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Chemical Bonds
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A graph is a mathematical structure
for representing relationships.
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A graph is a mathematical structure
for representing relationships.

A graph consists of a set of nodes 
connected by edges.

Edges



  

Some graphs are directed.



  

CAT SAT RAT

RANMAN

MAT

CAN

Some graphs are undirected.



  

CAT SAT RAT

RANMAN

MAT

CAN

Some graphs are undirected.

It sometimes helps to think of them as
directed graphs with edges both ways.



  

How can we represent graphs in C++?



  

Representing Graphs

Node Connected To            

Vector<Node>      Node

Map<Node, Vector<Node>>   We can represent a graph 
as a map from nodes to 
the list of nodes each 
node is connected to.

We can represent a graph 
as a map from nodes to 
the list of nodes each 
node is connected to.



  

Representing Graphs

● The approach we just saw is called an 
adjacency list in comes in a number of 
different forms:

Map<string, Vector<string>>

Map<string, Set<string>>

HashMap<string, HashSet<string>>

Vector<Vector<int>>

● The core idea is that we have some kind of 
mapping associating each node with its 
outgoing edges.



  

Representing Graphs

The approach we just saw is called an 
adjacency list in comes in a number of 
different forms:

Map<string, Vector<string>>

Map<string, Set<string>>

HashMap<string, HashSet<string>>

Vector<Vector<int>>

The core idea is that we have some kind of 
mapping associating each node with its 
outgoing edges.

Question to ponder: 
where have you seen this 

before?

Question to ponder: 
where have you seen this 

before?



  

Other Graph Representations

0 1 1 0 0 0

1 0 1 1 1 0

1 1 0 1 0 1

0 1 1 0 1 1

0 1 0 1 0 1

0 0 1 1 1 0

This representation is called an 
adjacency matrix.

 

For those of you in Math 51: if 
A is an adjacency matrix for a 

graph G, what is the 
significance of the matrix A2?

This representation is called an 
adjacency matrix.

 

For those of you in Math 51: if 
A is an adjacency matrix for a 

graph G, what is the 
significance of the matrix A2?
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CAN

Other Representations

string word = /* … */;
for (int i = 0; i < word.size(); i++) {
    for (char ch = 'a'; ch <= 'z'; ch++) {
        string newWord = word;
        newWord[i] = ch;
        if (word != newWord && 
            lex.contains(newWord)) {
            /* … edge exists! … */
        }
    }
}

string word = /* … */;
for (int i = 0; i < word.size(); i++) {
    for (char ch = 'a'; ch <= 'z'; ch++) {
        string newWord = word;
        newWord[i] = ch;
        if (word != newWord && 
            lex.contains(newWord)) {
            /* … edge exists! … */
        }
    }
}

Lots of code works on implicit 
graphs. Drawing the picture 

often makes it clearer!

Lots of code works on implicit 
graphs. Drawing the picture 

often makes it clearer!



  

You’ll find graphs just
about everywhere you look.

 

They’re an extremely versatile and 
powerful abstraction to be aware of.



  

Time-Out for Announcements!



  

Assignment 6

● Assignment 6 is due this Friday.
● Have questions?

● Stop by the LaIR!
● Ask your section leader!
● Stop by Keith’s office hours on Tuesday!
● Stop by Anton’s office hours on Wednesday!
● Ask on Piazza!



  



  

Stanford Engineers for a Sustainable World is looking for a team member to travel to 
Indonesia for a 9 week fellowship this summer to work with rural development NGO IBEKA. 

This is the fourth year of Engineers for a Sustainable World's collaboration with IBEKA on an 
Internet of Things Remote Monitoring System for Micro-hydroelectric Plants. Learn more 
about the project here.

We are looking for students of any year with skills and interests in Electrical Engineering, 
Computer Science, and Product Design. Participation requires enrolling in CEE177S Spring 
Quarter.

If interested, please email riyav@stanford.edu with a short paragraph explaining your 
interest and qualifications.

http://eswrms.weebly.com/
mailto:riyav@stanford.edu


  

Back to CS106B!



  

Traversing Graphs



  

Iterating over a Graph

● In a singly-linked list, there’s pretty much one 
way to iterate over the list: start at the front 
and go forward!

● In a binary search tree, there are many traversal 
strategies:

● An inorder traversal that produces all the 
elements in sorted order.

● A postorder traversal used to delete all the 
nodes in the BST.

● There are many ways to iterate over a graph, 
each of which have different properties.
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DFS: The Rundown

● Starting a DFS at a given node will find all 
nodes reachable from that node.

● If you have an adjacency list, doing a DFS in an 
n-node, m-edge graph takes time O(m + n) and 
uses space O(n).
● Talk to me after class for details!

● There are some beautiful properties of the 
order in which DFS visits nodes (take CS161!), 
but until you know them the order of nodes 
found can look pretty random. Come talk to me 
after class for more info.



  

Depth-First Search

● To do a depth-first search (DFS) from a 
node u, do the following:
● If u isn’t gray (unvisited), stop.
● Color u yellow (active).
● For each neighbor v of u:

– Recursively run DFS from v.
● Color u green (done).

● The code for DFS is amazingly short!



  

A Whimsical Application



  

Mazes as Graphs
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Mazes as Graphs



  

Mazes as Graphs



  

Creating a Maze with DFS

● Create a grid graph of the appropriate size.

 

 

● Starting at any node, run a depth-first search, 
choosing neighbor orderings at random.

● The resulting DFS tree is a maze with one solution.



  

Breadth-First Search



  

How do you find the fastest route
from one point to another?



  

Breadth-First Search
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C and H are two 
hops away from F. 
Notice that we’ll 
only get to them 
once we’ve finished 
visiting the rest of 
the nodes that are 

one hop away!
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This structure is called a shortest-
path tree.  Notice how following 

the arrows from any node will trace 
a shortest path back to the root in 

reverse.

This structure is called a shortest-
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a shortest path back to the root in 

reverse.



  

BFS: The Rundown

● Breadth-first search will find all nodes 
reachable from the starting node.

● It will visit them in increasing order of 
distance.

● In an n-node, m-edge graph, it takes time 
O(m + n) and uses space O(n).
● Though in practice, the space usage is much 

higher than in DFS.
● Curious where this runtime comes from? 

Come talk to me after class!



  

BFS: The Logic

● Color all nodes gray.

● Make a worklist with the starting node.

● Color the starting node yellow.

● While the worklist isn’t empty:

● Dequeue a node from the worklist.
● Color that node green.
● For each adjacent node:

– If that node is gray:
● Color the node yellow.
● Add it to the queue.



  

Next Time

● Shortest Paths
● Dijkstra's Algorithm.
● Shortest-Path Trees
● A* Search.
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