Binary Search Trees
 Part Two

Recap from Last Time

Binary Search Trees

- A binary search tree (or BST) is a data structure often used to implement maps and sets.
- The tree consists of a number of nodes, each of which stores a value and has zero, one, or two children.
- Key structural property: All
 value, and all values in a node's right subtree are greater than the node's value.

A Binary Search Tree Is Either...

> an empty tree, represented by nullptr, or...
... a single node, whose left subtree is a BST of smaller values ...

X ... and whose right subtree is a BST of larger values.

Tree Terminology

- The height of a tree is the number of nodes in the longest path from the root to a leaf.
- By convention, an empty tree has height -1.

Tree Terminology

- The height of a tree is the number of nodes in the longest path from the root to a leaf.
- By convention, an empty tree has height -1.

Efficiency Questions

- In a balanced BST, the cost of doing an insertion or lookup is $\mathrm{O}(\log n)$.
- Although we didn't cover this, the cost of a deletion is also $\mathrm{O}(\log n)$ (play around with this in section!)
- The runtimes of these operations depend on the height of the BST, which we're going to assume is $\mathrm{O}(\log n)$ going forward.

New Stuff!

Walking Trees

Printing a Tree

- BSTs store their elements in sorted order.
- By visiting the nodes of a BST in the right order, we'll get back the nodes in sorted order!
- (This is also why iterating over a Map or Set gives you the keys/elements in sorted order!)

A Binary Search Tree Is Either...

> an empty tree, represented by nullptr, or...
... a single node, whose left subtree is a BST of smaller values ...

X ... and whose right subtree is a BST of larger values.

Inorder Traversals

- The particular recursive pattern we just saw is called an inorder traversal of a binary tree.
- Specifically:
- Recursively visit all the nodes in the left subtree.
- Visit the node itself.
- Recursively visit all the nodes in the right subtree.

Getting Rid of Trees

http://www.tigersheds.com/garden-resources/image.axd?picture=2010\%2F6\%2Fdeforestation1.jpg

Freeing a Tree

- Once we're done with a tree, we need to free all of its nodes.
- As with a linked list, we have to be careful not to use any nodes after freeing them.

A Binary Search Tree Is Either...

> an empty tree, represented by nullptr, or...
... a single node, whose left subtree is a BST of smaller values ...

X ... and whose right subtree is a BST of larger values.

Postorder Traversals

- The particular recursive pattern we just saw is called a postorder traversal of a binary tree.
- Specifically:
- Recursively visit all the nodes in the left subtree.
- Recursively visit all the nodes in the right subtree.
- Visit the node itself.

Time-Out for Announcements!

Assignment 5

- Assignment 5 is due this Friday at the start of class.
- Recommendation: Aim to complete the first three implementations by the end of tonight. Finish the binary heap by Wednesday.
- Questions? Ask your SL, stop by the LaIR, visit office hours, or ask on Piazza!

Back to CS106B!

Has this ever happened to you?

What's Going On?

- Internally, the Map and Set types are implemented using binary search trees.
- BSTs assume there's a way to compare elements against one another using the relational operators.
- But you can't compare two structs using the less-than operator!
- "There's got to be a better way!"

Defining Comparisons

- Most programming languages provide some mechanism to let you define how to compare two objects.
- C has comparison functions, Java has the Comparator interface, Python has \qquad etc.
- In $\mathrm{C}++$, we can use a technique called operator overloading to tell it how to compare objects using the < operator.

```
Doctor zhivago = /* ... */
Doctor acula = /* ... */
if (zhivago < acula) {
    /* ... */
}
```

```
Doctor zhivago = /* ... */
Doctor acula = /* ... */
if (zhivago < acula) {
}
```

bool operator< (const Doctor\& hs, const Doctor\& rhs) \{

Its arguments correspond to the left-hand and right-hand operands to the < operator.
$\begin{array}{llll}\text { Doctor zhivago }=/ * & & \text { */ } \\ \text { Doctor acula }=/ * & \text {... } & * /\end{array}$
if (zhivago < acula) \{
/* ... */
\}
bool operator< (const Doctor\& lhs, const Doctor\& rhs) \{ \}

Doctor zhivago = /* Doctor acula = /*
$\begin{array}{ll}\text {... } & * / \\ \text {... } & * /\end{array}$
if (zhivago < acula) \{ C++ treats this as
/*
*/
\}
operator< (zhivago, acula)

Overloading Less-Than

- To store custom types in Maps or Sets in C++, overload the less-than operator by defining a function like this one: bool operator< (const Type\& lhs, const Type\& rhs);
- This function must obey four rules:
- It is consistent: writing $x<y$ always returns the same result given x and y.
- It is irreflexive: $x<x$ is always false.
- It is transitive: If $x<y$ and $y<z$, then $x<z$.
- It has transitivity of incomparability: If neither $x<y$ nor $y<$ x are true, then x and y behave indistinguishably.
- (These rules mean that < is a strict weak order; take CS103 for details!)

Overloading Less-Than

A standard technique for implementing the less-than operator is to use a lexicographical comparison, which looks like this:

```
bool operator< (const Type& lhs, const Type& rhs) {
    if (lhs.field1 != rhs.field1) {
                return lhs.field1 < rhs.field1;
    } else if (lhs.field2 != rhs.field2) {
        return lhs.field2 < rhs.field2;
    } else if (lhs.field3 != rhs.field3) {
        return lhs.field3 < rhs.field3;
    } ... {
    } ëlse {
        return lhs.fieldN < rhs.fieldN;
    }
}
```

One Last Cool Trick, If We Have Time

Filtering Trees

Range Searches

- We can use BSTs to do range searches, in which we find all values in the BST within some range.
- For example:
- If the values in the BST are dates, we can find all events that occurred within some time window.
- If the values in the BST are number of diagnostic scans ordered, we can find all doctors who order a disproportionate number of scans.

A Binary Search Tree Is Either...

> an empty tree, represented by nullptr, or...
... a single node, whose left subtree is a BST of
smaller values...
... and whose right subtree is a BST of larger values.

A Binary Search Tree Is Either...

> an empty tree, represented by nullptr, or...
... a single node, whose left subtree is a BST of
smaller values...

... and whose right subtree is a BST of larger values.

A Binary Search Tree Is Either...

> an empty tree, represented by nullptr, or...
... a single node, whose left subtree is a BST of
smaller values...
... and whose right subtree is a BST of larger values.

A Binary Search Tree Is Either...

> an empty tree, represented by nullptr, or...
... a single node, whose left subtree is a BST of
smaller values...
... and whose right subtree is a BST of larger values.

Range Searches

- The cost of a range search in a balanced BST is

$$
\mathbf{O}(\log n+z)
$$

where z is the number of matches reported.

- In a general BST, it's $\mathrm{O}(h+z)$.
- Curious about where that analysis comes from? Come talk to me after class!

To Summarize:

A Binary Search Tree Is Either...

> an empty tree, represented by nullptr, or...
... a single node, whose left subtree is a BST of smaller values ...

X ... and whose right subtree is a BST of larger values.

struct Node \{
int value;
Node* left; // Smaller values
Node* right; // Bigger values
\};

```
bool contains(Node* root, const string& key) {
    if (root == nullptr) return false;
    else if (key == root->value) return true;
    else if (key < root->value) return contains(root->left, key);
    else return contains(root->right, key);
}
void insert(Node*& root, const string& key) {
    if (root == nullptr) {
        root = new Node;
        node->value = key;
        node->left = node->right = nullptr;
    } else if (key < root->value) {
        insert(root->left, key);
    } else if (key > root->value) {
        insert(root->right, key);
    } else {
        // Already here!
    }
}
```



```
void printTree(Node* root) {
    if (root == nullptr) return;
    printTree(root->left);
    cout << root->value << endl;
    printTree(root->right);
}
void freeTree(Node* root) {
    if (root == nullptr) return;
    freeTree(root->left);
    freeTree(root->right);
    delete root;
}
```

bool operator< (const Type\& lhs, const Type\& rhs) \{ if (lhs.field1 != rhs.field1) \{
return lhs.field1 < rhs.field1;
\} else if (lhs.field2 != rhs.field2) \{
return lhs.field2 < rhs.field2;
\} else if (lhs.field3 != rhs.field3) \{ return lhs.field3 < rhs.field3;
\} ... \{
\} else \{
return lhs.fieldN < rhs.fieldN;
\}
\}

Next Time

- Beyond Data Structures
- Why are these ideas useful outside of the realm of sets and maps?
- Huffman Encoding
- A powerful data compression algorithm.

