

Hashing

Way Back When…

int nameHash(string first, string last){
 /* This hashing scheme needs two prime numbers, a large prime and a small
 * prime. These numbers were chosen because their product is less than
 * 2^31 - kLargePrime - 1.
 */
 static const int kLargePrime = 16908799;
 static const int kSmallPrime = 127;

 int hashVal = 0;

 /* Iterate across all the characters in the first name, then the last
 * name, updating the hash at each step.
 */
 for (char ch: first + last) {
 /* Convert the input character to lower case. The numeric values of
 * lower-case letters are always less than 127.
 */
 ch = tolower(ch);
 hashVal = (kSmallPrime * hashVal + ch) % kLargePrime;
 }
 return hashVal;
}

nameHash
Your Name! Some Number!

 A hash function is a function

int hashCode(Type arg);

 that is

 1. deterministic (the same input always
produces the same output) and

 2. well-distributed (The numbers produced are
as spread out as possible.)

 A hash function is a function

int hashCode(Type arg);

 that is

 1. deterministic (the same input always
produces the same output) and

 2. well-distributed (The numbers produced are
as spread out as possible.)

I’ve got a secret!

nameHash
Your Name! Some Number!

 A hash function is a function

int hashCode(Type arg);

 that is

 1. deterministic (the same input always
produces the same output) and

 2. well-distributed (The numbers produced are
as spread out as possible.)

 A hash function is a function

int hashCode(Type arg);

 that is

 1. deterministic (the same input always
produces the same output) and

 2. well-distributed (The numbers produced are
as spread out as possible.)

This is how passwords are typically stored.
Look up salting and hashing for more

details!

And look up commitment schemes if you
want to see some even cooler things!

Did I hear that correctly?

nameHash
Your Name! Some Number!

 A hash function is a function

int hashCode(Type arg);

 that is

 1. deterministic (the same input always
produces the same output) and

 2. well-distributed (The numbers produced are
as spread out as possible.)

 A hash function is a function

int hashCode(Type arg);

 that is

 1. deterministic (the same input always
produces the same output) and

 2. well-distributed (The numbers produced are
as spread out as possible.)

This is done in practice!

Look up SHA-256, the Luhn algorithm,
and CRC32 for some examples!

And, of course, something to do with
data structures.

HashMap and HashSet

HashMap and HashSet

● The HashMap and HashSet types work just like Map
and Set, except that they do not store their
keys/elements in sorted order.

● In practice, they are much faster than Map and Set,
and they should likely be your defaults going
forward.

● Recall: all the major operations (insertions,
deletions, lookups) on Map and Set run in time
O(log n).

● So how on earth are these things faster?

The Juicy Details

An Example: Clothes

For Large Values of n

Our Strategy

● Maintain a large number of small
collections called buckets (think
drawers).

● Find a rule that lets us tell where each
object should go (think knowing which
drawer is which.)

● To find something, only look in the
bucket assigned to it (think looking for
socks.)

Our Strategy

Maintain a large number of small
collections called buckets (think
drawers).

● Find a rule that lets us tell where each
object should go (think knowing which
drawer is which.)

To find something, only look in the
bucket assigned to it (think looking for
socks.)

Use a hash
function!

Use a hash
function!

Buckets [0] [1] [2] [3] [4] [5]

calliope clioeuterpe

erato

melpomenepolyhymnia

terpsichore thalia

Buckets [0] [1] [2] [3] [4] [5]

calliope clioeuterpe

erato

melpomenepolyhymnia

terpsichore thalia

erato

Buckets [0] [1] [2] [3] [4] [5]

calliope

bool OurHashSet::contains(const string& value) const {
 int bucket = hashCode(value) % buckets.size();

 for (string elem: buckets[bucket]) {
 if (elem == value) return true;
 }

 return false;
}

bool OurHashSet::contains(const string& value) const {
 int bucket = hashCode(value) % buckets.size();

 for (string elem: buckets[bucket]) {
 if (elem == value) return true;
 }

 return false;
}

clioeuterpe

erato

melpomenepolyhymnia

terpsichore thalia

erato

Buckets [0] [1] [2] [3] [4] [5]

calliope

bool OurHashSet::contains(const string& value) const {
 int bucket = hashCode(value) % buckets.size();

 for (string elem: buckets[bucket]) {
 if (elem == value) return true;
 }

 return false;
}

bool OurHashSet::contains(const string& value) const {
 int bucket = hashCode(value) % buckets.size();

 for (string elem: buckets[bucket]) {
 if (elem == value) return true;
 }

 return false;
}

clioeuterpe

erato

melpomenepolyhymnia

terpsichore thalia

erato

Buckets [0] [1] [2] [3] [4] [5]

calliope

bool OurHashSet::contains(const string& value) const {
 int bucket = hashCode(value) % buckets.size();

 for (string elem: buckets[bucket]) {
 if (elem == value) return true;
 }

 return false;
}

bool OurHashSet::contains(const string& value) const {
 int bucket = hashCode(value) % buckets.size();

 for (string elem: buckets[bucket]) {
 if (elem == value) return true;
 }

 return false;
}

clioeuterpe

erato

melpomenepolyhymnia

terpsichore thalia

erato

(bucket 3)

Buckets [0] [1] [2] [3] [4] [5]

calliope

bool OurHashSet::contains(const string& value) const {
 int bucket = hashCode(value) % buckets.size();

 for (string elem: buckets[bucket]) {
 if (elem == value) return true;
 }

 return false;
}

bool OurHashSet::contains(const string& value) const {
 int bucket = hashCode(value) % buckets.size();

 for (string elem: buckets[bucket]) {
 if (elem == value) return true;
 }

 return false;
}

clioeuterpe

erato

melpomenepolyhymnia

terpsichore thalia

erato

(bucket 3)

Buckets [0] [1] [2] [3] [4] [5]

calliope clioeuterpe

erato

melpomenepolyhymnia

terpsichore thalia

urania

Buckets [0] [1] [2] [3] [4] [5]

calliope

void OurHashSet::add(const string& value) {
 int bucket = hashCode(value) % buckets.size();
 buckets[bucket] += value;
}

void OurHashSet::add(const string& value) {
 int bucket = hashCode(value) % buckets.size();
 buckets[bucket] += value;
}

clioeuterpe

erato

melpomenepolyhymnia

terpsichore thalia

urania

Buckets [0] [1] [2] [3] [4] [5]

calliope

void OurHashSet::add(const string& value) {
 int bucket = hashCode(value) % buckets.size();
 buckets[bucket] += value;
}

void OurHashSet::add(const string& value) {
 int bucket = hashCode(value) % buckets.size();
 buckets[bucket] += value;
}

clioeuterpe

erato

melpomenepolyhymnia

terpsichore thalia

urania

Buckets [0] [1] [2] [3] [4] [5]

calliope

void OurHashSet::add(const string& value) {
 int bucket = hashCode(value) % buckets.size();
 buckets[bucket] += value;
}

void OurHashSet::add(const string& value) {
 int bucket = hashCode(value) % buckets.size();
 buckets[bucket] += value;
}

clioeuterpe

erato

melpomenepolyhymnia

terpsichore thalia

urania

(bucket 2)

Buckets [0] [1] [2] [3] [4] [5]

calliope

void OurHashSet::add(const string& value) {
 int bucket = hashCode(value) % buckets.size();
 buckets[bucket] += value;
}

void OurHashSet::add(const string& value) {
 int bucket = hashCode(value) % buckets.size();
 buckets[bucket] += value;
}

clioeuterpe

erato

melpomenepolyhymnia

terpsichore thalia

urania

(bucket 2)

Buckets [0] [1] [2] [3] [4] [5]

calliope

void OurHashSet::add(const string& value) {
 int bucket = hashCode(value) % buckets.size();
 buckets[bucket] += value;
}

void OurHashSet::add(const string& value) {
 int bucket = hashCode(value) % buckets.size();
 buckets[bucket] += value;
}

clioeuterpe

erato

melpomenepolyhymnia

terpsichore thalia

urania

(bucket 2)

urania

Buckets [0] [1] [2] [3] [4] [5]

calliope

void OurHashSet::add(const string& value) {
 int bucket = hashCode(value) % buckets.size();

 for (string elem: buckets[bucket]) {
 if (elem == value) return;
 }

 buckets[bucket] += value;
}

void OurHashSet::add(const string& value) {
 int bucket = hashCode(value) % buckets.size();

 for (string elem: buckets[bucket]) {
 if (elem == value) return;
 }

 buckets[bucket] += value;
}

clioeuterpe

erato

melpomenepolyhymnia

terpsichore thalia

urania

(bucket 2)

urania

Time-Out for Announcements!

Assignment 6

● Assignment 5 was due today at the start of class.
● Using a late day? Turn it in by Monday of next week!

● Assignment 6 (Huffman Encoding) goes out today. It’s due
next Friday, March 10.
● Play around with binary trees in a whole new way!
● Get some practice with tree recursion!
● And make your files smaller!

● Anton is holding YEAH hours today at 3PM in room 420-
041.

● This assignment must be completed individually.
We’ve broken it down into a bunch of independent, easily-
testable, bite-size pieces and included a lot of guidance in
the assignment handout.

Need More Practice?

● Many of you have asked about where to go to
get extra practice with the material.

● Up on the course website, we have
● all three versions of the midterm exam (the main

exam plus the two alternates), plus
● section handouts with way more problems on

them than anyone could reasonably expect to do
in section.

● Feel free to take advantage of these
resources, and let us know if you need more!

Change of Grading Basis
● A number of you have asked about the change of grading basis deadline today.
● Before you make a decision, work out the math on your grade.

● Assignments are 40% of your grade. If you’re averaging a +, figure you’ve got roughly ✓
a 95%. With a average, figure you’ve got roughly 85%. With a - average, figure ✓ ✓
you’ve got roughly a 75%.

● The midterm is 25% of your grade.
● The final is the remaining 35%.

● Unless you earned a low-single-digit score on the midterm and have
extremely low assignment grades, it is absolutely still possible to pass
this class and do well in it. A single bad midterm score will not cause you to
fail the class, though it may knock you out of contention for a solid A grade.

● We never curve grades down. A raw score of 90% is never lower than an A-,
a raw score of 80% is never lower than a B-, and a raw score of 70% is never
lower than a C-.

● Compute your raw score before making a switch. Every quarter I give CR
grades to a bunch of folks who earn raw A’s, A-’s, B+’s, and B’s, and I always
feel bad when that happens.

Back to CS106B!

So how efficient is our solution?

Efficiency Concerns

● Each hash table operation
● chooses a bucket and jumps there, then
● potentially scans everything in the bucket.

● Claim: The efficiency of our hash table depends on
how well-spread the elements are.

Efficiency Concerns

● Each hash table operation
● chooses a bucket and jumps there, then
● potentially scans everything in the bucket.

● Claim: The efficiency of our hash table depends on
how well-spread the elements are.

...

Hash Table Performance

● Suppose that we have n elements and b
buckets.

● If the elements are distributed as evenly as
possible over the buckets as possible, the cost
of an operation is O(1 + n / b).
● The ratio n / b is called the load factor and is

sometimes denoted α.
● If the elements are all distributed into a single

bucket, the cost of an operation is O(n).
● It’s really important to choose a good

hash function!

Distributing Keys

● We want to choose a hash function that
will distribute elements as evenly as
possible to try to guarantee a nice, even
spread.

● Suppose you want to build a hash
function for names.

● Idea: Hash each last name to the first
letter of that last name.

● How well will this distribute elements?

CS106B Name Distributions

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0

5

10

15

20

25

30

35

40

45
By First Letter of Last Name

Benford's Law

http://en.wikipedia.org/wiki/File:Benford-physical.svg

Good Hash Functions

● A good hash function typically will scramble all
of the bits of the input together in a way that
appears totally random.

● Hence the name “hash function.”

Implementing a Hash Code

● There’s a lot of beautiful mathematical theory
behind the design of hash functions.
● Take CS109, CS161, CS166, or CS255 for

details!
● Or come talk to me after class – this stuff is

super cool!
● Claim: With well-chosen and well-implemented

hash functions, you can assume the expected cost
of an operation in a hash table is O(1 + α).

● α is the load factor, the ratio of the number of
elements to the number of buckets.

What does O(1 + α) mean?

O(1 + α)

● The expected cost of an operation on a
hash table is O(1 + α), where α is the
ratio of the number of elements (n) to the
number of buckets (b).

● Observation: If we can keep α small –
say, at most two – then this cost is O(1)!

● Claim: The expected cost of an operation
on a well-implemented hash table is O(1).

● But how do we keep α small?

Hashing and Rehashing

0 1 2

Harry

Hermione

Ron

Dumbledore

Hagrid Snape

Draco McGonnagall

Lily

Hashing and Rehashing

0 1 2

Harry

Hermione

Ron

Dumbledore

Hagrid

Voldemort

Snape

Draco McGonnagall

Lily

Hashing and Rehashing

0 1 2

Harry

HermioneRon

Dumbledore Hagrid

Voldemort

Snape

Draco

McGonnagall Lily

3 4 5

Hashing and Rehashing

0 1 2

Harry

Hermione

Ron

Dumbledore Hagrid Voldemort

SnapeDraco

McGonnagall Lily

3 4 5

Totally unrelated: look
up the term

“Voldemort Type.”

Totally unrelated: look
up the term

“Voldemort Type.”

Hashing and Rehashing

● Idea: Track the number of buckets b and the
number of total elements n.

● When inserting, if n / b exceeds some small
constant (say, 2), double the number of buckets
and redistribute the elements into the new table.
● As with Stack, this rehashing happens so

infrequently that it’s extremely fast on average.
● This makes α ≤ 2, so the expected lookup time in

a hash table is O(1).
● On average, the lookup time is independent of the

total number of elements in the table!

To Summarize

● The cost of an insertion, lookup, or
deletion in a hash table is, on average,
O(1).
● This assumes you have a good choice of hash

function. Unless you have a background in
abstract algebra, just follow the template
we’ll provide in a second. ☺

● This is why hash tables are one of the
single most common data structures
used today!

Custom Types in Hash Tables

Custom Types in Hash Tables

● In order to store a custom type in a hash
table, you need to be able to
● get a hash code for it, and
● compare whether two objects of that type

are equal.
● This first task is handled by writing

int hashCode(const Type& value);
● This second task is handled by writing

bool operator== (const Type& lhs, const Type& rhs);

Implementing a Hash Code

● Implementing a good hash function is hard. It’s
better to follow a template than to try to be creative.

● Best advice we can offer: write your hash function by
combining a bunch of smaller hash functions together.

● One technique:

int hashCode(const Type& value) {
 int result = hashCode(value.field1);
 result = 31 * result + hashCode(value.field2);
 result = 31 * result + hashCode(value.field3);
 …
 result = 31 * result + hashCode(value.fieldN);
 return result & 0x7FFFFFFF;
}

● Come talk to me after class for a discussion of why this
works!

Implementing Equality

● To implement an equality operator, you
typically just return whether all the fields
are equal:
bool operator== (const Type& lhs, const Type& rhs) {
 return lhs.field1 == rhs.field1 &&
 lhs.field2 == rhs.field2 &&
 …
 lhs.fieldN == rhs.fieldN;
}

To Summarize

● Hash tables are very fast! You should use
them.

● They’re powered by hash functions,
which are the Cool Kids at the Function
Party.

● Writing your own hash function is hard.
Follow a template.

● Don’t forget to implement operator==!

Next Time

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59

