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It's All Bits and Bytes

● Data stored on disk consists of 0s and 1s.
● Usually encoded by magnetic orientation on small 

(10nm!) metal particles or by trapping electrons in 
small gates.

● A single 0 or 1 is called a bit.
● A group of eight bits is called a byte.

00000000, 00000001, 00000010, 00000011, 
00000100, 00000101, 00000110, …

● There are 28 = 256 different bytes.
● Great recursion practice: Write a function to list all 

of them!



  

Representing Text

● Text uses all sorts of different characters.
● Computers require everything to be 

written as zeros and ones.
● To represent text inside the computer, we 

can choose some way of mapping 
characters to series of zeros and ones 
and vice-versa.

● There are many ways to do this.



  

Baudot Codes

● The Baudot code was 
one of the first codes for 
representing text as 0s 
and 1s.

● It was used by early 
teleprinters and, while 
mostly obsoleted, is still 
around.

● Coldplay’s album X&Y 
used it for their Hip and 
Stylish album cover.
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ASCII

● Early (American) computers needed some standard 
way to send output to their (physical!) printers.

● Since there were fewer than 256 different 
characters to print (1960’s America!), each 
character was assigned a one-byte value.

● This initial code was called ASCII. Surprisingly, it’s 
still around, though in a modified form (more on 
that later).

● For example, the letter A is represented by the byte 
01000001 (65). You can still see this in C++:

cout << int('A') << endl; // Prints 65



  

ASCII

● In ASCII:
● Each character is exactly one byte (8 bits).
● All computers agree in advance which 

characters have which values.
● This makes it possible to transmit text 

data from one computer to another by 
just writing out a series of bits.

● Here’s what this might look like:



  

Transmitting the Dikdik
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Transmitting the Dikdik
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An Observation

● In ASCII, every character has exactly the 
same number of bits in it.

● Any message with n characters will use 
up exactly 8n bits.
● Space for KIRK'S DIKDIK: 104 bits.
● Space for COPYRIGHTABLE: 104 bits. 

● We say that ASCII is a fixed-length 
encoding.



  

A Different Encoding

● The phrase KIRK'S DIKDIK has exactly 7 different 
characters in it.

● We can use a different encoding to represent this 
string using many fewer bits:

● Down from 104 bits to 39 bits: using 37.5% as much 
space as before!

000

001

011

110

100

010

101

K

'

I

R

S

 

D

000001 010 000 011 100 110 001000

K K KI I' S  

 

101

R D

000110 001

KID



  

The Key Idea

● If we can find a way to

give all characters a bit pattern,

that both the sender and receiver know 
about, and

that can be decoded uniquely,

then we can represent the same piece of 
text in multiple different ways.

● Goal: Find a way to do this that uses less 
space than the standard ASCII 
representation.



  

Exploiting Redundancy

● Not all letters have the same frequency in “KIRK'S DIKDIK.”

● Frequency table:

● What if we gave shorter encodings to more common 
characters?
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A First Attempt
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A First Attempt
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The Problem

● If we use a different number of bits for 
each letter, we can't necessarily uniquely 
determine the boundaries between 
letters.

● We need an encoding that makes it 
possible to determine where one 
character stops and the next starts.

● Is this possible? If so, how?



  

Prefix Codes

● A prefix code is an encoding system in 
which no code is a prefix of another 
code.

● For example:
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Prefix Codes
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Prefix Codes
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Prefix Codes
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Prefix Codes
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Prefix Codes

● Using this prefix code, we can represent 
KIRK'S DIKDIK as the sequence

1001111110001000111011001101100110

● This uses just 34 bits, compared to our 
initial 39.

● Remaining questions:
● How do you generate a prefix code?
● And what does any of this have to do with 

binary trees?



  

Time-Out for Announcements!



  

Assignment 5

● Assignment 5 is due on Friday.
● Want to use a late day? Turn it in on Monday 

of next week.
● Have questions?

● Stop by the LaIR!
● Stop by our office hours!
● Ask your section leader!
● Ask a partner!
● Ask on Piazza!



  

Ceçi n'est pas une annonce.
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How do you find a “good” prefix code?



  

The Key Idea
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Finding a good prefix code is equivalent
to finding a good binary tree with all values 

stored at the leaves.



  

How do we find the best binary tree with 
this property?



  

Huffman Coding
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Huffman Coding
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Two Important Details



  

Transmitting the Tree

● In order to decompress the text, we have to 
remember what encoding we used!

● Idea: Prefix the compressed data with a 
header containing enough information to 
rebuild the table.

 
● This might increase the total file size!
● Theorem: There is no compression algorithm 

that can always compress all inputs.
● Proof: Take CS103!

Encoding information 1101110010111011110001001101010111100



  

One Last Thing...



  

Bitten by Bytes
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Spare Bits

● The encoded message might not actually 
use all 8 bits in its final byte.

● All files are stored as bytes, so those last 
bits will be filled in with garbage.

● If we don't know when to stop, we might 
decode extra garbage data when 
decompressing.



  



  

Once More, With Stops
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Pseudo-EOFs

● The marker ■ we inserted is called a 
pseudo-end-of-file marker (or pseudo-
EOF).

● Indicates where the encoding stops.
● Similar to how RNA and DNA encode 

proteins – certain codons are reserved 
for “stop here.”



  

Summary of Huffman Encoding

● Prefix-free encodings can be modeled as 
binary trees.

● Huffman encoding uses a greedy 
algorithm to construct encodings.

● We need to send the encoding table with 
the compressed message.

● We use a pseudo-EOF as a marker that 
the end of the bits has been reached.



  

Beyond ASCII

● If you just want to store ASCII text 
(English characters, digits, etc.), then 
one byte per character suffices.

● What if you want to store non-English 
characters or more general symbols?

● For example:
● ¿Cómo estás?
● عليكم  السلم

● (╯°□° ）╯︵ ┻━┻



  

Unicode

● Unicode is a system for representing 
glyphs and symbols from all languages 
and disciplines.

● Uses a two-level encoding system:
● Each glyph has a code point (a number) 

associated with it.
● The code points are then represented using 

one of several variable-length encodings.



  

UTF-8

0ddddddd
Option 1

110ddddd
Option 2

10dddddd

1110dddd
Option 3

10dddddd 10dddddd

11110ddd
Option 4

10dddddd 10dddddd 10dddddd



  

UTF-8

11100000 10011111 10010101 10001100
11100000 10011111 10010101 10001100

0000011111010101001100

�



  

Further Topics



  

More to Explore

● Kolmogorov Complexity
● What’s the theoretical limit to compression 

techniques?
● Adaptive Coding Techniques

● Can you change your encoding system as you go?
● Shannon Entropy

● A mathematical bound on Huffman coding.
● Binary Tries

● Other applications of trees like these!
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