Shortest Paths

Part One
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A graph is a mathematical structure
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BFS Pseudocode

breadth-first-search() {
make a queue of nodes.
enqueue start node.
color the start node yellow.

while (the queue is not empty) {
dequeue a node from the queue.
color that node green.

for (each neighboring node) {
if (that node is gray) {
color the node yellow.
enqueue 1it.

}
}
}
}



The Limits of Breadth-First Search
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The Model

 We have a graph in
which each edge has a
nonnegative cost or
weight associated with
it.

 We want to find the

lowest-cost path from
point A to point B.

 BFS does not take edge
weights into account.

« How might we go about
solving this problem?



Option 1: Brute-Force!

 We could conceivably
solve this problem
using brute force and
a backtracking
recursion.

* Problem: There can
be a lot of different
paths in a graph!

* This is way too
inefficient to use in
practice.



Option 2: Expand the Graph
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Option 2: Expand the Graph

« BES works in the
case where each
edge has equal
weight.

 Idea: What if we
split each edge of
length k into k
smaller edges?

 What if there are
fractional edges?
Or large weights?




Option 3: Look at the problem more closely
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Observation: The
shortest path from A to
F can’t start by going
directly from A to D.
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We have a valid path
that goes from A to B,
and no alternate path
could possibly be as
good. This must be
the shortest path!
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All yellow nodes
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The Pattern

No other path to
this node can be
better than the
one we already
know about!
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At a Glance

 The approach suggested here gives rise to
Dijkstra’s algorithm, a fast, powerful, and
famous algorithm for computing shortest paths.

 Key idea: As in BFS, split nodes into
* gray nodes we haven’t seen,
. that are on the frontier, and
» green nodes we have the best path to,

then repeatedly turn the lowest-cost yellow
node into a green node.



Implementing Dijkstra’s Algorithm
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breadth-first-search() {
make a queue of nodes.
enqueue start node.
color the start node yellow.

while (the queue is not empty) {
dequeue a node from the queue.

color that node green.
for (each neighboring node) {
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color the node yellow.

dijkstra's-algorithm() {

make a priority queue of nodes.
enqueue start node at distance 0.
color the start node yellow.

while (the queue is not empty) {
dequeue a node from the queue.

color that node green.
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lf (that node is gray) {

cotor the node yertow.

enqueue 1it. enqueue 1it.
} }
} }
} } A\ Still under construction! A\
} Don’t use this as a reference!
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breadth-first-search() {
make a queue of nodes.
enqueue start node.
color the start node yellow.

while (the queue is not empty) {
dequeue a node from the queue.

color that node green.
for (each neighboring node) {

if (that node is gray) {
color the node yellow.

dijkstra's-algorithm() {
make a priority queue of nodes.
enqueue start node at distance 0.
color the start node yellow.

while (the queue is not empty) {
dequeue a node from the queue.

color that node green.

for (each nelghborlng node) {

-L'F f'l;h_a_t gde ;|S g;a\l\ f

color the node yellow

enqueue 1it. ETqueTett
} }
} }
} } A\ Still under construction! A\
} } Don’t use this as a reference!
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breadth-first-search() {
make a queue of nodes.
enqueue start node.
color the start node yellow.

while (the queue is not empty) {
dequeue a node from the queue.

color that node green.

for (each neighboring node) {
if (that node is gray) {
color the node yellow.
enqueue 1it.

}
}

dijkstra's-algorithm() {
make a priority queue of nodes.
enqueue start node at distance 0.
color the start node yellow.

while (the queue is not empty) {
dequeue a node from the queue.

color that node green.
for (each nelghborlng node) {

-L'F f'l;h_a_t gde ;|S g;a\l\ f

color the node yellow

ETqueTett

}
}

} A\ Still under construction! A\
} Don’t use this as a reference!




breadth-first-search() {
make a queue of nodes.
enqueue start node.
color the start node yellow.

while (the queue is not empty) {
dequeue a node from the queue.

color that node green.

for (each neighboring node) {
if (that node is gray) {
color the node yellow.
enqueue 1it.

}
}

dijkstra's-algorithm() {
make a priority queue of nodes.
enqueue start node at distance 0.
color the start node yellow.

while (the queue is not empty) {
dequeue a node from the queue.

color that node green.

for (each neighboring node) {
if (that node is gray) {

colors tho nodo vnllow,
enqueue 1it.
3
}
} A\ Still under construction! A\
} Don’t use this as a reference!




breadth-first-search() {
make a queue of nodes.
enqueue start node.
color the start node yellow.

while (the queue is not empty) {
dequeue a node from the queue.

color that node green.

for (each neighboring node) {
if (that node is gray) {
color the node yellow.
enqueue 1it.

}
}

dijkstra's-algorithm() {
make a priority queue of nodes.
enqueue start node at distance 0.
color the start node yellow.

while (the queue is not empty) {
dequeue a node from the queue.

color that node green.

for (each neighboring node) {
if (that node is gray) {

colors tho nodo vnllow,

enqueue it at the new distance.
J
}

} A\ Still under construction! A\
} Don’t use this as a reference!




breadth-first-search() {
make a queue of nodes.
enqueue start node.
color the start node yellow.

while (the queue is not empty) {
dequeue a node from the queue.

color that node green.
for (each neighboring node) {

if (that node is gray) {
color the node yellow.

dijkstra's-algorithm() {
make a priority queue of nodes.
enqueue start node at distance 0.
color the start node yellow.

while (the queue is not empty) {
dequeue a node from the queue.

color that node green.

for (each neighboring node) {
if (that node is gray) {

colors tho nodo vnllow,

enqueue it. _enqueue it at the new distance.
} b
} }
} } A\ Still under construction! A\
} } Don’t use this as a reference!
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breadth-first-search() {
make a queue of nodes.
enqueue start node.
color the start node yellow.

while (the queue is not empty) {
dequeue a node from the queue.

color that node green.
for (each neighboring node) {

if (that node is gray) {
color the node yellow.

dijkstra's-algorithm() {
make a priority queue of nodes.
enqueue start node at distance 0.
color the start node yellow.

while (the queue is not empty) {

—tequete—a—Trode—fromtire—quete-

color that node green.

for (each neighboring node) {
if (that node is gray) {
color the node yellow.

enqueue it. enqueue it at the new distance.
} }
} }
} } A\ Still under construction! A\
} } Don’t use this as a reference!
1?2
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breadth-first-search() {
make a queue of nodes.
enqueue start node.
color the start node yellow.

while (the queue is not empty) {
dequeue a node from the queue.

color that node green.
for (each neighboring node) {

if (that node is gray) {
color the node yellow.

dijkstra's-algorithm() {
make a priority queue of nodes.
enqueue start node at distance 0.
color the start node yellow.

while (the gueue is not empiy) L
dequeue a node from the queue.

color that node green.

for (each neighboring node) {
if (that node is gray) {
color the node yellow.

enqueue it. enqueue it at the new distance.
} }
} }
} } A\ Still under construction! A\
} } Don’t use this as a reference!
1?2
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breadth-first-search() {
make a queue of nodes.
enqueue start node.
color the start node yellow.

while (the queue is not empty) {
dequeue a node from the queue.

color that node green.
for (each neighboring node) {

if (that node is gray) {
color the node yellow.

dijkstra's-algorithm() {
make a priority queue of nodes.
enqueue start node at distance 0.
color the start node yellow.

while (the gueue is not empiy) L
dequeue a node from the queue.

color that node green.

for (each neighboring node) {
if (that node is gray) {
color the node yellow.

enqueue it. enqueue it at the new distance.
} }
} }
} } A\ Still under construction! A\
} } Don’t use this as a reference!
0 D, 67?
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breadth-first-search() {
make a queue of nodes.
enqueue start node.
color the start node yellow.

while (the queue is not empty) {
dequeue a node from the queue.

color that node green.
for (each neighboring node) {

if (that node is gray) {
color the node yellow.

dijkstra's-algorithm() {
make a priority queue of nodes.
enqueue start node at distance 0.
color the start node yellow.

while (the queue is not empty) {
dequeue a node from the queue.

color that node green.

for (each neighboring node) {
if (that node is gray) {
color the node yellow.

enqueue it. enqueue it at the new distance.
} }
} }
} } A\ Still under construction! A\
} } Don’t use this as a reference!
0 D, 67?
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breadth-first-search() {
make a queue of nodes.
enqueue start node.
color the start node yellow.

while (the queue is not empty) {
dequeue a node from the queue.

color that node green.
for (each neighboring node) {

if (that node is gray) {
color the node yellow.

dijkstra's-algorithm() {
make a priority queue of nodes.
enqueue start node at distance 0.
color the start node yellow.

while (the queue is not empty) {
dequeue a node from the queue.

color that node green.

for (each neighboring node) {
if (that node is gray) {
color the node yellow.

enqueue it. enqueue it at the new distance.
} }
} }
} } A\ Still under construction! A\
} } Don’t use this as a reference!
0 D, 67?
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breadth-first-search() { dijkstra's-algorithm() {
make a queue of nodes. make a priority queue of nodes.
enqueue start node. enqueue start node at distance 0.
color the start node yellow. color the start node yellow.
while (the queue is not empty) { while (the queue is not empty) {
dequeue a node from the queue. dequeue a node from the queue.
color that node green. color that node green.
for (each neighboring node) { for (each nelghborlng node) {
if (that node is gray) { of—¢tirat—Tode—ts—gray <
color the node yellow. color the node yellow.
enqueue it. enqueue it at the new distance.
} }
} }
} } A\ Still under construction! /A
} } Don’t use this as a reference!
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breadth-first-search() {
make a queue of nodes.
enqueue start node.
color the start node yellow.

while (the queue is not empty) {
dequeue a node from the queue.

color that node green.
for (each neighboring node) {

if (that node is gray) {
color the node yellow.

dijkstra's-algorithm() {
make a priority queue of nodes.
enqueue start node at distance 0.
color the start node yellow.

while (the queue is not empty) {
dequeue a node from the queue.

color that node green.

for (each nelghborlng node) {

tf—¢tihatTode—ts—gray )<
color the node yellow.

enqueue it. enqueue it at the new distance.
} }
} }
} } A\ Still under construction! A\
} } Don’t use this as a reference!
0
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breadth-first-search() {
make a queue of nodes.
enqueue start node.
color the start node yellow.

while (the queue is not empty)

{

dequeue a node from the queue.

color that node green.

for (each neighboring node) {
if (that node is gray) {
color the node yellow.

dijkstra's-algorithm() {
make a priority queue of nodes.
enqueue start node at distance 0.
color the start node yellow.

while (the queue is not empty) {
dequeue a node from the queue.

color that node green.

——Ffor—(each—peighboring—hode)—{
if (that node is gray) {

TOtoT— theTTodeyet towW.

enqueue it. enqueue it at the new distance.
} }
} }
} } A\ Still under construction! A\
} } Don’t use this as a reference!
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breadth-first-search() {
make a queue of nodes.
enqueue start node.
color the start node yellow.

while (the queue is not empty)

{

dequeue a node from the queue.

color that node green.

for (each neighboring node) {
if (that node is gray) {
color the node yellow.

dijkstra's-algorithm() {
make a priority queue of nodes.
enqueue start node at distance 0.
color the start node yellow.

while (the queue is not empty) {

color that node green.

for (each neighboring node) {
if (that node is gray) {
color the node yellow.

enqueue it. enqueue it at the new distance.
} }
} }
} } A\ Still under construction! A\
} } Don’t use this as a reference!
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breadth-first-search() {
make a queue of nodes.
enqueue start node.
color the start node yellow.

while (the queue is not empty)

{

dequeue a node from the queue.

color that node green.

for (each neighboring node) {
if (that node is gray) {
color the node yellow.

dijkstra's-algorithm() {
make a priority queue of nodes.
enqueue start node at distance 0.
color the start node yellow.

white—(the—guede—is—het—empty)—F
7 C

dequeue a node from the queue.

color that node green.

for (each neighboring node) {
if (that node is gray) {
color the node yellow.

enqueue it. enqueue it at the new distance.
} }
} }
} } A\ Still under construction! A\
} } Don’t use this as a reference!
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breadth-first-search() {
make a queue of nodes.
enqueue start node.
color the start node yellow.

while (the queue is not empty) {
dequeue a node from the queue.

color that node green.
for (each neighboring node) {

if (that node is gray) {
color the node yellow.

dijkstra's-algorithm() {
make a priority queue of nodes.
enqueue start node at distance 0.
color the start node yellow.

white—(the—guede—is—het—empty)—F
7 C

dequeue a node from the queue.

color that node green.

for (each neighboring node) {
if (that node is gray) {
color the node yellow.

enqueue it. enqueue it at the new distance.
} }
} }
} } A\ Still under construction! A\
} } Don’t use this as a reference!
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breadth-first-search() {
make a queue of nodes.
enqueue start node.
color the start node yellow.

while (the queue is not empty) {
dequeue a node from the queue.

color that node green.
for (each neighboring node) {

if (that node is gray) {
color the node yellow.

dijkstra's-algorithm() {
make a priority queue of nodes.
enqueue start node at distance 0.
color the start node yellow.

while (the queue is not empty) {
dequeue a node from the queue.

color that node green.

for (each neighboring node) {
if (that node is gray) {
color the node yellow.

enqueue it. enqueue it at the new distance.
} }
} }
} } A\ Still under construction! A\
} } Don’t use this as a reference!
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breadth-first-search() {
make a queue of nodes.
enqueue start node.
color the start node yellow.

while (the queue is not empty) {
dequeue a node from the queue.

color that node green.
for (each neighboring node) {

if (that node is gray) {
color the node yellow.

dijkstra's-algorithm() {
make a priority queue of nodes.
enqueue start node at distance 0.
color the start node yellow.

while (the queue is not empty) {
dequeue a node from the queue.

color that node green.

for (each neighboring node) {
if (that node is gray) {
color the node yellow.

enqueue it. enqueue it at the new distance.
} }
} }
} } A\ Still under construction! A\
} } Don’t use this as a reference!
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breadth-first-search() {
make a queue of nodes.
enqueue start node.
color the start node yellow.

while (the queue is not empty) {
dequeue a node from the queue.

color that node green.
for (each neighboring node) {

if (that node is gray) {
color the node yellow.

dijkstra's-algorithm() {
make a priority queue of nodes.
enqueue start node at distance 0.
color the start node yellow.

while (the queue is not empty) {
dequeue a node from the queue.

color that node green.

for (each neighboring node) {

color the node yellow.

enqueue it. enqueue it at the new distance.
} }
} }
} } A\ Still under construction! A\
} } Don’t use this as a reference!
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breadth-first-search() {
make a queue of nodes.
enqueue start node.
color the start node yellow.

while (the queue is not empty) {
dequeue a node from the queue.

color that node green.
for (each neighboring node) {

if (that node is gray) {
color the node yellow.

dijkstra's-algorithm() {
make a priority queue of nodes.
enqueue start node at distance 0.
color the start node yellow.

while (the queue is not empty) {
dequeue a node from the queue.

color that node green.

for (each neighboring node) {

color the node yellow.

enqueue it. enqueue it at the new distance.
} }
} }
} } A\ Still under construction! A\
} } Don’t use this as a reference!
1
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breadth-first-search() { dijkstra's-algorithm() {
make a queue of nodes. make a priority queue of nodes.
enqueue start node. enqueue start node at distance 0.
color the start node yellow. color the start node yellow.
while (the queue is not empty) { while (the queue is not empty) {
dequeue a node from the queue. dequeue a node from the queue.
color that node green. color that node green.
for (each neighboring node) { for (gach neighbn:ing_node\ {
if (that node is gray) { if (that node 1s gray) {
color the node yellow. cotor—tie—Trode yCLLUW
enqueue it. enqueue it at the new distance.
} }
} }
} } A\ Still under construction! /A
} } Don’t use this as a reference!
1
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breadth-first-search() { dijkstra's-algorithm() {
make a queue of nodes. make a priority queue of nodes.
enqueue start node. enqueue start node at distance 0.
color the start node yellow. color the start node yellow.
while (the queue is not empty) { while (the queue is not empty) {
dequeue a node from the queue. dequeue a node from the queue.
color that node green. color that node green.
for (each neighboring node) { for (gach neighbnsing_node\
if (that node is gray) { if (that node 1s not green) {
color the node yellow. cotor—tie—Trode yCLLUW
enqueue it. enqueue it at the new distance.
} }
} }
} } A\ Still under construction! A\
} } Don’t use this as a reference!
1
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breadth-first-search() {
make a queue of nodes.
enqueue start node.
color the start node yellow.

while (the queue is not empty) {
dequeue a node from the queue.

color that node green.
for (each neighboring node) {

if (that node is gray) {
color the node yellow.

dijkstra's-algorithm() {
make a priority queue of nodes.
enqueue start node at distance 0.
color the start node yellow.

while (the queue is not empty) {
dequeue a node from the queue.

color that node green.

for (each neighboring node) {
1 n)
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color the node yellow.

enqueue it. gmquene - tratthemew—dtstance.
} }
} }
} } A\ Still under construction! A\
} } Don’t use this as a reference!
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breadth-first-search() {
make a queue of nodes.
enqueue start node.
color the start node yellow.

while (the queue is not empty) {
dequeue a node from the queue.

color that node green.
for (each neighboring node) {

if (that node is gray) {
color the node yellow.

dijkstra's-algorithm() {
make a priority queue of nodes.
enqueue start node at distance 0.
color the start node yellow.

while (the queue is not empty) {
dequeue a node from the queue.

color that node green.

for (each neighboring node) {
if (that node is not green) {

I‘f\-l oL +L\f\ nf\AI‘\ \lf\-l 1 raNwi
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enqueue it. enqueue it at the new distance.
} )
} }
} } A\ Still under construction! A\
} } Don’t use this as a reference!
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breadth-first-search() {
make a queue of nodes.
enqueue start node.
color the start node yellow.

while (the queue is not empty) {
dequeue a node from the queue.

color that node green.
for (each neighboring node) {

if (that node is gray) {
color the node yellow.

dijkstra's-algorithm() {
make a priority queue of nodes.
enqueue start node at distance 0.
color the start node yellow.

while (the queue is not empty) {
dequeue a node from the queue.

color that node green.

for (each neighboring node) {
if (that node is not green) {

I‘f\-l oL +L\f\ nf\AI‘\ \lf\-l 1 raNwi
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enqueue it. enqueue it at the new distance.
} )
} }
} } A\ Still under construction! A\
} } Don’t use this as a reference!
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breadth-first-search() {
make a queue of nodes.
enqueue start node.
color the start node yellow.

while (the queue is not empty) {
dequeue a node from the queue.

color that node green.
for (each neighboring node) {

if (that node is gray) {
color the node yellow.

dijkstra's-algorithm() {
make a priority queue of nodes.
enqueue start node at distance 0.
color the start node yellow.

whlle (the queue 1s not empty) {

UE(..[UEUE d IIUUE IIUI'I LIIE Jucuc.
color that node green.
for (each neighboring node) {

if (that node is not green) {
color the node yellow.

enqueue it. enqueue it at the new distance.
} }
} }
} } A\ Still under construction! A\
} } Don’t use this as a reference!
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breadth-first-search() {
make a queue of nodes.
enqueue start node.
color the start node yellow.

while (the queue is not empty) {
dequeue a node from the queue.

color that node green.
for (each neighboring node) {

if (that node is gray) {
color the node yellow.

dijkstra's-algorithm() {
make a priority queue of nodes.
enqueue start node at distance 0.
color the start node yellow.

whiloe (+ho Auciia 3 ot ot N [
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dequeue a node from the queue.

color that node green.

for (each neighboring node) {
if (that node is not green) {
color the node yellow.

enqueue it. enqueue it at the new distance.
} }
} }
} } A\ Still under construction! A\
} } Don’t use this as a reference!
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breadth-first-search() {
make a queue of nodes.
enqueue start node.
color the start node yellow.

while (the queue is not empty) {
dequeue a node from the queue.

color that node green.
for (each neighboring node) {

if (that node is gray) {
color the node yellow.

dijkstra's-algorithm() {
make a priority queue of nodes.
enqueue start node at distance 0.
color the start node yellow.

whiloe (+ho Auciia 3 ot ot N [

LELE N —B —) \ =0t A D A —x—4 LELE~ A —) =TTy ) C

dequeue a node from the queue.

color that node green.

for (each neighboring node) {
if (that node is not green) {
color the node yellow.

enqueue it. enqueue it at the new distance.
} }
} }
} } A\ Still under construction! A\
} } Don’t use this as a reference!
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breadth-first-search() {
make a queue of nodes.
enqueue start node.
color the start node yellow.

while (the queue is not empty)

{

dequeue a node from the queue.

color that node green.

for (each neighboring node) {
if (that node is gray) {
color the node yellow.

dijkstra's-algorithm() {
make a priority queue of nodes.
enqueue start node at distance 0.
color the start node yellow.

while (the queue is not empty) {
dequeue a node from the queue.

color that node green.

for (each neighboring node) {
if (that node is not green) {
color the node yellow.

enqueue it. enqueue it at the new distance.
} }
} }
} } A\ Still under construction! A\
} } Don’t use this as a reference!
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breadth-first-search() {
make a queue of nodes.
enqueue start node.
color the start node yellow.

while (the queue is not empty) {
dequeue a node from the queue.

color that node green.
for (each neighboring node) {

if (that node is gray) {
color the node yellow.

dijkstra's-algorithm() {
make a priority queue of nodes.
enqueue start node at distance 0.
color the start node yellow.

while (the queue is not empty) {
dequeue a node from the queue.

color that node green.

for (each neighboring node) {
if (that node is not green) {
color the node yellow.

enqueue it. enqueue it at the new distance.
} }
} }
} } A\ Still under construction! A\
} } Don’t use this as a reference!
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breadth-first-search() {
make a queue of nodes.
enqueue start node.
color the start node yellow.

while (the queue is not empty) {
dequeue a node from the queue.

color that node green.
for (each neighboring node) {

if (that node is gray) {
color the node yellow.

dijkstra's-algorithm() {

make a priority queue of nodes.
enqueue start node at distance 0.
color the start node yellow.

while (the queue is not empty) {
dequeue a node from the queue.

color that node green.

c

for (each neighboring node) {
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color the node yellow.

enqueue it. enqueue it at the new distance.
} }
} }
} } A\ Still under construction! A\
} Don’t use this as a reference!
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breadth-first-search() {
make a queue of nodes.
enqueue start node.
color the start node yellow.

while (the queue is not empty) {
dequeue a node from the queue.

color that node green.
for (each neighboring node) {

if (that node is gray) {
color the node yellow.

dijkstra's-algorithm() {
make a priority queue of nodes.
enqueue start node at distance 0.
color the start node yellow.

whlle (the queue 1s not empty) {

UE(..[UEUE d IIUUE IIUI'I LIIE Jucuc.
color that node green.
for (each neighboring node) {

if (that node is not green) {
color the node yellow.

enqueue it. enqueue it at the new distance.
} }
} }
} } A\ Still under construction! A\
} } Don’t use this as a reference!
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breadth-first-search() {
make a queue of nodes.
enqueue start node.
color the start node yellow.

while (the queue is not empty) {
dequeue a node from the queue.

color that node green.
for (each neighboring node) {

if (that node is gray) {
color the node yellow.

dijkstra's-algorithm() {
make a priority queue of nodes.
enqueue start node at distance 0.
color the start node yellow.

whiloe (+ho Auciia 3 ot ot N [

LELE N —B —) \ =0t A D A —x—4 LELE~ A —) =TTy ) C

dequeue a node from the queue.

color that node green.

for (each neighboring node) {
if (that node is not green) {
color the node yellow.

enqueue it. enqueue it at the new distance.
} }
} }
} } A\ Still under construction! A\
} } Don’t use this as a reference!
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breadth-first-search() {
make a queue of nodes.
enqueue start node.
color the start node yellow.

while (the queue is not empty) {
dequeue a node from the queue.

color that node green.
for (each neighboring node) {

if (that node is gray) {
color the node yellow.

dijkstra's-algorithm() {
make a priority queue of nodes.
enqueue start node at distance 0.
color the start node yellow.

whiloe (+ho Auciia 3 ot ot N [
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dequeue a node from the queue.

color that node green.

for (each neighboring node) {
if (that node is not green) {
color the node yellow.

enqueue it. enqueue it at the new distance.
} }
} }
} } A\ Still under construction! A\
} } Don’t use this as a reference!
1




breadth-first-search() {
make a queue of nodes.
enqueue start node.
color the start node yellow.

while (the queue is not empty) {
dequeue a node from the queue.

color that node green.
for (each neighboring node) {

if (that node is gray) {
color the node yellow.

dijkstra's-algorithm() {
make a priority queue of nodes.
enqueue start node at distance 0.
color the start node yellow.

while (the queue is not empty) {
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——COTor That node green.

for (each neighboring node) {
if (that node is not green) {
color the node yellow.

enqueue it. enqueue it at the new distance.
} }
} }
} } A\ Still under construction! A\
} } Don’t use this as a reference!
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breadth-first-search() {
make a queue of nodes.
enqueue start node.
color the start node yellow.

while (the queue is not empty) {
dequeue a node from the queue.

color that node green.
for (each neighboring node) {

if (that node is gray) {
color the node yellow.

dijkstra's-algorithm() {
make a priority queue of nodes.
enqueue start node at distance 0.
color the start node yellow.

while (the queue is not empty) {
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if (that node isn't green) {

for (each neighboring node) {
if (that node is not green) {
color the node yellow.

enqueue it. enqueue it at the new distance.
} }
} }
}
} } A\ Still under construction! A\
} } Don’t use this as a reference!
1

0




breadth-first-search() {
make a queue of nodes.
enqueue start node.
color the start node yellow.

while (the queue is not empty) {
dequeue a node from the queue.

color that node green.
for (each neighboring node) {

if (that node is gray) {
color the node yellow.

dijkstra's-algorithm() {
make a priority queue of nodes.
enqueue start node at distance 0.
color the start node yellow.

while (the queue is not empty) {

if (that node isn't green) {
color that node green.

for (each neighboring node) {
if (that node is not green) {
color the node yellow.

enqueue it. enqueue it at the new distance.
} }
} }
}
} } A\ Still under construction! A\
} } Don’t use this as a reference!
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breadth-first-search() {
make a queue of nodes.
enqueue start node.
color the start node yellow.

while (the queue is not empty) {
dequeue a node from the queue.

color that node green.
for (each neighboring node) {

if (that node is gray) {
color the node yellow.

dijkstra's-algorithm() {
make a priority queue of nodes.
enqueue start node at distance 0.
color the start node yellow.

while (the queue is not empty) {
dequeue a node from the queue.
if (that node isn't green) {
color that node green.

for (each neighboring node) {
if (that node is not green) {
color the node yellow.

enqueue it. enqueue it at the new distance.
} }
} }
}
} } A\ Still under construction! A\
} } Don’t use this as a reference!
1
0 5




The Finished Product

dijkstra's-algorithm() {
make a priority queue of nodes.
enqueue start node at distance 0.
color the start node yellow.

while (the queue is not empty) {
dequeue a node from the queue.
if (that node isn't green) {
color that node green.

for (each neighboring node) {
if (that node is not green) {
color the node yellow.
enqueue it at the new distance.



The Finished Product

dijkstra's-algorithm() { Use a priovity gqueue
make a priority queue of nodes.
enqueue start node at distance 0. rather fhan a
color the start node yellow. standard queue to

sort by distances,
not wnumber of hops.

while (the queue is not empty) {
dequeue a node from the queue.
if (that node isn't green) {
color that node green.

for (each neighboring node) {
if (that node is not green) {
color the node yellow.
enqueue it at the new distance.



The Finished Product

dijkstra's-algorithm() {
make a priority queue of nodes.
enqueue start node at distance 0.
color the start node yellow.

while (the queue is not empty) {
dequeue a node from the queue.
if (that node isn't green) {
color that node green.

for (each neighboring node) {
if (that node is not green) { —
color the node yellow.

enqueue it at the new distance. Allow nodes *9 be
) engueued mulfiple

} fimes, The first fime
} we find the node
} might not be The
best option.,




The Finished Product

dijkstra's-algorithm() {
make a priority queue of nodes.
enqueue start node at distance 0.
color the start node yellow.

while (the queue is not empty) {
dequeue a node from the queue
if (that node isn't green) {

color that node green.

for (each neighboring node) {
if (that node is not green) {
color the node yellow.

enqueue it at the new distance.

N

As a conseguence,
when degueuing
nodes, make sure
we're nof visiting
something we've
already processed.



