

Binary Search Trees
Part Two

Recap from Last Time

Binary Search Trees

● A binary search tree (or
BST) is a data structure often
used to implement maps and
sets.

● The tree consists of a number
of nodes, each of which
stores a value and has zero,
one, or two children.

● Key structural property: All
values in a node’s left subtree
are smaller than the node’s
value, and all values in a
node’s right subtree are
greater than the node’s
value.

-2

-1

1

2

3

6

3

4

7

9

0

6

4

865

A Binary Search Tree Is Either…
an empty tree,
represented by
nullptr, or…

x

<x >x

… a single node,
whose left subtree

is a BST of
smaller values …

… and whose right
subtree is a BST
of larger values.

Tree Terminology

● The height of a tree is the number of nodes
in the longest path from the root to a leaf.

● By convention, an empty tree has height -1.

4

2

1 3

6

5 7

Tree Terminology

1
2

3
4

5
6

7

● The height of a tree is the number of nodes
in the longest path from the root to a leaf.

● By convention, an empty tree has height -1.

Efficiency Questions

● In a balanced BST, the cost of doing an
insertion or lookup is O(log n).

● Although we didn’t cover this, the cost of
a deletion is also O(log n) (play around
with this in section!)

● The runtimes of these operations depend
on the height of the BST, which we’re
going to assume is O(log n) going
forward.

New Stuff!

Walking Trees

Printing a Tree

● BSTs store their elements in sorted order.
● By visiting the nodes of a BST in the right order, we’ll

get back the nodes in sorted order!
● (This is also why iterating over a Map or Set gives you

the keys/elements in sorted order!)

4

2

1 3

6

5 7

A Binary Search Tree Is Either…
an empty tree,
represented by
nullptr, or…

x

<x >x

… a single node,
whose left subtree

is a BST of
smaller values …

… and whose right
subtree is a BST
of larger values.

Inorder Traversals

● The particular recursive pattern we just
saw is called an inorder traversal of a
binary tree.

● Specifically:
● Recursively visit all the nodes in the left

subtree.
● Visit the node itself.
● Recursively visit all the nodes in the right

subtree.

Getting Rid of Trees

http://www.tigersheds.com/garden-resources/image.axd?picture=2010%2F6%2Fdeforestation1.jpg

Freeing a Tree

● Once we're done with a tree, we need to free
all of its nodes.

● As with a linked list, we have to be careful not
to use any nodes after freeing them.

4

2

1 3

6

5 7

A Binary Search Tree Is Either…
an empty tree,
represented by
nullptr, or…

x

<x >x

… a single node,
whose left subtree

is a BST of
smaller values …

… and whose right
subtree is a BST
of larger values.

Postorder Traversals

● The particular recursive pattern we just
saw is called a postorder traversal of a
binary tree.

● Specifically:
● Recursively visit all the nodes in the left

subtree.
● Recursively visit all the nodes in the right

subtree.
● Visit the node itself.

Time-Out for Announcements!

Assignment 5

● Assignment 5 is due this Friday at the
start of class.

● Recommendation: Aim to complete the
first three implementations by the end of
tonight. Finish the binary heap by
Wednesday.

● Questions? Ask your SL, stop by the
LaIR, visit office hours, or ask on Piazza!

Back to CS106B!

Has this ever happened to you?

What’s Going On?

● Internally, the Map and Set types are
implemented using binary search trees.

● BSTs assume there’s a way to compare
elements against one another using the
relational operators.

● But you can’t compare two structs using
the less-than operator!

● “There’s got to be a better way!”

Defining Comparisons

● Most programming languages provide
some mechanism to let you define how to
compare two objects.

● C has comparison functions, Java has the
Comparator interface, Python has __cmp__,
etc.

● In C++, we can use a technique called
operator overloading to tell it how to
compare objects using the < operator.

bool operator< (const Doctor& lhs, const Doctor& rhs) {
 /* … */
}

Doctor zhivago = /* … */
Doctor acula = /* … */

if (zhivago < acula) {
 /* … */
}

bool operator< (const Doctor& lhs, const Doctor& rhs) {
 /* … */
}

Doctor zhivago = /* … */
Doctor acula = /* … */

if (zhivago < acula) {
 /* … */
}

bool operator< (const Doctor& lhs, const Doctor& rhs) {
 /* … */
}

Doctor zhivago = /* … */
Doctor acula = /* … */

if (zhivago < acula) {
 /* … */
}

This function is
named “operator<”
This function is
named “operator<”

Its arguments correspond to the
left-hand and right-hand operands

to the < operator.

Its arguments correspond to the
left-hand and right-hand operands

to the < operator.

bool operator< (const Doctor& lhs, const Doctor& rhs) {
 /* … */
}

Doctor zhivago = /* … */
Doctor acula = /* … */

if (zhivago < acula) {
 /* … */
}

C++ treats this as

operator< (zhivago, acula)

C++ treats this as

operator< (zhivago, acula)

Overloading Less-Than

● To store custom types in Maps or Sets in C++, overload the
less-than operator by defining a function like this one:

bool operator< (const Type& lhs, const Type& rhs);
● This function must obey four rules:

● It is consistent: writing x < y always returns the same result
given x and y.

● It is irreflexive: x < x is always false.
● It is transitive: If x < y and y < z, then x < z.
● It has transitivity of incomparability: If neither x < y nor y <
x are true, then x and y behave indistinguishably.

● (These rules mean that < is a strict weak order; take
CS103 for details!)

Overloading Less-Than

A standard technique for implementing the less-than
operator is to use a lexicographical comparison, which
looks like this:

bool operator< (const Type& lhs, const Type& rhs) {
 if (lhs.field1 != rhs.field1) {
 return lhs.field1 < rhs.field1;
 } else if (lhs.field2 != rhs.field2) {
 return lhs.field2 < rhs.field2;
 } else if (lhs.field3 != rhs.field3) {
 return lhs.field3 < rhs.field3;
 } … {
 …
 } else {
 return lhs.fieldN < rhs.fieldN;
 }
}

One Last Cool Trick, If We Have Time

Filtering Trees

Range Searches

● We can use BSTs to do range searches,
in which we find all values in the BST
within some range.

● For example:
● If the values in the BST are dates, we can

find all events that occurred within some
time window.

● If the values in the BST are number of
diagnostic scans ordered, we can find all
doctors who order a disproportionate
number of scans.

A Binary Search Tree Is Either…
an empty tree,
represented by
nullptr, or…

x

<x >x

… a single node,
whose left subtree

is a BST of
smaller values…

… and whose right
subtree is a BST
of larger values.

A Binary Search Tree Is Either…
an empty tree,
represented by
nullptr, or…

x

<x >x

… a single node,
whose left subtree

is a BST of
smaller values…

… and whose right
subtree is a BST
of larger values.

A Binary Search Tree Is Either…
an empty tree,
represented by
nullptr, or…

x

<x >x

… a single node,
whose left subtree

is a BST of
smaller values…

… and whose right
subtree is a BST
of larger values.

A Binary Search Tree Is Either…
an empty tree,
represented by
nullptr, or…

x

<x >x

… a single node,
whose left subtree

is a BST of
smaller values…

… and whose right
subtree is a BST
of larger values.

Range Searches

● The cost of a range search in a balanced BST is

O(log n + z),

where z is the number of matches reported.
● In a general BST, it’s O(h + z).
● Curious about where that analysis comes from?

Come talk to me after class!

To Summarize:

A Binary Search Tree Is Either…
an empty tree,
represented by
nullptr, or…

x

<x >x

… a single node,
whose left subtree

is a BST of
smaller values …

… and whose right
subtree is a BST
of larger values.

struct Node {
 int value;
 Node* left; // Smaller values
 Node* right; // Bigger values
};

bool contains(Node* root, const string& key) {
 if (root == nullptr) return false;
 else if (key == root->value) return true;
 else if (key < root->value) return contains(root->left, key);
 else return contains(root->right, key);
}

void insert(Node*& root, const string& key) {
 if (root == nullptr) {
 root = new Node;
 node->value = key;
 node->left = node->right = nullptr;
 } else if (key < root->value) {
 insert(root left, key);→
 } else if (key > root->value) {
 insert(root->right, key);
 } else {
 // Already here!
 }
}

4

2

1 3

6

5 7

1
2

3
4

5
6

7

void printTree(Node* root) {
 if (root == nullptr) return;

 printTree(root->left);
 cout << root->value << endl;
 printTree(root->right);
}

void freeTree(Node* root) {
 if (root == nullptr) return;

 freeTree(root->left);
 freeTree(root->right);
 delete root;
}

bool operator< (const Type& lhs, const Type& rhs) {
 if (lhs.field1 != rhs.field1) {
 return lhs.field1 < rhs.field1;
 } else if (lhs.field2 != rhs.field2) {
 return lhs.field2 < rhs.field2;
 } else if (lhs.field3 != rhs.field3) {
 return lhs.field3 < rhs.field3;
 } … {
 …
 } else {
 return lhs.fieldN < rhs.fieldN;
 }
}

Next Time

● Beyond Data Structures
● Why are these ideas useful outside of the

realm of sets and maps?
● Huffman Encoding

● A powerful data compression algorithm.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45

