

Graphs

A Social Network

Chemical Bonds

http://4.bp.blogspot.com/-xCtBJ8lKHqA/Tjm0BONWBRI/AAAAAAAAAK4/-mHrbAUOHHg/s1600/Ethanol2.gif

http://strangemaps.files.wordpress.com/2007/02/fullinterstatemap-web.jpg

http://www.toothpastefordinner.com/

A graph is a mathematical structure
for representing relationships.

A graph is a mathematical structure
for representing relationships.

A graph consists of a set of nodes
connected by edges.

A graph is a mathematical structure
for representing relationships.

A graph consists of a set of nodes
connected by edges.

A graph is a mathematical structure
for representing relationships.

A graph consists of a set of nodes
connected by edges.

A graph is a mathematical structure
for representing relationships.

A graph consists of a set of nodes
connected by edges.

Nodes

A graph is a mathematical structure
for representing relationships.

A graph consists of a set of nodes
connected by edges.

Edges

Some graphs are directed.

CAT SAT RAT

RANMAN

MAT

CAN

Some graphs are undirected.

CAT SAT RAT

RANMAN

MAT

CAN

Some graphs are undirected.

It sometimes helps to think of them as
directed graphs with edges both ways.

How can we represent graphs in C++?

Representing Graphs

Node Connected To

Vector<Node> Node

Map<Node, Vector<Node>> We can represent a graph
as a map from nodes to
the list of nodes each
node is connected to.

We can represent a graph
as a map from nodes to
the list of nodes each
node is connected to.

Representing Graphs

● The approach we just saw is called an
adjacency list in comes in a number of
different forms:

Map<string, Vector<string>>

Map<string, Set<string>>

HashMap<string, HashSet<string>>

Vector<Vector<int>>

● The core idea is that we have some kind of
mapping associating each node with its
outgoing edges.

Representing Graphs

The approach we just saw is called an
adjacency list in comes in a number of
different forms:

Map<string, Vector<string>>

Map<string, Set<string>>

HashMap<string, HashSet<string>>

Vector<Vector<int>>

The core idea is that we have some kind of
mapping associating each node with its
outgoing edges.

Question to ponder:
where have you seen this

before?

Question to ponder:
where have you seen this

before?

Other Graph Representations

0 1 1 0 0 0

1 0 1 1 1 0

1 1 0 1 0 1

0 1 1 0 1 1

0 1 0 1 0 1

0 0 1 1 1 0

This representation is called an
adjacency matrix.

For those of you in Math 51: if
A is an adjacency matrix for a

graph G, what is the
significance of the matrix A2?

This representation is called an
adjacency matrix.

For those of you in Math 51: if
A is an adjacency matrix for a

graph G, what is the
significance of the matrix A2?

CAT SAT RAT

RANMAN

MAT

CAN

Other Representations

string word = /* … */;
for (int i = 0; i < word.size(); i++) {
 for (char ch = 'a'; ch <= 'z'; ch++) {
 string newWord = word;
 newWord[i] = ch;
 if (word != newWord &&
 lex.contains(newWord)) {
 /* … edge exists! … */
 }
 }
}

string word = /* … */;
for (int i = 0; i < word.size(); i++) {
 for (char ch = 'a'; ch <= 'z'; ch++) {
 string newWord = word;
 newWord[i] = ch;
 if (word != newWord &&
 lex.contains(newWord)) {
 /* … edge exists! … */
 }
 }
}

Lots of code works on implicit
graphs. Drawing the picture

often makes it clearer!

Lots of code works on implicit
graphs. Drawing the picture

often makes it clearer!

You’ll find graphs just
about everywhere you look.

They’re an extremely versatile and
powerful abstraction to be aware of.

Time-Out for Announcements!

Assignment 6

● Assignment 6 is due this Friday.
● Have questions?

● Stop by the LaIR!
● Ask your section leader!
● Stop by Keith’s office hours on Tuesday!
● Stop by Anton’s office hours on Wednesday!
● Ask on Piazza!

Stanford Engineers for a Sustainable World is looking for a team member to travel to
Indonesia for a 9 week fellowship this summer to work with rural development NGO IBEKA.

This is the fourth year of Engineers for a Sustainable World's collaboration with IBEKA on an
Internet of Things Remote Monitoring System for Micro-hydroelectric Plants. Learn more
about the project here.

We are looking for students of any year with skills and interests in Electrical Engineering,
Computer Science, and Product Design. Participation requires enrolling in CEE177S Spring
Quarter.

If interested, please email riyav@stanford.edu with a short paragraph explaining your
interest and qualifications.

http://eswrms.weebly.com/
mailto:riyav@stanford.edu

Back to CS106B!

Traversing Graphs

Iterating over a Graph

● In a singly-linked list, there’s pretty much one
way to iterate over the list: start at the front
and go forward!

● In a binary search tree, there are many traversal
strategies:

● An inorder traversal that produces all the
elements in sorted order.

● A postorder traversal used to delete all the
nodes in the BST.

● There are many ways to iterate over a graph,
each of which have different properties.

Depth-First Search

If there’s an edge from
the current node that
leads to an unvisited

node, follow that edge.

Otherwise, back up to
the previous node.

If there’s an edge from
the current node that
leads to an unvisited

node, follow that edge.

Otherwise, back up to
the previous node.

Depth-First Search

If there’s an edge from
the current node that
leads to an unvisited

node, follow that edge.

Otherwise, back up to
the previous node.

If there’s an edge from
the current node that
leads to an unvisited

node, follow that edge.

Otherwise, back up to
the previous node.

Depth-First Search

If there’s an edge from
the current node that
leads to an unvisited

node, follow that edge.

Otherwise, back up to
the previous node.

If there’s an edge from
the current node that
leads to an unvisited

node, follow that edge.

Otherwise, back up to
the previous node.

Depth-First Search

If there’s an edge from
the current node that
leads to an unvisited

node, follow that edge.

Otherwise, back up to
the previous node.

If there’s an edge from
the current node that
leads to an unvisited

node, follow that edge.

Otherwise, back up to
the previous node.

Depth-First Search

If there’s an edge from
the current node that
leads to an unvisited

node, follow that edge.

Otherwise, back up to
the previous node.

If there’s an edge from
the current node that
leads to an unvisited

node, follow that edge.

Otherwise, back up to
the previous node.

Depth-First Search

If there’s an edge from
the current node that
leads to an unvisited

node, follow that edge.

Otherwise, back up to
the previous node.

If there’s an edge from
the current node that
leads to an unvisited

node, follow that edge.

Otherwise, back up to
the previous node.

Depth-First Search

If there’s an edge from
the current node that
leads to an unvisited

node, follow that edge.

Otherwise, back up to
the previous node.

If there’s an edge from
the current node that
leads to an unvisited

node, follow that edge.

Otherwise, back up to
the previous node.

Depth-First Search

If there’s an edge from
the current node that
leads to an unvisited

node, follow that edge.

Otherwise, back up to
the previous node.

If there’s an edge from
the current node that
leads to an unvisited

node, follow that edge.

Otherwise, back up to
the previous node.

Depth-First Search

If there’s an edge from
the current node that
leads to an unvisited

node, follow that edge.

Otherwise, back up to
the previous node.

If there’s an edge from
the current node that
leads to an unvisited

node, follow that edge.

Otherwise, back up to
the previous node.

Depth-First Search

If there’s an edge from
the current node that
leads to an unvisited

node, follow that edge.

Otherwise, back up to
the previous node.

If there’s an edge from
the current node that
leads to an unvisited

node, follow that edge.

Otherwise, back up to
the previous node.

Depth-First Search

If there’s an edge from
the current node that
leads to an unvisited

node, follow that edge.

Otherwise, back up to
the previous node.

If there’s an edge from
the current node that
leads to an unvisited

node, follow that edge.

Otherwise, back up to
the previous node.

Depth-First Search

If there’s an edge from
the current node that
leads to an unvisited

node, follow that edge.

Otherwise, back up to
the previous node.

If there’s an edge from
the current node that
leads to an unvisited

node, follow that edge.

Otherwise, back up to
the previous node.

Depth-First Search

If there’s an edge from
the current node that
leads to an unvisited

node, follow that edge.

Otherwise, back up to
the previous node.

If there’s an edge from
the current node that
leads to an unvisited

node, follow that edge.

Otherwise, back up to
the previous node.

Depth-First Search

If there’s an edge from
the current node that
leads to an unvisited

node, follow that edge.

Otherwise, back up to
the previous node.

If there’s an edge from
the current node that
leads to an unvisited

node, follow that edge.

Otherwise, back up to
the previous node.

Depth-First Search

If there’s an edge from
the current node that
leads to an unvisited

node, follow that edge.

Otherwise, back up to
the previous node.

If there’s an edge from
the current node that
leads to an unvisited

node, follow that edge.

Otherwise, back up to
the previous node.

Depth-First Search

If there’s an edge from
the current node that
leads to an unvisited

node, follow that edge.

Otherwise, back up to
the previous node.

If there’s an edge from
the current node that
leads to an unvisited

node, follow that edge.

Otherwise, back up to
the previous node.

Depth-First Search

If there’s an edge from
the current node that
leads to an unvisited

node, follow that edge.

Otherwise, back up to
the previous node.

If there’s an edge from
the current node that
leads to an unvisited

node, follow that edge.

Otherwise, back up to
the previous node.

Depth-First Search

If there’s an edge from
the current node that
leads to an unvisited

node, follow that edge.

Otherwise, back up to
the previous node.

If there’s an edge from
the current node that
leads to an unvisited

node, follow that edge.

Otherwise, back up to
the previous node.

Depth-First Search

If there’s an edge from
the current node that
leads to an unvisited

node, follow that edge.

Otherwise, back up to
the previous node.

If there’s an edge from
the current node that
leads to an unvisited

node, follow that edge.

Otherwise, back up to
the previous node.

Depth-First Search

If there’s an edge from
the current node that
leads to an unvisited

node, follow that edge.

Otherwise, back up to
the previous node.

If there’s an edge from
the current node that
leads to an unvisited

node, follow that edge.

Otherwise, back up to
the previous node.

Depth-First Search

If there’s an edge from
the current node that
leads to an unvisited

node, follow that edge.

Otherwise, back up to
the previous node.

If there’s an edge from
the current node that
leads to an unvisited

node, follow that edge.

Otherwise, back up to
the previous node.

Depth-First Search

If there’s an edge from
the current node that
leads to an unvisited

node, follow that edge.

Otherwise, back up to
the previous node.

If there’s an edge from
the current node that
leads to an unvisited

node, follow that edge.

Otherwise, back up to
the previous node.

Depth-First Search

If there’s an edge from
the current node that
leads to an unvisited

node, follow that edge.

Otherwise, back up to
the previous node.

If there’s an edge from
the current node that
leads to an unvisited

node, follow that edge.

Otherwise, back up to
the previous node.

Depth-First Search

If there’s an edge from
the current node that
leads to an unvisited

node, follow that edge.

Otherwise, back up to
the previous node.

If there’s an edge from
the current node that
leads to an unvisited

node, follow that edge.

Otherwise, back up to
the previous node.

Depth-First Search

If there’s an edge from
the current node that
leads to an unvisited

node, follow that edge.

Otherwise, back up to
the previous node.

If there’s an edge from
the current node that
leads to an unvisited

node, follow that edge.

Otherwise, back up to
the previous node.

Depth-First Search

If there’s an edge from
the current node that
leads to an unvisited

node, follow that edge.

Otherwise, back up to
the previous node.

If there’s an edge from
the current node that
leads to an unvisited

node, follow that edge.

Otherwise, back up to
the previous node.

Depth-First Search

If there’s an edge from
the current node that
leads to an unvisited

node, follow that edge.

Otherwise, back up to
the previous node.

If there’s an edge from
the current node that
leads to an unvisited

node, follow that edge.

Otherwise, back up to
the previous node.

Depth-First Search

If there’s an edge from
the current node that
leads to an unvisited

node, follow that edge.

Otherwise, back up to
the previous node.

If there’s an edge from
the current node that
leads to an unvisited

node, follow that edge.

Otherwise, back up to
the previous node.

Depth-First Search

If there’s an edge from
the current node that
leads to an unvisited

node, follow that edge.

Otherwise, back up to
the previous node.

If there’s an edge from
the current node that
leads to an unvisited

node, follow that edge.

Otherwise, back up to
the previous node.

Depth-First Search

If there’s an edge from
the current node that
leads to an unvisited

node, follow that edge.

Otherwise, back up to
the previous node.

If there’s an edge from
the current node that
leads to an unvisited

node, follow that edge.

Otherwise, back up to
the previous node.

Depth-First Search

If there’s an edge from
the current node that
leads to an unvisited

node, follow that edge.

Otherwise, back up to
the previous node.

If there’s an edge from
the current node that
leads to an unvisited

node, follow that edge.

Otherwise, back up to
the previous node.

Depth-First Search

If there’s an edge from
the current node that
leads to an unvisited

node, follow that edge.

Otherwise, back up to
the previous node.

If there’s an edge from
the current node that
leads to an unvisited

node, follow that edge.

Otherwise, back up to
the previous node.

Depth-First Search

If there’s an edge from
the current node that
leads to an unvisited

node, follow that edge.

Otherwise, back up to
the previous node.

If there’s an edge from
the current node that
leads to an unvisited

node, follow that edge.

Otherwise, back up to
the previous node.

Depth-First Search

If there’s an edge from
the current node that
leads to an unvisited

node, follow that edge.

Otherwise, back up to
the previous node.

If there’s an edge from
the current node that
leads to an unvisited

node, follow that edge.

Otherwise, back up to
the previous node.

Depth-First Search

If there’s an edge from
the current node that
leads to an unvisited

node, follow that edge.

Otherwise, back up to
the previous node.

If there’s an edge from
the current node that
leads to an unvisited

node, follow that edge.

Otherwise, back up to
the previous node.

Depth-First Search

If there’s an edge from
the current node that
leads to an unvisited

node, follow that edge.

Otherwise, back up to
the previous node.

If there’s an edge from
the current node that
leads to an unvisited

node, follow that edge.

Otherwise, back up to
the previous node.

Depth-First Search

If there’s an edge from
the current node that
leads to an unvisited

node, follow that edge.

Otherwise, back up to
the previous node.

If there’s an edge from
the current node that
leads to an unvisited

node, follow that edge.

Otherwise, back up to
the previous node.

Depth-First Search

If there’s an edge from
the current node that
leads to an unvisited

node, follow that edge.

Otherwise, back up to
the previous node.

If there’s an edge from
the current node that
leads to an unvisited

node, follow that edge.

Otherwise, back up to
the previous node.

Depth-First Search

If there’s an edge from
the current node that
leads to an unvisited

node, follow that edge.

Otherwise, back up to
the previous node.

If there’s an edge from
the current node that
leads to an unvisited

node, follow that edge.

Otherwise, back up to
the previous node.

Depth-First Search

If there’s an edge from
the current node that
leads to an unvisited

node, follow that edge.

Otherwise, back up to
the previous node.

If there’s an edge from
the current node that
leads to an unvisited

node, follow that edge.

Otherwise, back up to
the previous node.

Depth-First Search

If there’s an edge from
the current node that
leads to an unvisited

node, follow that edge.

Otherwise, back up to
the previous node.

If there’s an edge from
the current node that
leads to an unvisited

node, follow that edge.

Otherwise, back up to
the previous node.

Depth-First Search

If there’s an edge from
the current node that
leads to an unvisited

node, follow that edge.

Otherwise, back up to
the previous node.

If there’s an edge from
the current node that
leads to an unvisited

node, follow that edge.

Otherwise, back up to
the previous node.

Depth-First Search

If there’s an edge from
the current node that
leads to an unvisited

node, follow that edge.

Otherwise, back up to
the previous node.

If there’s an edge from
the current node that
leads to an unvisited

node, follow that edge.

Otherwise, back up to
the previous node.

Depth-First Search

If there’s an edge from
the current node that
leads to an unvisited

node, follow that edge.

Otherwise, back up to
the previous node.

If there’s an edge from
the current node that
leads to an unvisited

node, follow that edge.

Otherwise, back up to
the previous node.

Depth-First Search

If there’s an edge from
the current node that
leads to an unvisited

node, follow that edge.

Otherwise, back up to
the previous node.

If there’s an edge from
the current node that
leads to an unvisited

node, follow that edge.

Otherwise, back up to
the previous node.

Depth-First Search

If there’s an edge from
the current node that
leads to an unvisited

node, follow that edge.

Otherwise, back up to
the previous node.

If there’s an edge from
the current node that
leads to an unvisited

node, follow that edge.

Otherwise, back up to
the previous node.

Depth-First Search

If there’s an edge from
the current node that
leads to an unvisited

node, follow that edge.

Otherwise, back up to
the previous node.

If there’s an edge from
the current node that
leads to an unvisited

node, follow that edge.

Otherwise, back up to
the previous node.

Depth-First Search

If there’s an edge from
the current node that
leads to an unvisited

node, follow that edge.

Otherwise, back up to
the previous node.

If there’s an edge from
the current node that
leads to an unvisited

node, follow that edge.

Otherwise, back up to
the previous node.

Depth-First Search

If there’s an edge from
the current node that
leads to an unvisited

node, follow that edge.

Otherwise, back up to
the previous node.

If there’s an edge from
the current node that
leads to an unvisited

node, follow that edge.

Otherwise, back up to
the previous node.

Depth-First Search

If there’s an edge from
the current node that
leads to an unvisited

node, follow that edge.

Otherwise, back up to
the previous node.

If there’s an edge from
the current node that
leads to an unvisited

node, follow that edge.

Otherwise, back up to
the previous node.

Depth-First Search

If there’s an edge from
the current node that
leads to an unvisited

node, follow that edge.

Otherwise, back up to
the previous node.

If there’s an edge from
the current node that
leads to an unvisited

node, follow that edge.

Otherwise, back up to
the previous node.

Depth-First Search

If there’s an edge from
the current node that
leads to an unvisited

node, follow that edge.

Otherwise, back up to
the previous node.

If there’s an edge from
the current node that
leads to an unvisited

node, follow that edge.

Otherwise, back up to
the previous node.

Depth-First Search

If there’s an edge from
the current node that
leads to an unvisited

node, follow that edge.

Otherwise, back up to
the previous node.

If there’s an edge from
the current node that
leads to an unvisited

node, follow that edge.

Otherwise, back up to
the previous node.

Depth-First Search

If there’s an edge from
the current node that
leads to an unvisited

node, follow that edge.

Otherwise, back up to
the previous node.

If there’s an edge from
the current node that
leads to an unvisited

node, follow that edge.

Otherwise, back up to
the previous node.

DFS: The Rundown

● Starting a DFS at a given node will find all
nodes reachable from that node.

● If you have an adjacency list, doing a DFS in an
n-node, m-edge graph takes time O(m + n) and
uses space O(n).
● Talk to me after class for details!

● There are some beautiful properties of the
order in which DFS visits nodes (take CS161!),
but until you know them the order of nodes
found can look pretty random. Come talk to me
after class for more info.

Depth-First Search

● To do a depth-first search (DFS) from a
node u, do the following:
● If u isn’t gray (unvisited), stop.
● Color u yellow (active).
● For each neighbor v of u:

– Recursively run DFS from v.
● Color u green (done).

● The code for DFS is amazingly short!

A Whimsical Application

Mazes as Graphs

Mazes as Graphs

Mazes as Graphs

Mazes as Graphs

Creating a Maze with DFS

● Create a grid graph of the appropriate size.

● Starting at any node, run a depth-first search,
choosing neighbor orderings at random.

● The resulting DFS tree is a maze with one solution.

Breadth-First Search

How do you find the fastest route
from one point to another?

Breadth-First Search

Breadth-First Search
A B

E F

C D

G H

I J

L

K

A B

E F

C D

G H

I J

L

K

A B

E F

C D

G H

I J

L

K

Breadth-First Search

A B

E F

C D

G H

I J

L

K

A B

E F

C D

G H

I J

L

K

Breadth-First Search

F

A B

E F

C D

G H

I J

L

K

A B

E

C D

G H

I J

L

K

Breadth-First Search

F

F

A B

E F

C D

G H

I J

L

K

A B

E

C D

G H

I J

L

K

Breadth-First Search

F

F

A B

E F

C D

G H

I J

L

K

A B

E

C D

G H

I J

L

K

Breadth-First Search

F

A B

E

D

K

F

A B

E F

C D

G H

I J

L

K

C

G H

I J

L

Breadth-First Search

F

A B

E

D

K

F

A B

E F

C D

G H

I J

L

K

C

G H

I J

L

Breadth-First Search

A B D E K

F

A B

E

D

K

F

A B

E F

C D

G H

I J

L

K

C

G H

I J

L

Breadth-First Search

A B D E K

A B

E

D

K

F

A B

E F

C D

G H

I J

L

K

C

G H

I J

L

Breadth-First Search

B D E K

A

A B

E

D

K

F

A B

E F

C D

G H

I J

L

K

C

G H

I J

L

Breadth-First Search

B D E K

A

A B

E

D

K

F

A B

E F

C D

G H

I J

L

K

C

G H

I J

L

Breadth-First Search

B D E K

A

A B

E

D

K

F

A B

E F

C D

G H

I J

L

K

C

G H

I J

L

Breadth-First Search

B D E K

A B

E

D

K

F

A B

E F

C D

G H

I J

L

K

C

G H

I J

L

Breadth-First Search

D E K

B

A B

E

D

K

F

A B

E F

C D

G H

I J

L

K

C

G H

I J

L

Breadth-First Search

D E K

B

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

K

G

I J

L

Breadth-First Search

D E K

B

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

K

G

I J

L

Breadth-First Search

D E K

B

C H

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

K

G

I J

L

Breadth-First Search

D E K

B

C H

C and H are two
hops away from F.
Notice that we’ll
only get to them
once we’ve finished
visiting the rest of
the nodes that are

one hop away!

C and H are two
hops away from F.
Notice that we’ll
only get to them
once we’ve finished
visiting the rest of
the nodes that are

one hop away!

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

K

G

I J

L

Breadth-First Search

D E K C H

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

K

G

I J

L

Breadth-First Search

E K C H

D

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

K

G

I J

L

Breadth-First Search

E K C H

D

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

K

G

I J

L

Breadth-First Search

E K C H

D

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

K

G

I J

L

Breadth-First Search

E K C H

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

K

G

I J

L

Breadth-First Search

K C H

E

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

K

G

I J

L

Breadth-First Search

K C H

E

I

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

K

G

J

L

Breadth-First Search

K C H

E

I

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

K

G

J

L

Breadth-First Search

K C H

E

I

I

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

K

G

J

L

Breadth-First Search

K C H I

I

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

K

G

J

L

Breadth-First Search

C H I

K

I

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

K

G

J

L

Breadth-First Search

C H I

K

G

I

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

KJ

L

Breadth-First Search

C H I

K

G

I

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

KJ

L

Breadth-First Search

C H I

K

G

G

I

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

KJ

L

Breadth-First Search

C H I G

G

I

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

KJ

L

Breadth-First Search

H I G

C

G

I

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

KJ

L

Breadth-First Search

H I G

C

G

I

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

KJ

L

Breadth-First Search

H I G

G

I

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

KJ

L

Breadth-First Search

I G

H

G

I

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

KJ

L

Breadth-First Search

I G

H

G

I

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

KJ

L

Breadth-First Search

I G

H

G

I

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

KJ

L

Breadth-First Search

I G

G

I

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

KJ

L

Breadth-First Search

G

I

G

I

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

KJ

L

Breadth-First Search

G

I

L

G

I

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

KJ

Breadth-First Search

G

I

L

G

I

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

KJ

Breadth-First Search

G

I

L

L

G

I

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

KJ

Breadth-First Search

G L

L

G

I

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

KJ

Breadth-First Search

L

G

L

G

I

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

KJ

Breadth-First Search

L

G

L

G

I

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

KJ

Breadth-First Search

L

L

G

I

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

KJ

Breadth-First Search

L

L

G

I

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

KJ

Breadth-First Search

L

J

L

G

I

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

K

Breadth-First Search

L

J

L

G

I

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

K

Breadth-First Search

L
J

J

L

G

I

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

K

Breadth-First Search

J

J

L

G

I

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

K

Breadth-First Search

J

J

L

G

I

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

K

Breadth-First Search

J

J

L

G

I

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

K

Breadth-First Search

J

L

G

I

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

K

Breadth-First Search

This structure is called a shortest-
path tree. Notice how following

the arrows from any node will trace
a shortest path back to the root in

reverse.

This structure is called a shortest-
path tree. Notice how following

the arrows from any node will trace
a shortest path back to the root in

reverse.

BFS: The Rundown

● Breadth-first search will find all nodes
reachable from the starting node.

● It will visit them in increasing order of
distance.

● In an n-node, m-edge graph, it takes time
O(m + n) and uses space O(n).
● Though in practice, the space usage is much

higher than in DFS.
● Curious where this runtime comes from?

Come talk to me after class!

BFS: The Logic

● Color all nodes gray.

● Make a worklist with the starting node.

● Color the starting node yellow.

● While the worklist isn’t empty:

● Dequeue a node from the worklist.
● Color that node green.
● For each adjacent node:

– If that node is gray:
● Color the node yellow.
● Add it to the queue.

Next Time

● Shortest Paths
● Dijkstra's Algorithm.
● Shortest-Path Trees
● A* Search.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153

