

color that node green.

for (each neighboring node) {
if (that node is gray) {
color the node yellow.

enqueue it. enqueue it at the new distance.
} }
} }
} } A\ Still under construction! A\
} } Don’t use this as a reference!
: 2 | o

breadth-first-search() {
make a queue of nodes.
enqueue start node.
color the start node yellow.

while (the queue is not empty) {
dequeue a node from the queue.

color that node green.
for (each neighboring node) {

if (that node is gray) {
color the node yellow.

dijkstra's-algorithm() {
make a priority queue of nodes.
enqueue start node at distance 0.
color the start node yellow.

while (the queue is not empty) {
dequeue a node from the queue.

color that node green.

for (each neighboring node) {
if (that node is gray) {
color the node yellow.

enqueue it. enqueue it at the new distance.
} }
} }
} } A\ Still under construction! A\
} } Don’t use this as a reference!
: 2 | o

breadth-first-search() {
make a queue of nodes.
enqueue start node.
color the start node yellow.

while (the queue is not empty) {
dequeue a node from the queue.

color that node green.
for (each neighboring node) {

if (that node is gray) {
color the node yellow.

dijkstra's-algorithm() {
make a priority queue of nodes.
enqueue start node at distance 0.
color the start node yellow.

while (the queue is not empty) {
dequeue a node from the queue.

color that node green.

for (each neighboring node) {

color the node yellow.

enqueue it. enqueue it at the new distance.
} }
} }
} } A\ Still under construction! A\
} } Don’t use this as a reference!
: 2 | o

breadth-first-search() {
make a queue of nodes.
enqueue start node.
color the start node yellow.

while (the queue is not empty) {
dequeue a node from the queue.

color that node green.
for (each neighboring node) {

if (that node is gray) {
color the node yellow.

dijkstra's-algorithm() {
make a priority queue of nodes.
enqueue start node at distance 0.
color the start node yellow.

while (the queue is not empty) {
dequeue a node from the queue.

color that node green.

for (each neighboring node) {

color the node yellow.

enqueue it. enqueue it at the new distance.
} }
} }
} } A\ Still under construction! A\
} } Don’t use this as a reference!
1
: 2 | o

breadth-first-search() { dijkstra's-algorithm() {
make a queue of nodes. make a priority queue of nodes.
enqueue start node. enqueue start node at distance 0.
color the start node yellow. color the start node yellow.
while (the queue is not empty) { while (the queue is not empty) {
dequeue a node from the queue. dequeue a node from the queue.
color that node green. color that node green.
for (each neighboring node) { for (gach neighbn:ing_node\ {
if (that node is gray) { if (that node 1s gray) {
color the node yellow. cotor—tie—Trode yCLLUW
enqueue it. enqueue it at the new distance.
} }
} }
} } A\ Still under construction! /A
} } Don’t use this as a reference!
1

67 (D)

breadth-first-search() { dijkstra's-algorithm() {
make a queue of nodes. make a priority queue of nodes.
enqueue start node. enqueue start node at distance 0.
color the start node yellow. color the start node yellow.
while (the queue is not empty) { while (the queue is not empty) {
dequeue a node from the queue. dequeue a node from the queue.
color that node green. color that node green.
for (each neighboring node) { for (gach neighbnsing_node\
if (that node is gray) { if (that node 1s not green) {
color the node yellow. cotor—tie—Trode yCLLUW
enqueue it. enqueue it at the new distance.
} }
} }
} } A\ Still under construction! A\
} } Don’t use this as a reference!
1

67 (D)

breadth-first-search() {
make a queue of nodes.
enqueue start node.
color the start node yellow.

while (the queue is not empty) {
dequeue a node from the queue.

color that node green.
for (each neighboring node) {

if (that node is gray) {
color the node yellow.

dijkstra's-algorithm() {
make a priority queue of nodes.
enqueue start node at distance 0.
color the start node yellow.

while (the queue is not empty) {
dequeue a node from the queue.

color that node green.

for (each neighboring node) {
1 n)

LE4 .

U

color the node yellow.

enqueue it. gmquene - tratthemew—dtstance.
} }
} }
} } A\ Still under construction! A\
} } Don’t use this as a reference!
1

)

breadth-first-search() {
make a queue of nodes.
enqueue start node.
color the start node yellow.

while (the queue is not empty) {
dequeue a node from the queue.

color that node green.
for (each neighboring node) {

if (that node is gray) {
color the node yellow.

dijkstra's-algorithm() {
make a priority queue of nodes.
enqueue start node at distance 0.
color the start node yellow.

while (the queue is not empty) {
dequeue a node from the queue.

color that node green.

for (each neighboring node) {
if (that node is not green) {

I‘f\-l oL +L\f\ nf\AI‘\ \lf\-l 1 raNwi

AR AR A~ | T\ TTWVNG N J\-\-bv".

enqueue it. enqueue it at the new distance.
})
} }
} } A\ Still under construction! A\
} } Don’t use this as a reference!
1
: 2 | o

breadth-first-search() {
make a queue of nodes.
enqueue start node.
color the start node yellow.

while (the queue is not empty) {
dequeue a node from the queue.

color that node green.
for (each neighboring node) {

if (that node is gray) {
color the node yellow.

dijkstra's-algorithm() {
make a priority queue of nodes.
enqueue start node at distance 0.
color the start node yellow.

while (the queue is not empty) {
dequeue a node from the queue.

color that node green.

for (each neighboring node) {
if (that node is not green) {

I‘f\-l oL +L\f\ nf\AI‘\ \lf\-l 1 raNwi

AR AR A~ | T\ TTWVNG N J\-\-bv".

enqueue it. enqueue it at the new distance.
})
} }
} } A\ Still under construction! A\
} } Don’t use this as a reference!
1
0 5?

oo

breadth-first-search() {
make a queue of nodes.
enqueue start node.
color the start node yellow.

while (the queue is not empty) {
dequeue a node from the queue.

color that node green.
for (each neighboring node) {

if (that node is gray) {
color the node yellow.

dijkstra's-algorithm() {
make a priority queue of nodes.
enqueue start node at distance 0.
color the start node yellow.

whlle (the queue 1s not empty) {

UE(..[UEUE d IIUUE IIUI'I LIIE Jucuc.
color that node green.
for (each neighboring node) {

if (that node is not green) {
color the node yellow.

enqueue it. enqueue it at the new distance.
} }
} }
} } A\ Still under construction! A\
} } Don’t use this as a reference!
1
0 5?

N

breadth-first-search() {
make a queue of nodes.
enqueue start node.
color the start node yellow.

while (the queue is not empty) {
dequeue a node from the queue.

color that node green.
for (each neighboring node) {

if (that node is gray) {
color the node yellow.

dijkstra's-algorithm() {
make a priority queue of nodes.
enqueue start node at distance 0.
color the start node yellow.

whiloe (+ho Auciia 3 ot ot N [

LELE N —B —) \ =0t A D A —x—4 LELE~ A —) =TTy) C

dequeue a node from the queue.

color that node green.

for (each neighboring node) {
if (that node is not green) {
color the node yellow.

enqueue it. enqueue it at the new distance.
} }
} }
} } A\ Still under construction! A\
} } Don’t use this as a reference!
1

N

breadth-first-search() {
make a queue of nodes.
enqueue start node.
color the start node yellow.

while (the queue is not empty) {
dequeue a node from the queue.

color that node green.
for (each neighboring node) {

if (that node is gray) {
color the node yellow.

dijkstra's-algorithm() {
make a priority queue of nodes.
enqueue start node at distance 0.
color the start node yellow.

whiloe (+ho Auciia 3 ot ot N [

LELE N —B —) \ =0t A D A —x—4 LELE~ A —) =TTy) C

dequeue a node from the queue.

color that node green.

for (each neighboring node) {
if (that node is not green) {
color the node yellow.

enqueue it. enqueue it at the new distance.
} }
} }
} } A\ Still under construction! A\
} } Don’t use this as a reference!
1

)

breadth-first-search() {
make a queue of nodes.
enqueue start node.
color the start node yellow.

while (the queue is not empty)

{

dequeue a node from the queue.

color that node green.

for (each neighboring node) {
if (that node is gray) {
color the node yellow.

dijkstra's-algorithm() {
make a priority queue of nodes.
enqueue start node at distance 0.
color the start node yellow.

while (the queue is not empty) {
dequeue a node from the queue.

color that node green.

for (each neighboring node) {
if (that node is not green) {
color the node yellow.

enqueue it. enqueue it at the new distance.
} }
} }
} } A\ Still under construction! A\
} } Don’t use this as a reference!
1
0 D

breadth-first-search() {
make a queue of nodes.
enqueue start node.
color the start node yellow.

while (the queue is not empty) {
dequeue a node from the queue.

color that node green.
for (each neighboring node) {

if (that node is gray) {
color the node yellow.

dijkstra's-algorithm() {
make a priority queue of nodes.
enqueue start node at distance 0.
color the start node yellow.

while (the queue is not empty) {
dequeue a node from the queue.

color that node green.

for (each neighboring node) {
if (that node is not green) {
color the node yellow.

enqueue it. enqueue it at the new distance.
} }
} }
} } A\ Still under construction! A\
} } Don’t use this as a reference!
1
0 D

breadth-first-search() {
make a queue of nodes.
enqueue start node.
color the start node yellow.

while (the queue is not empty) {
dequeue a node from the queue.

color that node green.
for (each neighboring node) {

if (that node is gray) {
color the node yellow.

dijkstra's-algorithm() {

make a priority queue of nodes.
enqueue start node at distance 0.
color the start node yellow.

while (the queue is not empty) {
dequeue a node from the queue.

color that node green.

c

for (each neighboring node) {
)

N - Z o L

Ll \ L1 [1] L

color the node yellow.

enqueue it. enqueue it at the new distance.
} }
} }
} } A\ Still under construction! A\
} Don’t use this as a reference!
1
0 D

breadth-first-search() {
make a queue of nodes.
enqueue start node.
color the start node yellow.

while (the queue is not empty) {
dequeue a node from the queue.

color that node green.
for (each neighboring node) {

if (that node is gray) {
color the node yellow.

dijkstra's-algorithm() {
make a priority queue of nodes.
enqueue start node at distance 0.
color the start node yellow.

whlle (the queue 1s not empty) {

UE(..[UEUE d IIUUE IIUI'I LIIE Jucuc.
color that node green.
for (each neighboring node) {

if (that node is not green) {
color the node yellow.

enqueue it. enqueue it at the new distance.
} }
} }
} } A\ Still under construction! A\
} } Don’t use this as a reference!
1
: s o

breadth-first-search() {
make a queue of nodes.
enqueue start node.
color the start node yellow.

while (the queue is not empty) {
dequeue a node from the queue.

color that node green.
for (each neighboring node) {

if (that node is gray) {
color the node yellow.

dijkstra's-algorithm() {
make a priority queue of nodes.
enqueue start node at distance 0.
color the start node yellow.

whiloe (+ho Auciia 3 ot ot N [

LELE N —B —) \ =0t A D A —x—4 LELE~ A —) =TTy) C

dequeue a node from the queue.

color that node green.

for (each neighboring node) {
if (that node is not green) {
color the node yellow.

enqueue it. enqueue it at the new distance.
} }
} }
} } A\ Still under construction! A\
} } Don’t use this as a reference!
1

)

breadth-first-search() {
make a queue of nodes.
enqueue start node.
color the start node yellow.

while (the queue is not empty) {
dequeue a node from the queue.

color that node green.
for (each neighboring node) {

if (that node is gray) {
color the node yellow.

dijkstra's-algorithm() {
make a priority queue of nodes.
enqueue start node at distance 0.
color the start node yellow.

whiloe (+ho Auciia 3 ot ot N [

LELE N —B —) \ =0t A D A —x—4 LELE~ A —) =TTy) C

dequeue a node from the queue.

color that node green.

for (each neighboring node) {
if (that node is not green) {
color the node yellow.

enqueue it. enqueue it at the new distance.
} }
} }
} } A\ Still under construction! A\
} } Don’t use this as a reference!
1

breadth-first-search() {
make a queue of nodes.
enqueue start node.
color the start node yellow.

while (the queue is not empty) {
dequeue a node from the queue.

color that node green.
for (each neighboring node) {

if (that node is gray) {
color the node yellow.

dijkstra's-algorithm() {
make a priority queue of nodes.
enqueue start node at distance 0.
color the start node yellow.

while (the queue is not empty) {

Af\ﬂlll‘\lll‘\ f\l\Al‘\ 'Cr-l\m '|-l'\f\ AALLAL LA

\-l\-\.nIU\-U\- U LA A™ A~ LI A~ 4 B | \“LELA™] \.nIU\-U\- 0

——COTor That node green.

for (each neighboring node) {
if (that node is not green) {
color the node yellow.

enqueue it. enqueue it at the new distance.
} }
} }
} } A\ Still under construction! A\
} } Don’t use this as a reference!
1
0

breadth-first-search() {
make a queue of nodes.
enqueue start node.
color the start node yellow.

while (the queue is not empty) {
dequeue a node from the queue.

color that node green.
for (each neighboring node) {

if (that node is gray) {
color the node yellow.

dijkstra's-algorithm() {
make a priority queue of nodes.
enqueue start node at distance 0.
color the start node yellow.

while (the queue is not empty) {

Af\ﬂlll‘\lll‘\ f\l\Al‘\ 'Cr-l\m '|-l'\f\ AALLAL LA

\-l\-\.nIU\-U\- U LA A™ A~ T T U\-U\-'

if (that node isn't green) {

for (each neighboring node) {
if (that node is not green) {
color the node yellow.

enqueue it. enqueue it at the new distance.
} }
} }
}
} } A\ Still under construction! A\
} } Don’t use this as a reference!
1

0

breadth-first-search() {
make a queue of nodes.
enqueue start node.
color the start node yellow.

while (the queue is not empty) {
dequeue a node from the queue.

color that node green.
for (each neighboring node) {

if (that node is gray) {
color the node yellow.

dijkstra's-algorithm() {
make a priority queue of nodes.
enqueue start node at distance 0.
color the start node yellow.

while (the queue is not empty) {

if (that node isn't green) {
color that node green.

for (each neighboring node) {
if (that node is not green) {
color the node yellow.

enqueue it. enqueue it at the new distance.
} }
} }
}
} } A\ Still under construction! A\
} } Don’t use this as a reference!
1
0 5

breadth-first-search() {
make a queue of nodes.
enqueue start node.
color the start node yellow.

while (the queue is not empty) {
dequeue a node from the queue.

color that node green.
for (each neighboring node) {

if (that node is gray) {
color the node yellow.

dijkstra's-algorithm() {
make a priority queue of nodes.
enqueue start node at distance 0.
color the start node yellow.

while (the queue is not empty) {
dequeue a node from the queue.
if (that node isn't green) {
color that node green.

for (each neighboring node) {
if (that node is not green) {
color the node yellow.

enqueue it. enqueue it at the new distance.
} }
} }
}
} } A\ Still under construction! A\
} } Don’t use this as a reference!
1
0 5

The Finished Product

dijkstra's-algorithm() {
make a priority queue of nodes.
enqueue start node at distance 0.
color the start node yellow.

while (the queue is not empty) {
dequeue a node from the queue.
if (that node isn't green) {
color that node green.

for (each neighboring node) {
if (that node is not green) {
color the node yellow.
enqueue it at the new distance.

The Finished Product

dijkstra's-algorithm() { Use a priovity gqueue
make a priority queue of nodes.
enqueue start node at distance 0. rather fhan a
color the start node yellow. standard queue to

sort by distances,
not wnumber of hops.

while (the queue is not empty) {
dequeue a node from the queue.
if (that node isn't green) {
color that node green.

for (each neighboring node) {
if (that node is not green) {
color the node yellow.
enqueue it at the new distance.

The Finished Product

dijkstra's-algorithm() {
make a priority queue of nodes.
enqueue start node at distance 0.
color the start node yellow.

while (the queue is not empty) {
dequeue a node from the queue.
if (that node isn't green) {
color that node green.

for (each neighboring node) {
if (that node is not green) { —
color the node yellow.

enqueue it at the new distance. Allow nodes *9 be
) engueued mulfiple

} fimes, The first fime
} we find the node
} might not be The
best option.,

The Finished Product

dijkstra's-algorithm() {
make a priority queue of nodes.
enqueue start node at distance 0.
color the start node yellow.

while (the queue is not empty) {
dequeue a node from the queue
if (that node isn't green) {

color that node green.

for (each neighboring node) {
if (that node is not green) {
color the node yellow.

enqueue it at the new distance.

N

As a conseguence,
when degueuing
nodes, make sure
we're nof visiting
something we've
already processed.

