

Binary Search Trees
Part One

Taking Stock: Where Are We?

 ☐ Stack
 ☐ Queue
 ☐ Vector
 ☐ string
 ☐ PriorityQueue
 ☐ Map
 ☐ Set
 ☐ Lexicon

 ✓ Stack
 ☐ Queue
 ☐ Vector
 ☐ string
 ☐ PriorityQueue
 ☐ Map
 ☐ Set
 ☐ Lexicon

 ✓ Stack
 ✓ Queue
 ☐ Vector
 ☐ string
 ☐ PriorityQueue
 ☐ Map
 ☐ Set
 ☐ Lexicon

 ✓ Stack
 ✓ Queue
 ✓ Vector
 ✓ string
 ☐ PriorityQueue
 ☐ Map
 ☐ Set
 ☐ Lexicon

 ✓ Stack
 ✓ Queue
 ✓ Vector
 ✓ string
 ✓ PriorityQueue
 ☐ Map
 ☐ Set
 ☐ Lexicon

 ✓ Stack
 ✓ Queue
 ✓ Vector
 ✓ string
 ✓ PriorityQueue
 ☐ Map
 ☐ Set
 ☐ Lexicon

Implementing Map and Set

An Inefficient Implementation

● We could implement the Set as an
unsorted list of all the values it contains.

● To add an element:
● Check if the element already exists.
● If not, append it.

● To remove an element:
● Find and remove it from the list.

● To see if an element exists:
● Search the list for the element.

O(n)

O(n)

O(n)

An Inefficient Implementation

● We could implement the Set as a
sorted list of all the values it contains.

● To add an element:
● Check if the element already exists.
● If not, insert it in the right spot.

● To remove an element:
● Find and remove it from the list.

● To see if an element exists:
● Search the list for the element.

O(n)

O(n)

O(log n)

An Entirely Different Approach

2

-1

4

3

0

-2

6

2

-1

4

3

0

-2

6

2

-1

4

3

0

-2

6

2

-1

4

3

0

-2

6

2

-1

40

-2

6

3

2

-1

40

-2

6

3

2

-1

40

-2

6

3

2

-1

40

-2

6

3

2

40

-2

6

-1

3

2

4
0-2 6

-1

3

2

4
0-2 6

-1

3

2

4
0-2 6

-1

3

2

4
0-2 6

-1

3

2

4

3

0-2 6

-1

2

3

0-2 6

-1 4

2

30-2 6

-1 4

2

30-2 6

-1 4

2

30-2 6

-1 4

22

30-2 6

-1 4

30-2 6

-1 4

4

22

30-2 6

-1 4

30-2 6

-1

4

3

4

22

30-2 6

-1

0-2 6

-1

3

4

3

4

22

0-2 6

-1

0-2 6

-1

2

3

4

3

4

2

0-2 6

-1

0-2 6

-1

2

-1

2

3

4

3

4

0-2 6

-1

0-2 6

-1

-2

2

-1

2

3

4

3

4

0-2 60 6

-2

-1

-2

2

-1

2

3

4

3

4

0 60 6

Binary Search Trees

● The data structure we have
just seen is called a binary
search tree (or BST).

● The tree consists of a
number of nodes, each of
which stores a value and has
zero, one, or two children.

● Key structural property:
All values in a node’s left
subtree are smaller than
the node’s value, and all
values in a node’s right
subtree are greater than
the node’s value.

-2

-1

1

2

3

6

3

4

7

9

0

6

4

865

A Binary Search Tree Is Either…
an empty tree,
represented by
nullptr, or…

x

<x >x

… a single node,
whose left subtree

is a BST of
smaller values …

… and whose right
subtree is a BST
of larger values.

struct Node {
 Type value;
 Node* left; // Smaller values
 Node* right; // Bigger values
};

Binary Search Tree Nodes

Kinda like a linked
list, but with two
pointers instead of

just one!

Kinda like a linked
list, but with two
pointers instead of

just one!

Operation 1: Searching a BST

A Binary Search Tree Is Either…
an empty tree,
represented by
nullptr, or…

A Binary Search Tree Is Either…
an empty tree,
represented by
nullptr, or…

If you’re looking for
something in an

empty BST, it’s not
there! Sorry.

If you’re looking for
something in an

empty BST, it’s not
there! Sorry.

A Binary Search Tree Is Either…
an empty tree,
represented by
nullptr, or…

x

<x >x

… a single node,
whose left subtree

is a BST of
smaller values …

… and whose right
subtree is a BST
of larger values.

A Binary Search Tree Is Either…
an empty tree,
represented by
nullptr, or…

x

<x >x

… a single node,
whose left subtree

is a BST of
smaller values …

… and whose right
subtree is a BST
of larger values.

Good exercise:
Rewrite this function iteratively!

Operation 2: Inserting into a BST

Inserting into a BST

2

30-2 6

-1 4

2

30-2 6

-1 4

Inserting into a BST

2

30-2 6

-1 4

1

22

30-2 6

-1 4

Inserting into a BST

30-2 6

-1 4

1

2

-1

2

30-2 6

-1 4

Inserting into a BST

30-2 6

4

1

-1

0

2

-1

2

30-2 6

4

Inserting into a BST

3-2 6

4

1

0

-1

0

2

-1

2

3-2 6

4

Inserting into a BST

3-2 6

4

1

Let's Code it Up!

A Binary Search Tree Is Either…
an empty tree,
represented by
nullptr, or…

A Binary Search Tree Is Either…
an empty tree,
represented by
nullptr, or…

x

A Binary Search Tree Is Either…
an empty tree,
represented by
nullptr, or…

x

<x >x

… a single node,
whose left subtree

is a BST of
smaller values …

… and whose right
subtree is a BST
of larger values.

Time-Out for Announcements!

Assignment 5

● Assignment 5 is due next Friday.
● Recommendation: Complete the Vector

implementation and the sorted, singly-linked
list implementation by the end of this
evening.

● Try to complete the unsorted, doubly-linked
list implementation by Monday.

● Questions? Concerns? Ad hominem
attacks? Stop by the LaIR, our office
hours, or ask on Piazza!

WiCS Casual CS Dinner

● WiCS will be holding their second
biquarterly Casual CS Dinner this
upcoming Monday from 6PM – 7PM in
the WCC.

● Everyone is welcome – these are
fantastic events!

● RSVP using this link.

https://goo.gl/forms/dUAmYYrXnOPI3jSA3

Justice Sotomayor Visit

● Justice Sonia
Sotomayor is
coming to Stanford
on March 10th.

● There’s a lottery
system for tickets. I
would highly
recommend putting
your name in! She’s
really impressive!

Back to our regularly
scheduled programming…

So, how efficient is this?

Insertion Order Matters

● Suppose we create a BST of numbers in
this order:

4, 2, 1, 3, 6, 5, 7

4

2

1 3

6

5 7

Insertion Order Matters

● Suppose we create a BST of numbers in
this order:

1, 2, 3, 4, 5, 6, 7

1
2

3
4

5
6

7

Tree Terminology

● The height of a tree is the number of nodes
in the longest path from the root to a leaf.

● By convention, an empty tree has height -1.

4

2

1 3

6

5 7

Tree Terminology

1
2

3
4

5
6

7

● The height of a tree is the number of nodes
in the longest path from the root to a leaf.

● By convention, an empty tree has height -1.

Efficiency Questions

● What is the big-O complexity of adding a
node into a BST, or searching a BST for a
given value?

● Answer: It depends on the height of a
tree!

● Each step in these processes does O(1)
work and then drops us one level lower
in the BST.

● The overall time spent is O(h), where h
is the height of the tree.

Tree Heights

● What are the maximum and minimum heights
of a tree with n nodes?

● Maximum height: all nodes in a chain. Height
is O(n).

● Minimum height: Tree is as complete as
possible. Height is O(log n).

4

2

1 3

6

5 7

Tree Heights

● What are the maximum and minimum heights
of a tree with n nodes?

● Maximum height: all nodes in a chain. Height
is O(n).

● Minimum height: Tree is as complete as
possible. Height is O(log n).

4

2

1 3

6

5 7

Keeping the Height Low

● There are many modifications of the binary
search tree designed to keep the height of the
tree low (usually O(log n)).

● A self-balancing binary search tree is a
binary search tree that automatically adjusts
itself to keep the height low.

● The textbook talks about AVL trees, which are
one way you can do this.

● You don’t need to know these techniques for
CS106B: honestly, they’re complicated, require a
ton of memorization, and rarely come up.
● Take CS166 if you want to learn more!

Next Time

● More BST Fun
● Some other cool tricks and techniques!

● Custom Types in Sets
● Resolving a longstanding issue.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73

