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Part Two



  

Recap from Last Time



  

Linked Lists at a Glance

● A linked list is a data structure for 
storing a sequence of elements.

● Each element is stored separately from 
the rest.

● The elements are then chained together 
into a sequence.
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Representing a Cell

● For simplicity, let's assume we're building a 
linked list of strings.

● We can represent a cell in the linked list as a 
structure:

        struct Cell {

            string value;

            Cell* next;

        };
● The structure is defined recursively!



  

...an empty list,
represented by
nullptr, or...

a single linked list
cell that points...

... at another linked 
list.

A Linked List is Either...



  

Traversing a Linked List

● Once we have a linked list, we can traverse 
it by following the links one at a time.
for (Cell* ptr = list; ptr != nullptr; ptr = ptr->next) {

    /* … use ptr … */

}
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Traversing a Linked List
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ptr

● Once we have a linked list, we can traverse 
it by following the links one at a time.
for (Cell* ptr = list; ptr != nullptr; ptr = ptr->next) {

    /* … use ptr … */

}



  

...an empty list,
represented by
nullptr, or...

a single linked list
cell that points...

... at another linked 
list.

A Linked List is Either...



  

New Stuff!



  

Cleaning Up Our Messes



  

Freeing a Linked List

● All good things must come to an end, and 
we eventually need to reclaim the memory 
for a linked list.

● The following code triggers undefined 
behavior. Don’t do this!
for (Cell* ptr = list; ptr != nullptr; ptr = ptr->next) {

    delete ptr;

}



  

Freeing a Linked List

???ptr

● All good things must come to an end, and 
we eventually need to reclaim the memory 
for a linked list.

● The following code triggers undefined 
behavior. Don’t do this!
for (Cell* ptr = list; ptr != nullptr; ptr = ptr->next) {

    delete ptr;

}



  

Freeing a Linked List Properly

● To properly free a linked list, we have to 
be able to
● Destroy a cell, and
● Advance to the cell after it.

● How might we accomplish this?



  

while (list != nullptr) {
Cell* next = list->next;

   delete list;
   list = next;
}



  

...an empty list,
represented by
nullptr, or...

a single linked list
cell that points...

... at another linked 
list.

A Linked List is Either...



  

Linked Lists: The Tricky Parts

● Suppose that we want to write a function 
that will add an element to the front of a 
linked list.

● What might this function look like?



  

What went wrong?



  

int main() {
    Cell* list = nullptr;
    listInsert(list, "A");
    listInsert(list, "B");
    listInsert(list, "C");

    return 0;
}

int main() {
    Cell* list = nullptr;
    listInsert(list, "A");
    listInsert(list, "B");
    listInsert(list, "C");

    return 0;
}

list



  

int main() {
    Cell* list = NULL;
    listInsert(list, "A");
    listInsert(list, "B");
    listInsert(list, "C");

    return 0;
}

int main() {
    Cell* list = NULL;
    listInsert(list, "A");
    listInsert(list, "B");
    listInsert(list, "C");

    return 0;
}

list

void listInsert(Cell* list, const string& value) {
    Cell* newCell = new Cell;
    newCell->value = value;
    newCell->next = list;
    list = newCell;
}

void listInsert(Cell* list, const string& value) {
    Cell* newCell = new Cell;
    newCell->value = value;
    newCell->next = list;
    list = newCell;
}

list

"A"

"A"valuenewCell



  

int main() {
    Cell* list = nullptr;
    listInsert(list, "A");
    listInsert(list, "B");
    listInsert(list, "C");

    return 0;
}

int main() {
    Cell* list = nullptr;
    listInsert(list, "A");
    listInsert(list, "B");
    listInsert(list, "C");

    return 0;
}

list

"A"

Why does
nobody love me?



  

Pointers by Reference

● To resolve this problem, we can pass the linked 
list pointer by reference.

● Our new function:

void listInsert(Cell*& list, const string& value) {
    Cell* newCell = new Cell;
    newCell->value = value;
    newCell->next = list;
    list = newCell;
}



  

Pointers by Reference

● To resolve this problem, we can pass the linked 
list pointer by reference.

● Our new function:

void listInsert(Cell*& list, const string& value) {
    Cell* newCell = new Cell;
    newCell->value = value;
    newCell->next = list;
    list = newCell;
} This is a reference to a 

pointer to a Cell. If we change 
where list points in this function, 

the changes will stick!

This is a reference to a 
pointer to a Cell. If we change 
where list points in this function, 

the changes will stick!



  

int main() {
    Cell* list = nullptr;
    listInsert(list, "A");
    listInsert(list, "B");
    listInsert(list, "C");

    return 0;
}

int main() {
    Cell* list = nullptr;
    listInsert(list, "A");
    listInsert(list, "B");
    listInsert(list, "C");

    return 0;
}

list



  

int main() {
    Cell* list = nullptr;
    listInsert(list, "A");
    listInsert(list, "B");
    listInsert(list, "C");

    return 0;
}

int main() {
    Cell* list = nullptr;
    listInsert(list, "A");
    listInsert(list, "B");
    listInsert(list, "C");

    return 0;
}

list

void listInsert(Cell*& list, const string& value) {
    Cell* newCell = new Cell;
    newCell->value = value;
    newCell->next = list;
    list = newCell;
}

void listInsert(Cell*& list, const string& value) {
    Cell* newCell = new Cell;
    newCell->value = value;
    newCell->next = list;
    list = newCell;
}

"A"

list "A"value newCell



  

int main() {
    Cell* list = nullptr;
    listInsert(list, "A");
    listInsert(list, "B");
    listInsert(list, "C");

    return 0;
}

int main() {
    Cell* list = nullptr;
    listInsert(list, "A");
    listInsert(list, "B");
    listInsert(list, "C");

    return 0;
}

list

"A"

Yay!  list loves me!



  

Pointers by Reference

● If you pass a pointer into a function by 
value, you can change the contents at the 
object you point at, but not which object 
you point at.

● If you pass a pointer into a function by 
reference, you can also change which 
object is pointed at.



  

Time-Out for Announcements!



  

Assignment 5

● Assignment 5 (Priority Queue) goes out today. It’s 
due next Friday at the start of class.

● It’s a four-parter, and we’ve included a timetable 
on the front of the assignment.
● Start this assignment as soon as you get it! You’ll 

have plenty of time to finish everything, but not if you 
put it off to the last minute.

● Working in pairs is permitted – and encouraged! – 
on this assignment.

● Anton will be holding YEAH hours tomorrow 
evening. We’ll announce the time and location on 
Piazza and over email.



  

here!

https://goo.gl/forms/SS81AF57hKEmWh2W2


  

Midterm Timetable

● You’re done with the midterm exam! 
Woohoo!

● We’ll be grading it over the weekend and 
returning graded exams on Monday 
along with stats and solutions.

● Have any questions in the meantime? 
Just ask!



  

Back to Linked Lists!



  

Tail Pointers

● A tail pointer is a pointer to the last element 
of a linked list.

● Tail pointers make it easy and efficient to add 
new elements to the back of a linked list.

● We can use tail pointers to implement an 
efficient Queue using a linked list.



  

Tail Pointers

● A tail pointer is a pointer to the last element 
of a linked list.

● Tail pointers make it easy and efficient to add 
new elements to the back of a linked list.

● We can use tail pointers to implement an 
efficient Queue using a linked list.

1 2 3

head tail

4



  

Enqueuing Things

● Case 1: The queue is empty.

 

● Case 2: The queue is not empty.

1

head tail

head tail

1 3 7 137



  

Dequeuing Things

● Case 1: Dequeuing when there are 2+ elements.

 

● Case 2: Dequeuing the last element.

head tail

3 7 137

head tail



  

Analyzing Efficiency

● What is the big-O complexity of a 
dequeue?

● Answer: O(1).
● What is the big-O complexity of an 

enqueue?
● Answer: O(1).
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