

Linked Lists
Part Two

Recap from Last Time

Linked Lists at a Glance

● A linked list is a data structure for
storing a sequence of elements.

● Each element is stored separately from
the rest.

● The elements are then chained together
into a sequence.

1 2 3 4137

Representing a Cell

● For simplicity, let's assume we're building a
linked list of strings.

● We can represent a cell in the linked list as a
structure:

 struct Cell {

 string value;

 Cell* next;

 };
● The structure is defined recursively!

...an empty list,
represented by
nullptr, or...

a single linked list
cell that points...

... at another linked
list.

A Linked List is Either...

Traversing a Linked List

● Once we have a linked list, we can traverse
it by following the links one at a time.
for (Cell* ptr = list; ptr != nullptr; ptr = ptr->next) {

 /* … use ptr … */

}

1 2 4list 3

Traversing a Linked List

1 2 4list 3

ptr

● Once we have a linked list, we can traverse
it by following the links one at a time.
for (Cell* ptr = list; ptr != nullptr; ptr = ptr->next) {

 /* … use ptr … */

}

...an empty list,
represented by
nullptr, or...

a single linked list
cell that points...

... at another linked
list.

A Linked List is Either...

New Stuff!

Cleaning Up Our Messes

Freeing a Linked List

● All good things must come to an end, and
we eventually need to reclaim the memory
for a linked list.

● The following code triggers undefined
behavior. Don’t do this!
for (Cell* ptr = list; ptr != nullptr; ptr = ptr->next) {

 delete ptr;

}

Freeing a Linked List

???ptr

● All good things must come to an end, and
we eventually need to reclaim the memory
for a linked list.

● The following code triggers undefined
behavior. Don’t do this!
for (Cell* ptr = list; ptr != nullptr; ptr = ptr->next) {

 delete ptr;

}

Freeing a Linked List Properly

● To properly free a linked list, we have to
be able to
● Destroy a cell, and
● Advance to the cell after it.

● How might we accomplish this?

while (list != nullptr) {
Cell* next = list->next;

 delete list;
 list = next;
}

...an empty list,
represented by
nullptr, or...

a single linked list
cell that points...

... at another linked
list.

A Linked List is Either...

Linked Lists: The Tricky Parts

● Suppose that we want to write a function
that will add an element to the front of a
linked list.

● What might this function look like?

What went wrong?

int main() {
 Cell* list = nullptr;
 listInsert(list, "A");
 listInsert(list, "B");
 listInsert(list, "C");

 return 0;
}

int main() {
 Cell* list = nullptr;
 listInsert(list, "A");
 listInsert(list, "B");
 listInsert(list, "C");

 return 0;
}

list

int main() {
 Cell* list = NULL;
 listInsert(list, "A");
 listInsert(list, "B");
 listInsert(list, "C");

 return 0;
}

int main() {
 Cell* list = NULL;
 listInsert(list, "A");
 listInsert(list, "B");
 listInsert(list, "C");

 return 0;
}

list

void listInsert(Cell* list, const string& value) {
 Cell* newCell = new Cell;
 newCell->value = value;
 newCell->next = list;
 list = newCell;
}

void listInsert(Cell* list, const string& value) {
 Cell* newCell = new Cell;
 newCell->value = value;
 newCell->next = list;
 list = newCell;
}

list

"A"

"A"valuenewCell

int main() {
 Cell* list = nullptr;
 listInsert(list, "A");
 listInsert(list, "B");
 listInsert(list, "C");

 return 0;
}

int main() {
 Cell* list = nullptr;
 listInsert(list, "A");
 listInsert(list, "B");
 listInsert(list, "C");

 return 0;
}

list

"A"

Why does
nobody love me?

Pointers by Reference

● To resolve this problem, we can pass the linked
list pointer by reference.

● Our new function:

void listInsert(Cell*& list, const string& value) {
 Cell* newCell = new Cell;
 newCell->value = value;
 newCell->next = list;
 list = newCell;
}

Pointers by Reference

● To resolve this problem, we can pass the linked
list pointer by reference.

● Our new function:

void listInsert(Cell*& list, const string& value) {
 Cell* newCell = new Cell;
 newCell->value = value;
 newCell->next = list;
 list = newCell;
} This is a reference to a

pointer to a Cell. If we change
where list points in this function,

the changes will stick!

This is a reference to a
pointer to a Cell. If we change
where list points in this function,

the changes will stick!

int main() {
 Cell* list = nullptr;
 listInsert(list, "A");
 listInsert(list, "B");
 listInsert(list, "C");

 return 0;
}

int main() {
 Cell* list = nullptr;
 listInsert(list, "A");
 listInsert(list, "B");
 listInsert(list, "C");

 return 0;
}

list

int main() {
 Cell* list = nullptr;
 listInsert(list, "A");
 listInsert(list, "B");
 listInsert(list, "C");

 return 0;
}

int main() {
 Cell* list = nullptr;
 listInsert(list, "A");
 listInsert(list, "B");
 listInsert(list, "C");

 return 0;
}

list

void listInsert(Cell*& list, const string& value) {
 Cell* newCell = new Cell;
 newCell->value = value;
 newCell->next = list;
 list = newCell;
}

void listInsert(Cell*& list, const string& value) {
 Cell* newCell = new Cell;
 newCell->value = value;
 newCell->next = list;
 list = newCell;
}

"A"

list "A"value newCell

int main() {
 Cell* list = nullptr;
 listInsert(list, "A");
 listInsert(list, "B");
 listInsert(list, "C");

 return 0;
}

int main() {
 Cell* list = nullptr;
 listInsert(list, "A");
 listInsert(list, "B");
 listInsert(list, "C");

 return 0;
}

list

"A"

Yay! list loves me!

Pointers by Reference

● If you pass a pointer into a function by
value, you can change the contents at the
object you point at, but not which object
you point at.

● If you pass a pointer into a function by
reference, you can also change which
object is pointed at.

Time-Out for Announcements!

Assignment 5

● Assignment 5 (Priority Queue) goes out today. It’s
due next Friday at the start of class.

● It’s a four-parter, and we’ve included a timetable
on the front of the assignment.
● Start this assignment as soon as you get it! You’ll

have plenty of time to finish everything, but not if you
put it off to the last minute.

● Working in pairs is permitted – and encouraged! –
on this assignment.

● Anton will be holding YEAH hours tomorrow
evening. We’ll announce the time and location on
Piazza and over email.

here!

https://goo.gl/forms/SS81AF57hKEmWh2W2

Midterm Timetable

● You’re done with the midterm exam!
Woohoo!

● We’ll be grading it over the weekend and
returning graded exams on Monday
along with stats and solutions.

● Have any questions in the meantime?
Just ask!

Back to Linked Lists!

Tail Pointers

● A tail pointer is a pointer to the last element
of a linked list.

● Tail pointers make it easy and efficient to add
new elements to the back of a linked list.

● We can use tail pointers to implement an
efficient Queue using a linked list.

Tail Pointers

● A tail pointer is a pointer to the last element
of a linked list.

● Tail pointers make it easy and efficient to add
new elements to the back of a linked list.

● We can use tail pointers to implement an
efficient Queue using a linked list.

1 2 3

head tail

4

Enqueuing Things

● Case 1: The queue is empty.

● Case 2: The queue is not empty.

1

head tail

head tail

1 3 7 137

Dequeuing Things

● Case 1: Dequeuing when there are 2+ elements.

● Case 2: Dequeuing the last element.

head tail

3 7 137

head tail

Analyzing Efficiency

● What is the big-O complexity of a
dequeue?

● Answer: O(1).
● What is the big-O complexity of an

enqueue?
● Answer: O(1).

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

