
  

Binary Search Trees
Part Two



  

Recap from Last Time



  

Binary Search Trees

● A binary search tree (or 
BST) is a data structure often 
used to implement maps and 
sets.

● The tree consists of a number 
of nodes, each of which 
stores a value and has zero, 
one, or two children.

● Key structural property: All 
values in a node’s left subtree 
are smaller than the node’s 
value, and all values in a 
node’s right subtree are 
greater than the node’s 
value.
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A Binary Search Tree Is Either…
an empty tree, 
represented by 
nullptr, or…

x

<x >x

… a single node,
whose left subtree 

is a BST of 
smaller values …

… and whose right 
subtree is a BST 
of larger values.



  

Tree Terminology

● The height of a tree is the number of nodes 
in the longest path from the root to a leaf.

● By convention, an empty tree has height -1.
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● The height of a tree is the number of nodes 
in the longest path from the root to a leaf.

● By convention, an empty tree has height -1.



  

Efficiency Questions

● In a balanced BST, the cost of doing an 
insertion or lookup is O(log n).

● Although we didn’t cover this, the cost of 
a deletion is also O(log n) (play around 
with this in section!)

● The runtimes of these operations depend 
on the height of the BST, which we’re 
going to assume is O(log n) going 
forward.



  

New Stuff!



  

Walking Trees



  

Printing a Tree

● BSTs store their elements in sorted order.
● By visiting the nodes of a BST in the right order, we’ll 

get back the nodes in sorted order!
● (This is also why iterating over a Map or Set gives you 

the keys/elements in sorted order!)
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A Binary Search Tree Is Either…
an empty tree, 
represented by 
nullptr, or…
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… a single node,
whose left subtree 

is a BST of 
smaller values …

… and whose right 
subtree is a BST 
of larger values.



  

Inorder Traversals

● The particular recursive pattern we just 
saw is called an inorder traversal of a 
binary tree.

● Specifically:
● Recursively visit all the nodes in the left 

subtree.
● Visit the node itself.
● Recursively visit all the nodes in the right 

subtree.



  

Getting Rid of Trees

http://www.tigersheds.com/garden-resources/image.axd?picture=2010%2F6%2Fdeforestation1.jpg



  

Freeing a Tree

● Once we're done with a tree, we need to free 
all of its nodes.

● As with a linked list, we have to be careful not 
to use any nodes after freeing them.
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A Binary Search Tree Is Either…
an empty tree, 
represented by 
nullptr, or…
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<x >x

… a single node,
whose left subtree 

is a BST of 
smaller values …

… and whose right 
subtree is a BST 
of larger values.



  

Postorder Traversals

● The particular recursive pattern we just 
saw is called a postorder traversal of a 
binary tree.

● Specifically:
● Recursively visit all the nodes in the left 

subtree.
● Recursively visit all the nodes in the right 

subtree.
● Visit the node itself.



  

Time-Out for Announcements!



  

Assignment 5

● Assignment 5 is due this Friday at the 
start of class.

● Recommendation: Aim to complete the 
first three implementations by the end of 
tonight. Finish the binary heap by 
Wednesday.

● Questions? Ask your SL, stop by the 
LaIR, visit office hours, or ask on Piazza!



  



  

Back to CS106B!



  

Has this ever happened to you?



  

What’s Going On?

● Internally, the Map and Set types are 
implemented using binary search trees.

● BSTs assume there’s a way to compare 
elements against one another using the 
relational operators.

● But you can’t compare two structs using 
the less-than operator!

● “There’s got to be a better way!”



  

Defining Comparisons

● Most programming languages provide 
some mechanism to let you define how to 
compare two objects.

● C has comparison functions, Java has the 
Comparator interface, Python has __cmp__, 
etc.

● In C++, we can use a technique called 
operator overloading to tell it how to 
compare objects using the < operator.



  

bool operator< (const Doctor& lhs, const Doctor& rhs) {
    /*     …     */
}

Doctor zhivago = /*     …     */
Doctor acula   = /*     …     */

if (zhivago < acula) {
    /*     …     */
}
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bool operator< (const Doctor& lhs, const Doctor& rhs) {
    /*     …     */
}

Doctor zhivago = /*     …     */
Doctor acula   = /*     …     */

if (zhivago < acula) {
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}

This function is 
named “operator<”
This function is 
named “operator<”

Its arguments correspond to the 
left-hand and right-hand operands 

to the < operator.
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left-hand and right-hand operands 

to the < operator.



  

bool operator< (const Doctor& lhs, const Doctor& rhs) {
    /*     …     */
}

Doctor zhivago = /*     …     */
Doctor acula   = /*     …     */

if (zhivago < acula) {
    /*     …     */
}

C++ treats this as 

operator< (zhivago, acula)

C++ treats this as 

operator< (zhivago, acula)



  

Overloading Less-Than

● To store custom types in Maps or Sets in C++, overload the 
less-than operator by defining a function like this one:

bool operator< (const Type& lhs, const Type& rhs);
● This function must obey four rules:

● It is consistent: writing x < y always returns the same result 
given x and y.

● It is irreflexive: x < x is always false.
● It is transitive: If x < y and y < z, then x < z.
● It has transitivity of incomparability: If neither x < y nor y < 
x are true, then x and y behave indistinguishably.

● (These rules mean that < is a strict weak order; take 
CS103 for details!)



  

Overloading Less-Than

A standard technique for implementing the less-than 
operator is to use a lexicographical comparison, which 
looks like this:

bool operator< (const Type& lhs, const Type& rhs) {
    if (lhs.field1 != rhs.field1) {
        return lhs.field1 < rhs.field1;
    } else if (lhs.field2 != rhs.field2) {
        return lhs.field2 < rhs.field2;
    } else if (lhs.field3 != rhs.field3) {
        return lhs.field3 < rhs.field3;
    } … {
      …
    } else {
        return lhs.fieldN < rhs.fieldN;
    }
}



  

One Last Cool Trick, If We Have Time



  

Filtering Trees



  

Range Searches

● We can use BSTs to do range searches, 
in which we find all values in the BST 
within some range.

● For example:
● If the values in the BST are dates, we can 

find all events that occurred within some 
time window.

● If the values in the BST are number of 
diagnostic scans ordered, we can find all 
doctors who order a disproportionate 
number of scans.
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Range Searches

● The cost of a range search in a balanced BST is

O(log n + z),

where z is the number of matches reported.
● In a general BST, it’s O(h + z).
● Curious about where that analysis comes from? 

Come talk to me after class!



  

To Summarize:



  

A Binary Search Tree Is Either…
an empty tree, 
represented by 
nullptr, or…

x

<x >x

… a single node,
whose left subtree 

is a BST of 
smaller values …

… and whose right 
subtree is a BST 
of larger values.



  

struct Node {                     
    int value;                    
    Node* left;  // Smaller values
    Node* right; // Bigger values 
};                                



  

bool contains(Node* root, const string& key) {
    if (root == nullptr) return false;
    else if (key == root->value) return true;
    else if (key <  root->value) return contains(root->left,  key);
    else return contains(root->right, key);
}

void insert(Node*& root, const string& key) {
    if (root == nullptr) {
        root = new Node;
        node->value = key;
        node->left = node->right = nullptr;
    } else if (key < root->value) {
        insert(root left, key);→
    } else if (key > root->value) {
        insert(root->right, key);
    } else {
        // Already here!
    }
}
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void printTree(Node* root) {
    if (root == nullptr) return;

    printTree(root->left);
    cout << root->value << endl;
    printTree(root->right);
}

void freeTree(Node* root) {
    if (root == nullptr) return;

    freeTree(root->left);
    freeTree(root->right);
    delete root;
}



  

bool operator< (const Type& lhs, const Type& rhs) {
    if (lhs.field1 != rhs.field1) {
        return lhs.field1 < rhs.field1;
    } else if (lhs.field2 != rhs.field2) {
        return lhs.field2 < rhs.field2;
    } else if (lhs.field3 != rhs.field3) {
        return lhs.field3 < rhs.field3;
    } … {
      …
    } else {
        return lhs.fieldN < rhs.fieldN;
    }
}



  

Next Time

● Beyond Data Structures
● Why are these ideas useful outside of the 

realm of sets and maps?
● Huffman Encoding

● A powerful data compression algorithm.
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