
  

Hashing



  

Way Back When…



  

int nameHash(string first, string last){
    /* This hashing scheme needs two prime numbers, a large prime and a small
     * prime. These numbers were chosen because their product is less than
     * 2^31 - kLargePrime - 1.
     */
    static const int kLargePrime = 16908799;
    static const int kSmallPrime = 127;

    int hashVal = 0;

    /* Iterate across all the characters in the first name, then the last
     * name, updating the hash at each step.
     */
    for (char ch: first + last) {
        /* Convert the input character to lower case. The numeric values of
         * lower-case letters are always less than 127.
         */
        ch = tolower(ch);
        hashVal = (kSmallPrime * hashVal + ch) % kLargePrime;
    }
    return hashVal;
}
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I’ve got a secret!
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This is how passwords are typically stored.
Look up salting and hashing for more 

details!

And look up commitment schemes if you 
want to see some even cooler things!



  

Did I hear that correctly?
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This is done in practice!

Look up SHA-256, the Luhn algorithm, 
and CRC32 for some examples!



  

And, of course, something to do with
data structures.



  

HashMap and HashSet



  

HashMap and HashSet

● The HashMap and HashSet types work just like Map 
and Set, except that they do not store their 
keys/elements in sorted order.

● In practice, they are much faster than Map and Set, 
and they should likely be your defaults going 
forward.

● Recall: all the major operations (insertions, 
deletions, lookups) on Map and Set run in time 
O(log n).

● So how on earth are these things faster?



  

The Juicy Details



  

An Example: Clothes



  

For Large Values of n



  

Our Strategy

● Maintain a large number of small 
collections called buckets (think 
drawers).

● Find a rule that lets us tell where each 
object should go (think knowing which 
drawer is which.)

● To find something, only look in the 
bucket assigned to it (think looking for 
socks.)
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Time-Out for Announcements!



  

Assignment 6

● Assignment 5 was due today at the start of class.
● Using a late day? Turn it in by Monday of next week!

● Assignment 6 (Huffman Encoding) goes out today. It’s due 
next Friday, March 10.
● Play around with binary trees in a whole new way!
● Get some practice with tree recursion!
● And make your files smaller!

● Anton is holding YEAH hours today at 3PM in room 420-
041.

● This assignment must be completed individually. 
We’ve broken it down into a bunch of independent, easily-
testable, bite-size pieces and included a lot of guidance in 
the assignment handout.



  

Need More Practice?

● Many of you have asked about where to go to 
get extra practice with the material.

● Up on the course website, we have
● all three versions of the midterm exam (the main 

exam plus the two alternates), plus
● section handouts with way more problems on 

them than anyone could reasonably expect to do 
in section.

● Feel free to take advantage of these 
resources, and let us know if you need more!



  

Change of Grading Basis
● A number of you have asked about the change of grading basis deadline today.
● Before you make a decision, work out the math on your grade.

● Assignments are 40% of your grade. If you’re averaging a +, figure you’ve got roughly ✓
a 95%. With a  average, figure you’ve got roughly 85%. With a - average, figure ✓ ✓
you’ve got roughly a 75%.

● The midterm is 25% of your grade.
● The final is the remaining 35%.

● Unless you earned a low-single-digit score on the midterm and have 
extremely low assignment grades, it is absolutely still possible to pass 
this class and do well in it. A single bad midterm score will not cause you to 
fail the class, though it may knock you out of contention for a solid A grade.

● We never curve grades down. A raw score of 90% is never lower than an A-, 
a raw score of 80% is never lower than a B-, and a raw score of 70% is never 
lower than a C-.

● Compute your raw score before making a switch. Every quarter I give CR 
grades to a bunch of folks who earn raw A’s, A-’s, B+’s, and B’s, and I always 
feel bad when that happens.



  

Back to CS106B!



  

So how efficient is our solution?



  

Efficiency Concerns

● Each hash table operation
● chooses a bucket and jumps there, then
● potentially scans everything in the bucket.

● Claim: The efficiency of our hash table depends on 
how well-spread the elements are.
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Hash Table Performance

● Suppose that we have n elements and b 
buckets.

● If the elements are distributed as evenly as 
possible over the buckets as possible, the cost 
of an operation is O(1 + n / b).
● The ratio n / b is called the load factor and is 

sometimes denoted α.
● If the elements are all distributed into a single 

bucket, the cost of an operation is O(n).
● It’s really important to choose a good 

hash function!



  

Distributing Keys

● We want to choose a hash function that 
will distribute elements as evenly as 
possible to try to guarantee a nice, even 
spread.

● Suppose you want to build a hash 
function for names.

● Idea: Hash each last name to the first 
letter of that last name.

● How well will this distribute elements?
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Benford's Law

http://en.wikipedia.org/wiki/File:Benford-physical.svg



  

Good Hash Functions

● A good hash function typically will scramble all 
of the bits of the input together in a way that 
appears totally random.

● Hence the name “hash function.”



  

Implementing a Hash Code

● There’s a lot of beautiful mathematical theory 
behind the design of hash functions.
● Take CS109, CS161, CS166, or CS255 for 

details!
● Or come talk to me after class – this stuff is 

super cool!
● Claim: With well-chosen and well-implemented 

hash functions, you can assume the expected cost 
of an operation in a hash table is O(1 + α).

● α is the load factor, the ratio of the number of 
elements to the number of buckets.



  

What does O(1 + α) mean?



  

O(1 + α)

● The expected cost of an operation on a 
hash table is O(1 + α), where α is the 
ratio of the number of elements (n) to the 
number of buckets (b).

● Observation: If we can keep α small – 
say, at most two – then this cost is O(1)!

● Claim: The expected cost of an operation 
on a well-implemented hash table is O(1).

● But how do we keep α small?



  

Hashing and Rehashing
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Hashing and Rehashing

● Idea: Track the number of buckets b and the 
number of total elements n.

● When inserting, if n / b exceeds some small 
constant (say, 2), double the number of buckets 
and redistribute the elements into the new table.
● As with Stack, this rehashing happens so 

infrequently that it’s extremely fast on average.
● This makes α ≤ 2, so the expected lookup time in 

a hash table is O(1).
● On average, the lookup time is independent of the 

total number of elements in the table! 



  

To Summarize

● The cost of an insertion, lookup, or 
deletion in a hash table is, on average, 
O(1).
● This assumes you have a good choice of hash 

function. Unless you have a background in 
abstract algebra, just follow the template 
we’ll provide in a second. ☺

● This is why hash tables are one of the 
single most common data structures 
used today!
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Custom Types in Hash Tables

● In order to store a custom type in a hash 
table, you need to be able to
● get a hash code for it, and
● compare whether two objects of that type 

are equal.
● This first task is handled by writing

int hashCode(const Type& value); 
● This second task is handled by writing

bool operator== (const Type& lhs, const Type& rhs);



  

Implementing a Hash Code

● Implementing a good hash function is hard. It’s 
better to follow a template than to try to be creative.

● Best advice we can offer: write your hash function by 
combining a bunch of smaller hash functions together.

● One technique:

int hashCode(const Type& value) {                 
    int result = hashCode(value.field1);          
    result = 31 * result + hashCode(value.field2);
    result = 31 * result + hashCode(value.field3);
       …                                          
    result = 31 * result + hashCode(value.fieldN);
    return result & 0x7FFFFFFF;                   
}                                                 

● Come talk to me after class for a discussion of why this 
works!



  

Implementing Equality

● To implement an equality operator, you 
typically just return whether all the fields 
are equal:
bool operator== (const Type& lhs, const Type& rhs) {
    return lhs.field1 == rhs.field1 &&              
           lhs.field2 == rhs.field2 &&              
           …                                        
           lhs.fieldN == rhs.fieldN;                
}                                                    



  

To Summarize

● Hash tables are very fast! You should use 
them.

● They’re powered by hash functions, 
which are the Cool Kids at the Function 
Party.

● Writing your own hash function is hard. 
Follow a template.

● Don’t forget to implement operator==!



  

Next Time
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