

Linked Lists
Part One

Array-Based Allocation

● Our current implementation of Stack uses
dynamically-allocated arrays.

● To append an element:
● If there is free space, put the element into that

space.
● Otherwise, get a huge new array and move

everything over.

1 2 3 4

1 2 3 41 2 3 4

A Different Idea

● Instead of reallocating a huge array to
get the space we need, why not just get a
tiny amount of extra space for the next
element?

● Think about how you take notes: when
you run out of space on a page, you just
get a new page. You don't copy your
entire set of notes onto a longer sheet of
paper!

Excuse Me, Coming Through...

1 2 3 41 2 3 4 5 6 7

137

Excuse Me, Coming Through...

1 2 3 4137 1 2 3 4 5 6 7

Shoving Things Over

● Right now, inserting an element into a
middle of a Vector can be very costly.

● Couldn't we just do something like this?

1 2 3 41 2 3 4 5 6 7

Shoving Things Over

● Right now, inserting an element into a
middle of a Vector can be very costly.

● Couldn't we just do something like this?

1 2 3 41 2 3 4 5 6 7

137

Linked Lists at a Glance

● A linked list is a data structure for
storing a sequence of elements.

● Each element is stored separately from
the rest.

● The elements are then chained together
into a sequence.

1 2 3 4

Linked Lists at a Glance

● Can efficiently splice new elements into
the list or remove existing elements
anywhere in the list.

● Never have to do a massive copy step;
insertion is efficient in the worst-case.

● Has some tradeoffs; we'll see this later.

Two Technical Prerequisites

Dynamic Memory Allocation

● We have seen the new keyword used to
allocate arrays, but it can also be used to
allocate single objects.

● The syntax

new T(args)

creates a new object of type T passing
the appropriate arguments to the
constructor, then returns a pointer to it.

Dynamic Memory Allocation

struct Tribute {
 string name;
 int districtNumber;
};

Tribute* t = new Tribute;
t->name = "Katniss Everdeen";
t->districtNumber = 12;

????

name

districtNumber
t

A note here: the type
Tribute* can mean either “an

array of Tributes” or “a
single Tribute.” It’s up to you

the programmer to make
sure not to mix the two up!

A note here: the type
Tribute* can mean either “an

array of Tributes” or “a
single Tribute.” It’s up to you

the programmer to make
sure not to mix the two up!

Dynamic Memory Allocation

struct Tribute {
 string name;
 int districtNumber;
};

Tribute* t = new Tribute;
t->name = "Katniss Everdeen";
t->districtNumber = 12;

????

name

districtNumber
t

Because t is a pointer to a
Tribute, not an actual

Tribute, we have to use the
arrow operator to access the

fields pointed at by t.

Because t is a pointer to a
Tribute, not an actual

Tribute, we have to use the
arrow operator to access the

fields pointed at by t.

Cleaning Up

● As with dynamic arrays, you are responsible for
cleaning up memory allocated with new.

● You can deallocate memory with the delete
keyword:

delete ptr;

● This destroys the object pointed at by the given
pointer, not the pointer itself.

ptr
137

Unfortunately...

● In C++, all of the following result in
undefined behavior:
● Deleting an object with delete[] that was

allocated with new.
● Deleting an object with delete that was

allocated with new[].
● Although it is not always an error, it is

usually a Very Bad Idea to treat an array
like a single object or vice-versa.

A Pointless Exercise

● When working with pointers, we sometimes wish to
indicate that a pointer is not pointing to anything.

● In C++, you can set a pointer to nullptr to indicate
that it is not pointing to an object:

ptr = nullptr;
● This is not the default value for pointers; by default,

pointers default to a garbage value.
● In older C++ code (and the textbook!), you’ll see

people use NULL instead of nullptr. We strongly
advise against using NULL and recommend you use
nullptr instead.

And now... linked lists!

But first, some announcements!

Assignment 4

● Assignment 4 was due at the start of
class today.
● Using a late day? You can turn it in by

Wednesday because Monday is a holiday.
● We strongly advise against this – the exam

expects that you know how to solve all the
problems from the assignment and you’ll
need the time to study.

● Assignment 5 will go out on Wednesday
of next week.

Midterm Logistics

● Midterm is next Tuesday from 7PM – 10PM.
Locations are divvied up by last (family) name:
● Abb – Lam: Go to Hewlett 200.
● Lee – Nic: Go to Hewlett 201.
● Ntu – Zhu: Go to Cubberly Auditorium.

● Space is tight, so please go to your assigned
exam room.

● You get a double-sided, 8.5” × 11” sheet of
notes with you when you take the exam.

Back to CS106B!

Linked List Cells

● A linked list is a chain of cells.
● Each cell contains two pieces of information:

● Some piece of data that is stored in the
sequence, and

● A link to the next cell in the list.
● We can traverse the list by starting at the

first cell and repeatedly following its link.

1 2 3 4137

Representing a Cell

● For simplicity, let's assume we're building a
linked list of strings.

● We can represent a cell in the linked list as a
structure:

 struct Cell {

 string value;

 Cell* next;

 };
● The structure is defined recursively!

Building Linked Lists

...an empty list,
represented by
nullptr, or...

a single linked list
cell that points...

... at another linked
list.

A Linked List is Either...

1 2 3137

Now that we’ve got the list,
what can we do with it?

Traversing a Linked List

● Once we have a linked list, we can traverse
it by following the links one at a time.
for (Cell* ptr = list; ptr != nullptr; ptr = ptr->next) {

 /* … use ptr … */

}

1 2 4list 3

...an empty list,
represented by
nullptr, or...

a single linked list
cell that points...

... at another linked
list.

A Linked List is Either...

Next Time

● Pointers by Reference
● Fun for the whole linked list family!

● Reimplementing Stacks and Queues
● Worst-case efficiency, at a price!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

