

Beyond Data Structures

Huffman Encoding

It's All Bits and Bytes

● Data stored on disk consists of 0s and 1s.
● Usually encoded by magnetic orientation on small

(10nm!) metal particles or by trapping electrons in
small gates.

● A single 0 or 1 is called a bit.
● A group of eight bits is called a byte.

00000000, 00000001, 00000010, 00000011,
00000100, 00000101, 00000110, …

● There are 28 = 256 different bytes.
● Great recursion practice: Write a function to list all

of them!

Representing Text

● Text uses all sorts of different characters.
● Computers require everything to be

written as zeros and ones.
● To represent text inside the computer, we

can choose some way of mapping
characters to series of zeros and ones
and vice-versa.

● There are many ways to do this.

Baudot Codes

● The Baudot code was
one of the first codes for
representing text as 0s
and 1s.

● It was used by early
teleprinters and, while
mostly obsoleted, is still
around.

● Coldplay’s album X&Y
used it for their Hip and
Stylish album cover.

1

0

1

1

1

ASCII

● Early (American) computers needed some standard
way to send output to their (physical!) printers.

● Since there were fewer than 256 different
characters to print (1960’s America!), each
character was assigned a one-byte value.

● This initial code was called ASCII. Surprisingly, it’s
still around, though in a modified form (more on
that later).

● For example, the letter A is represented by the byte
01000001 (65). You can still see this in C++:

cout << int('A') << endl; // Prints 65

ASCII

● In ASCII:
● Each character is exactly one byte (8 bits).
● All computers agree in advance which

characters have which values.
● This makes it possible to transmit text

data from one computer to another by
just writing out a series of bits.

● Here’s what this might look like:

Transmitting the Dikdik

01000100

01001001

01001011

01000100

01001001

01001011

01001011

01001001

01001011

00100000

00100111

01010010

K

K

K

K

I

I

I

D

D

R

'

S 01010011

Transmitting the Dikdik

01000100

01001001

01001011

01000100

01001001

01001011

01001011

01001001

01001011

00100000

00100111

01010010

K

K

K

K

I

I

I

D

D

R

'

S 01010011
01001011010010010101001001001011
00100111010100110010000001000100
01001001010010110100010001001001
01001011

An Observation

● In ASCII, every character has exactly the
same number of bits in it.

● Any message with n characters will use
up exactly 8n bits.
● Space for KIRK'S DIKDIK: 104 bits.
● Space for COPYRIGHTABLE: 104 bits.

● We say that ASCII is a fixed-length
encoding.

A Different Encoding

● The phrase KIRK'S DIKDIK has exactly 7 different
characters in it.

● We can use a different encoding to represent this
string using many fewer bits:

● Down from 104 bits to 39 bits: using 37.5% as much
space as before!

000

001

011

110

100

010

101

K

'

I

R

S

D

000001 010 000 011 100 110 001000

K K KI I' S

101

R D

000110 001

KID

The Key Idea

● If we can find a way to

give all characters a bit pattern,

that both the sender and receiver know
about, and

that can be decoded uniquely,

then we can represent the same piece of
text in multiple different ways.

● Goal: Find a way to do this that uses less
space than the standard ASCII
representation.

Exploiting Redundancy

● Not all letters have the same frequency in “KIRK'S DIKDIK.”

● Frequency table:

● What if we gave shorter encodings to more common
characters?

4

3

1

2

1

1

1

K

'

I

R

S

D

A First Attempt

0

1

10

00

11

01

100

K

'

I

R

S

D

01 01 0 10 11 00 0010

K K KI I' S

100

R D

000 1

KID

0101010111000000100010

A First Attempt

0

1

10

00

11

01

100

K

'

I

R

S

D

0101010111000000100010

0101

RR

0001 11

DSR

00

D

00

D

100

01

R

0

K

The Problem

● If we use a different number of bits for
each letter, we can't necessarily uniquely
determine the boundaries between
letters.

● We need an encoding that makes it
possible to determine where one
character stops and the next starts.

● Is this possible? If so, how?

Prefix Codes

● A prefix code is an encoding system in
which no code is a prefix of another
code.

● For example:
10

01

001

110

000

1111

1110

K

'

I

R

S

D

Prefix Codes

10

01

001

110

000

1111

1110

K

'

I

R

S

D

1001111110001000111011001101100110

Prefix Codes

10

01

001

110

000

1111

1110

K

'

I

R

S

D

1001111110001000111011001101100110

10

K

Prefix Codes

10

01

001

110

000

1111

1110

K

'

I

R

S

D

1001111110001000111011001101100110

10

K

01

I

Prefix Codes

10

01

001

110

000

1111

1110

K

'

I

R

S

D

1001111110001000111011001101100110

10

K

01

I

1111

R

Prefix Codes

● Using this prefix code, we can represent
KIRK'S DIKDIK as the sequence

1001111110001000111011001101100110

● This uses just 34 bits, compared to our
initial 39.

● Remaining questions:
● How do you generate a prefix code?
● And what does any of this have to do with

binary trees?

Time-Out for Announcements!

Assignment 5

● Assignment 5 is due on Friday.
● Want to use a late day? Turn it in on Monday

of next week.
● Have questions?

● Stop by the LaIR!
● Stop by our office hours!
● Ask your section leader!
● Ask a partner!
● Ask on Piazza!

Ceçi n'est pas une annonce.

10

01

001

110

000

1111

1110

K

'

I

R

S

D

1001111110001000111011001101100110

1111110

111110

1110

110

11110

10

K

'

I

R

S

111111011111011110111110111011010011110111111001111101111110

0D

How do you find a “good” prefix code?

The Key Idea

10

01

001

110

000

1111

1110

K '

I

R

S

 D

S ' D

I K
0 0

0 0

 1

0

 1

 1

 1

_

 1

_ R

0 1

Finding a good prefix code is equivalent
to finding a good binary tree with all values

stored at the leaves.

How do we find the best binary tree with
this property?

Huffman Coding

R' S _I DK

4

3

1

2

1

1

1

K

'

I

R

S

D

4 3 2 1 11 1

Huffman Coding

I

' S

K

R _

D

2

11

0

0

0

0

0

0

1

1

1

1

1

1

00

11

100

010

101

0110

0111

K '

I

R

S

 D

Two Important Details

Transmitting the Tree

● In order to decompress the text, we have to
remember what encoding we used!

● Idea: Prefix the compressed data with a
header containing enough information to
rebuild the table.

● This might increase the total file size!
● Theorem: There is no compression algorithm

that can always compress all inputs.
● Proof: Take CS103!

Encoding information 1101110010111011110001001101010111100

One Last Thing...

Bitten by Bytes

10011111

10001000

11101100

11011001

10

10011111 10001000 11101100 11011001 10??????

Spare Bits

● The encoded message might not actually
use all 8 bits in its final byte.

● All files are stored as bytes, so those last
bits will be filled in with garbage.

● If we don't know when to stop, we might
decode extra garbage data when
decompressing.

Once More, With Stops

1000 1100 10 1111 1101 011 0010

K K KI I' S

1110

R D

10011 00

KID

010

■

10

00

1111

011

1101

1100

1110

K '

I

R

S

 D

010 ■

10001100 10111111 01111001 10010011 0010010?

Pseudo-EOFs

● The marker ■ we inserted is called a
pseudo-end-of-file marker (or pseudo-
EOF).

● Indicates where the encoding stops.
● Similar to how RNA and DNA encode

proteins – certain codons are reserved
for “stop here.”

Summary of Huffman Encoding

● Prefix-free encodings can be modeled as
binary trees.

● Huffman encoding uses a greedy
algorithm to construct encodings.

● We need to send the encoding table with
the compressed message.

● We use a pseudo-EOF as a marker that
the end of the bits has been reached.

Beyond ASCII

● If you just want to store ASCII text
(English characters, digits, etc.), then
one byte per character suffices.

● What if you want to store non-English
characters or more general symbols?

● For example:
● ¿Cómo estás?
● عليكم السلم

● (╯°□° ）╯︵ ┻━┻

Unicode

● Unicode is a system for representing
glyphs and symbols from all languages
and disciplines.

● Uses a two-level encoding system:
● Each glyph has a code point (a number)

associated with it.
● The code points are then represented using

one of several variable-length encodings.

UTF-8

0ddddddd
Option 1

110ddddd
Option 2

10dddddd

1110dddd
Option 3

10dddddd 10dddddd

11110ddd
Option 4

10dddddd 10dddddd 10dddddd

UTF-8

11100000 10011111 10010101 10001100
11100000 10011111 10010101 10001100

0000011111010101001100

�

Further Topics

More to Explore

● Kolmogorov Complexity
● What’s the theoretical limit to compression

techniques?
● Adaptive Coding Techniques

● Can you change your encoding system as you go?
● Shannon Entropy

● A mathematical bound on Huffman coding.
● Binary Tries

● Other applications of trees like these!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49

