

Linked Lists
Part One

Array-Based Allocation

● Our current implementation of Stack uses
dynamically-allocated arrays.

● To append an element:
● If there is free space, put the element into that

space.
● Otherwise, get a huge new array and move

everything over.

1 2 3

Array-Based Allocation

● Our current implementation of Stack uses
dynamically-allocated arrays.

● To append an element:
● If there is free space, put the element into that

space.
● Otherwise, get a huge new array and move

everything over.

1 2 3 4

Array-Based Allocation

● Our current implementation of Stack uses
dynamically-allocated arrays.

● To append an element:
● If there is free space, put the element into that

space.
● Otherwise, get a huge new array and move

everything over.

1 2 3 4

1 2 3 4

Array-Based Allocation

● Our current implementation of Stack uses
dynamically-allocated arrays.

● To append an element:
● If there is free space, put the element into that

space.
● Otherwise, get a huge new array and move

everything over.

1 2 3 4

1 2 3 41

Array-Based Allocation

● Our current implementation of Stack uses
dynamically-allocated arrays.

● To append an element:
● If there is free space, put the element into that

space.
● Otherwise, get a huge new array and move

everything over.

1 2 3 4

1 2 3 41 2

Array-Based Allocation

● Our current implementation of Stack uses
dynamically-allocated arrays.

● To append an element:
● If there is free space, put the element into that

space.
● Otherwise, get a huge new array and move

everything over.

1 2 3 4

1 2 3 41 2 3

Array-Based Allocation

● Our current implementation of Stack uses
dynamically-allocated arrays.

● To append an element:
● If there is free space, put the element into that

space.
● Otherwise, get a huge new array and move

everything over.

1 2 3 4

1 2 3 41 2 3 4

Array-Based Allocation

● Our current implementation of Stack uses
dynamically-allocated arrays.

● To append an element:
● If there is free space, put the element into that

space.
● Otherwise, get a huge new array and move

everything over.

1 2 3 4

1 2 3 41 2 3 4

Array-Based Allocation

● Our current implementation of Stack uses
dynamically-allocated arrays.

● To append an element:
● If there is free space, put the element into that

space.
● Otherwise, get a huge new array and move

everything over.

1 2 3 41 2 3 4

Array-Based Allocation

● Our current implementation of Stack uses
dynamically-allocated arrays.

● To append an element:
● If there is free space, put the element into that

space.
● Otherwise, get a huge new array and move

everything over.

1 2 3 41 2 3 4

Array-Based Allocation

● Our current implementation of Stack uses
dynamically-allocated arrays.

● To append an element:
● If there is free space, put the element into that

space.
● Otherwise, get a huge new array and move

everything over.

1 2 3 41 2 3 4 5

Array-Based Allocation

● Our current implementation of Stack uses
dynamically-allocated arrays.

● To append an element:
● If there is free space, put the element into that

space.
● Otherwise, get a huge new array and move

everything over.

1 2 3 41 2 3 4 5 6

A Different Idea

● Instead of reallocating a huge array to
get the space we need, why not just get a
tiny amount of extra space for the next
element?

● Think about how you take notes: when
you run out of space on a page, you just
get a new page. You don't copy your
entire set of notes onto a longer sheet of
paper!

Excuse Me, Coming Through...

1 2 3 41 2 3 4 5 6 7

Excuse Me, Coming Through...

1 2 3 41 2 3 4 5 6 7

137

Excuse Me, Coming Through...

1 2 3 41 2 3 4 5 6 7 7

137

Excuse Me, Coming Through...

1 2 3 41 2 3 4 5 6 6 7

137

Excuse Me, Coming Through...

1 2 3 41 2 3 4 5 5 6 7

137

Excuse Me, Coming Through...

1 2 3 41 2 3 4 4 5 6 7

137

Excuse Me, Coming Through...

1 2 3 41 2 3 3 4 5 6 7

137

Excuse Me, Coming Through...

1 2 3 41 2 2 3 4 5 6 7

137

Excuse Me, Coming Through...

1 2 3 41 1 2 3 4 5 6 7

137

Excuse Me, Coming Through...

1 2 3 4137 1 2 3 4 5 6 7

Shoving Things Over

● Right now, inserting an element into a
middle of a Vector can be very costly.

● Couldn't we just do something like this?

1 2 3 41 2 3 4 5 6 7

Shoving Things Over

● Right now, inserting an element into a
middle of a Vector can be very costly.

● Couldn't we just do something like this?

1 2 3 41 2 3 4 5 6 7

137

Shoving Things Over

● Right now, inserting an element into a
middle of a Vector can be very costly.

● Couldn't we just do something like this?

1 2 3 41 2 3 4 5 6 7

137

Shoving Things Over

● Right now, inserting an element into a
middle of a Vector can be very costly.

● Couldn't we just do something like this?

1 2 3 41 2 3 4 5 6 7

137

Linked Lists at a Glance

● A linked list is a data structure for
storing a sequence of elements.

● Each element is stored separately from
the rest.

● The elements are then chained together
into a sequence.

1 2 3

Linked Lists at a Glance

● A linked list is a data structure for
storing a sequence of elements.

● Each element is stored separately from
the rest.

● The elements are then chained together
into a sequence.

1 2 3 4

Linked Lists at a Glance

● A linked list is a data structure for
storing a sequence of elements.

● Each element is stored separately from
the rest.

● The elements are then chained together
into a sequence.

1 2 3 4

Linked Lists at a Glance

● A linked list is a data structure for
storing a sequence of elements.

● Each element is stored separately from
the rest.

● The elements are then chained together
into a sequence.

1 2 3 4

Linked Lists at a Glance

● A linked list is a data structure for
storing a sequence of elements.

● Each element is stored separately from
the rest.

● The elements are then chained together
into a sequence.

1 2 3 4137

Linked Lists at a Glance

● A linked list is a data structure for
storing a sequence of elements.

● Each element is stored separately from
the rest.

● The elements are then chained together
into a sequence.

1 3 4137

Linked Lists at a Glance

● Can efficiently splice new elements into
the list or remove existing elements
anywhere in the list.

● Never have to do a massive copy step;
insertion is efficient in the worst-case.

● Has some tradeoffs; we'll see this later.

Two Technical Prerequisites

Dynamic Memory Allocation

● We have seen the new keyword used to
allocate arrays, but it can also be used to
allocate single objects.

● The syntax

new T(args)

creates a new object of type T passing
the appropriate arguments to the
constructor, then returns a pointer to it.

Dynamic Memory Allocation

struct Tribute {
 string name;
 int districtNumber;
};

Tribute* t = new Tribute;
t->name = "Katniss Everdeen";
t->districtNumber = 12;

Dynamic Memory Allocation

struct Tribute {
 string name;
 int districtNumber;
};

Tribute* t = new Tribute;
t->name = "Katniss Everdeen";
t->districtNumber = 12;

Dynamic Memory Allocation

struct Tribute {
 string name;
 int districtNumber;
};

Tribute* t = new Tribute;
t->name = "Katniss Everdeen";
t->districtNumber = 12;

t

Dynamic Memory Allocation

struct Tribute {
 string name;
 int districtNumber;
};

Tribute* t = new Tribute;
t->name = "Katniss Everdeen";
t->districtNumber = 12;

????

name

districtNumber
t

Dynamic Memory Allocation

struct Tribute {
 string name;
 int districtNumber;
};

Tribute* t = new Tribute;
t->name = "Katniss Everdeen";
t->districtNumber = 12;

????

name

districtNumber
t

Dynamic Memory Allocation

struct Tribute {
 string name;
 int districtNumber;
};

Tribute* t = new Tribute;
t->name = "Katniss Everdeen";
t->districtNumber = 12;

????

name

districtNumber
t

A note here: the type
Tribute* can mean either “an

array of Tributes” or “a
single Tribute.” It’s up to you

the programmer to make
sure not to mix the two up!

A note here: the type
Tribute* can mean either “an

array of Tributes” or “a
single Tribute.” It’s up to you

the programmer to make
sure not to mix the two up!

Dynamic Memory Allocation

struct Tribute {
 string name;
 int districtNumber;
};

Tribute* t = new Tribute;
t->name = "Katniss Everdeen";
t->districtNumber = 12;

????

name

districtNumber
t

Dynamic Memory Allocation

struct Tribute {
 string name;
 int districtNumber;
};

Tribute* t = new Tribute;
t->name = "Katniss Everdeen";
t->districtNumber = 12;

????

name

districtNumber
t

Because t is a pointer to a
Tribute, not an actual

Tribute, we have to use the
arrow operator to access the

fields pointed at by t.

Because t is a pointer to a
Tribute, not an actual

Tribute, we have to use the
arrow operator to access the

fields pointed at by t.

Dynamic Memory Allocation

struct Tribute {
 string name;
 int districtNumber;
};

Tribute* t = new Tribute;
t->name = "Katniss Everdeen";
t->districtNumber = 12;

????

name

districtNumber
t

Dynamic Memory Allocation

struct Tribute {
 string name;
 int districtNumber;
};

Tribute* t = new Tribute;
t->name = "Katniss Everdeen";
t->districtNumber = 12;

Katniss Everdeen

????

name

districtNumber
t

Dynamic Memory Allocation

struct Tribute {
 string name;
 int districtNumber;
};

Tribute* t = new Tribute;
t->name = "Katniss Everdeen";
t->districtNumber = 12;

Katniss Everdeen

????

name

districtNumber
t

Dynamic Memory Allocation

struct Tribute {
 string name;
 int districtNumber;
};

Tribute* t = new Tribute;
t->name = "Katniss Everdeen";
t->districtNumber = 12;

Katniss Everdeen

12

name

districtNumber
t

Cleaning Up

● As with dynamic arrays, you are responsible for
cleaning up memory allocated with new.

● You can deallocate memory with the delete
keyword:

delete ptr;

● This destroys the object pointed at by the given
pointer, not the pointer itself.

ptr
137

Cleaning Up

● As with dynamic arrays, you are responsible for
cleaning up memory allocated with new.

● You can deallocate memory with the delete
keyword:

delete ptr;

● This destroys the object pointed at by the given
pointer, not the pointer itself.

ptr
137

Cleaning Up

● As with dynamic arrays, you are responsible for
cleaning up memory allocated with new.

● You can deallocate memory with the delete
keyword:

delete ptr;

● This destroys the object pointed at by the given
pointer, not the pointer itself.

ptr

???

Unfortunately...

● In C++, all of the following result in
undefined behavior:
● Deleting an object with delete[] that was

allocated with new.
● Deleting an object with delete that was

allocated with new[].
● Although it is not always an error, it is

usually a Very Bad Idea to treat an array
like a single object or vice-versa.

A Pointless Exercise

● When working with pointers, we sometimes wish to
indicate that a pointer is not pointing to anything.

● In C++, you can set a pointer to nullptr to indicate
that it is not pointing to an object:

ptr = nullptr;
● This is not the default value for pointers; by default,

pointers default to a garbage value.
● In older C++ code (and the textbook!), you’ll see

people use NULL instead of nullptr. We strongly
advise against using NULL and recommend you use
nullptr instead.

And now... linked lists!

But first, some announcements!

Assignment 4

● Assignment 4 was due at the start of
class today.
● Using a late day? You can turn it in by

Wednesday because Monday is a holiday.
● We strongly advise against this – the exam

expects that you know how to solve all the
problems from the assignment and you’ll
need the time to study.

● Assignment 5 will go out on Wednesday
of next week.

Midterm Logistics

● Midterm is next Tuesday from 7PM – 10PM.
Locations are divvied up by last (family) name:
● Abb – Lam: Go to Hewlett 200.
● Lee – Nic: Go to Hewlett 201.
● Ntu – Zhu: Go to Cubberly Auditorium.

● Space is tight, so please go to your assigned
exam room.

● You get a double-sided, 8.5” × 11” sheet of
notes with you when you take the exam.

Back to CS106B!

Linked List Cells

● A linked list is a chain of cells.
● Each cell contains two pieces of information:

● Some piece of data that is stored in the
sequence, and

● A link to the next cell in the list.
● We can traverse the list by starting at the

first cell and repeatedly following its link.

1 2 3 4137

Representing a Cell

● For simplicity, let's assume we're building a
linked list of strings.

● We can represent a cell in the linked list as a
structure:

 struct Cell {

 string value;

 /* ? */ next;

 };

The structure is defined recursively!

Representing a Cell

● For simplicity, let's assume we're building a
linked list of strings.

● We can represent a cell in the linked list as a
structure:

 struct Cell {

 string value;

 Cell* next;

 };

The structure is defined recursively!

Representing a Cell

● For simplicity, let's assume we're building a
linked list of strings.

● We can represent a cell in the linked list as a
structure:

 struct Cell {

 string value;

 Cell* next;

 };
● The structure is defined recursively!

Building Linked Lists

...an empty list,
represented by
nullptr, or...

a single linked list
cell that points...

... at another linked
list.

A Linked List is Either...

...an empty list,
represented by
nullptr, or...

a single linked list
cell that points...

... at another linked
list.

A Linked List is Either...

1 2 3137

Cell* result = nullptr;
while (true) {

string line = getLine("Next entry? ");
if (line == "") break;

Cell* cell = new Cell;
cell->value = line;

cell->next = result;
result = cell;

}
return result;

Cell* result = nullptr;
while (true) {

string line = getLine("Next entry? ");
if (line == "") break;

Cell* cell = new Cell;
cell->value = line;

cell->next = result;
result = cell;

}
return result;

Cell* result = nullptr;
while (true) {

string line = getLine("Next entry? ");
if (line == "") break;

Cell* cell = new Cell;
cell->value = line;

cell->next = result;
result = cell;

}
return result;

result

Cell* result = nullptr;
while (true) {

string line = getLine("Next entry? ");
if (line == "") break;

Cell* cell = new Cell;
cell->value = line;

cell->next = result;
result = cell;

}
return result;

result

Cell* result = nullptr;
while (true) {

string line = getLine("Next entry? ");
if (line == "") break;

Cell* cell = new Cell;
cell->value = line;

cell->next = result;
result = cell;

}
return result;

result

Cell* result = nullptr;
while (true) {

string line = getLine("Next entry? ");
if (line == "") break;

Cell* cell = new Cell;
cell->value = line;

cell->next = result;
result = cell;

}
return result;

result

Cell* result = nullptr;
while (true) {

string line = getLine("Next entry? ");
if (line == "") break;

Cell* cell = new Cell;
cell->value = line;

cell->next = result;
result = cell;

}
return result;

dikdik!

line

result

Cell* result = nullptr;
while (true) {

string line = getLine("Next entry? ");
if (line == "") break;

Cell* cell = new Cell;
cell->value = line;

cell->next = result;
result = cell;

}
return result;

dikdik!

line

result

Cell* result = nullptr;
while (true) {

string line = getLine("Next entry? ");
if (line == "") break;

Cell* cell = new Cell;
cell->value = line;

cell->next = result;
result = cell;

}
return result;

dikdik!

line

result

Cell* result = nullptr;
while (true) {

string line = getLine("Next entry? ");
if (line == "") break;

Cell* cell = new Cell;
cell->value = line;

cell->next = result;
result = cell;

}
return result;

dikdik!

line

result

Cell* result = nullptr;
while (true) {

string line = getLine("Next entry? ");
if (line == "") break;

Cell* cell = new Cell;
cell->value = line;

cell->next = result;
result = cell;

}
return result;

dikdik!

line

cell result

Cell* result = nullptr;
while (true) {

string line = getLine("Next entry? ");
if (line == "") break;

Cell* cell = new Cell;
cell->value = line;

cell->next = result;
result = cell;

}
return result;

dikdik!

line

cell

???

result

Cell* result = nullptr;
while (true) {

string line = getLine("Next entry? ");
if (line == "") break;

Cell* cell = new Cell;
cell->value = line;

cell->next = result;
result = cell;

}
return result;

dikdik!

line

cell

???

result

Cell* result = nullptr;
while (true) {

string line = getLine("Next entry? ");
if (line == "") break;

Cell* cell = new Cell;
cell->value = line;

cell->next = result;
result = cell;

}
return result;

dikdik!

line

cell

???

result

Cell* result = nullptr;
while (true) {

string line = getLine("Next entry? ");
if (line == "") break;

Cell* cell = new Cell;
cell->value = line;

cell->next = result;
result = cell;

}
return result;

dikdik!

line

cell

???

result

Cell* result = nullptr;
while (true) {

string line = getLine("Next entry? ");
if (line == "") break;

Cell* cell = new Cell;
cell->value = line;

cell->next = result;
result = cell;

}
return result;

dikdik!

line

cell

dikdik!

???

result

Cell* result = nullptr;
while (true) {

string line = getLine("Next entry? ");
if (line == "") break;

Cell* cell = new Cell;
cell->value = line;

cell->next = result;
result = cell;

}
return result;

dikdik!

line

cell

dikdik!

???

result

Cell* result = nullptr;
while (true) {

string line = getLine("Next entry? ");
if (line == "") break;

Cell* cell = new Cell;
cell->value = line;

cell->next = result;
result = cell;

}
return result;

dikdik!

line

cell

dikdik!

???

result

Cell* result = nullptr;
while (true) {

string line = getLine("Next entry? ");
if (line == "") break;

Cell* cell = new Cell;
cell->value = line;

cell->next = result;
result = cell;

}
return result;

dikdik!

line

cell

dikdik!

result

Cell* result = nullptr;
while (true) {

string line = getLine("Next entry? ");
if (line == "") break;

Cell* cell = new Cell;
cell->value = line;

cell->next = result;
result = cell;

}
return result;

dikdik!

line

cell

dikdik!

result

Cell* result = nullptr;
while (true) {

string line = getLine("Next entry? ");
if (line == "") break;

Cell* cell = new Cell;
cell->value = line;

cell->next = result;
result = cell;

}
return result;

dikdik!

line

cell

dikdik!

result

Cell* result = nullptr;
while (true) {

string line = getLine("Next entry? ");
if (line == "") break;

Cell* cell = new Cell;
cell->value = line;

cell->next = result;
result = cell;

}
return result;

dikdik!

line

cell

dikdik!

result

Cell* result = nullptr;
while (true) {

string line = getLine("Next entry? ");
if (line == "") break;

Cell* cell = new Cell;
cell->value = line;

cell->next = result;
result = cell;

}
return result;

dikdik!

line

cell

dikdik!

result

Cell* result = nullptr;
while (true) {

string line = getLine("Next entry? ");
if (line == "") break;

Cell* cell = new Cell;
cell->value = line;

cell->next = result;
result = cell;

}
return result;

dikdik!

result

Cell* result = nullptr;
while (true) {

string line = getLine("Next entry? ");
if (line == "") break;

Cell* cell = new Cell;
cell->value = line;

cell->next = result;
result = cell;

}
return result;

dikdik!

result

Cell* result = nullptr;
while (true) {

string line = getLine("Next entry? ");
if (line == "") break;

Cell* cell = new Cell;
cell->value = line;

cell->next = result;
result = cell;

}
return result;

dikdik!

result

Cell* result = nullptr;
while (true) {

string line = getLine("Next entry? ");
if (line == "") break;

Cell* cell = new Cell;
cell->value = line;

cell->next = result;
result = cell;

}
return result;

quokka!

line

dikdik!

result

Cell* result = nullptr;
while (true) {

string line = getLine("Next entry? ");
if (line == "") break;

Cell* cell = new Cell;
cell->value = line;

cell->next = result;
result = cell;

}
return result;

quokka!

line

dikdik!

result

Cell* result = nullptr;
while (true) {

string line = getLine("Next entry? ");
if (line == "") break;

Cell* cell = new Cell;
cell->value = line;

cell->next = result;
result = cell;

}
return result;

quokka!

line

dikdik!

result

Cell* result = nullptr;
while (true) {

string line = getLine("Next entry? ");
if (line == "") break;

Cell* cell = new Cell;
cell->value = line;

cell->next = result;
result = cell;

}
return result;

quokka!

line

cell

???

dikdik!

result

Cell* result = nullptr;
while (true) {

string line = getLine("Next entry? ");
if (line == "") break;

Cell* cell = new Cell;
cell->value = line;

cell->next = result;
result = cell;

}
return result;

quokka!

line

cell

???

dikdik!

result

Cell* result = nullptr;
while (true) {

string line = getLine("Next entry? ");
if (line == "") break;

Cell* cell = new Cell;
cell->value = line;

cell->next = result;
result = cell;

}
return result;

quokka!

line

cell

quokka!

???

dikdik!

result

Cell* result = nullptr;
while (true) {

string line = getLine("Next entry? ");
if (line == "") break;

Cell* cell = new Cell;
cell->value = line;

cell->next = result;
result = cell;

}
return result;

quokka!

line

cell

quokka!

???

dikdik!

result

Cell* result = nullptr;
while (true) {

string line = getLine("Next entry? ");
if (line == "") break;

Cell* cell = new Cell;
cell->value = line;

cell->next = result;
result = cell;

}
return result;

quokka!

line

cell

quokka! dikdik!

result

Cell* result = nullptr;
while (true) {

string line = getLine("Next entry? ");
if (line == "") break;

Cell* cell = new Cell;
cell->value = line;

cell->next = result;
result = cell;

}
return result;

quokka!

line

cell

quokka! dikdik!

result

Cell* result = nullptr;
while (true) {

string line = getLine("Next entry? ");
if (line == "") break;

Cell* cell = new Cell;
cell->value = line;

cell->next = result;
result = cell;

}
return result;

quokka!

line

cell

quokka! dikdik!

result

Cell* result = nullptr;
while (true) {

string line = getLine("Next entry? ");
if (line == "") break;

Cell* cell = new Cell;
cell->value = line;

cell->next = result;
result = cell;

}
return result;

quokka!

line

cell

quokka! dikdik!

result

Cell* result = nullptr;
while (true) {

string line = getLine("Next entry? ");
if (line == "") break;

Cell* cell = new Cell;
cell->value = line;

cell->next = result;
result = cell;

}
return result;

quokka! dikdik!

result

Cell* result = nullptr;
while (true) {

string line = getLine("Next entry? ");
if (line == "") break;

Cell* cell = new Cell;
cell->value = line;

cell->next = result;
result = cell;

}
return result;

quokka! dikdik!

result

Cell* result = nullptr;
while (true) {

string line = getLine("Next entry? ");
if (line == "") break;

Cell* cell = new Cell;
cell->value = line;

cell->next = result;
result = cell;

}
return result;

quokka! dikdik!

result

Cell* result = nullptr;
while (true) {

string line = getLine("Next entry? ");
if (line == "") break;

Cell* cell = new Cell;
cell->value = line;

cell->next = result;
result = cell;

}
return result;

pudu!
line

quokka! dikdik!

result

Cell* result = nullptr;
while (true) {

string line = getLine("Next entry? ");
if (line == "") break;

Cell* cell = new Cell;
cell->value = line;

cell->next = result;
result = cell;

}
return result;

pudu!
line

quokka! dikdik!

result

Cell* result = nullptr;
while (true) {

string line = getLine("Next entry? ");
if (line == "") break;

Cell* cell = new Cell;
cell->value = line;

cell->next = result;
result = cell;

}
return result;

pudu!
line

quokka! dikdik!

result

Cell* result = nullptr;
while (true) {

string line = getLine("Next entry? ");
if (line == "") break;

Cell* cell = new Cell;
cell->value = line;

cell->next = result;
result = cell;

}
return result;

pudu!
line

quokka! dikdik!

resultcell

???

Cell* result = nullptr;
while (true) {

string line = getLine("Next entry? ");
if (line == "") break;

Cell* cell = new Cell;
cell->value = line;

cell->next = result;
result = cell;

}
return result;

pudu!
line

quokka! dikdik!

resultcell

???

Cell* result = nullptr;
while (true) {

string line = getLine("Next entry? ");
if (line == "") break;

Cell* cell = new Cell;
cell->value = line;

cell->next = result;
result = cell;

}
return result;

pudu!
line

quokka! dikdik!

resultcell

pudu!

???

Cell* result = nullptr;
while (true) {

string line = getLine("Next entry? ");
if (line == "") break;

Cell* cell = new Cell;
cell->value = line;

cell->next = result;
result = cell;

}
return result;

pudu!
line

quokka! dikdik!

resultcell

pudu!

???

Cell* result = nullptr;
while (true) {

string line = getLine("Next entry? ");
if (line == "") break;

Cell* cell = new Cell;
cell->value = line;

cell->next = result;
result = cell;

}
return result;

pudu!
line

quokka! dikdik!

resultcell

pudu!

Cell* result = nullptr;
while (true) {

string line = getLine("Next entry? ");
if (line == "") break;

Cell* cell = new Cell;
cell->value = line;

cell->next = result;
result = cell;

}
return result;

pudu!
line

quokka! dikdik!

resultcell

pudu!

Cell* result = nullptr;
while (true) {

string line = getLine("Next entry? ");
if (line == "") break;

Cell* cell = new Cell;
cell->value = line;

cell->next = result;
result = cell;

}
return result;

pudu!
line

quokka! dikdik!

resultcell

pudu!

Cell* result = nullptr;
while (true) {

string line = getLine("Next entry? ");
if (line == "") break;

Cell* cell = new Cell;
cell->value = line;

cell->next = result;
result = cell;

}
return result;

pudu!
line

quokka! dikdik!

resultcell

pudu!

Cell* result = nullptr;
while (true) {

string line = getLine("Next entry? ");
if (line == "") break;

Cell* cell = new Cell;
cell->value = line;

cell->next = result;
result = cell;

}
return result;

pudu!
line

quokka! dikdik!

result

pudu!

Now that we’ve got the list,
what can we do with it?

Traversing a Linked List

● Once we have a linked list, we can traverse
it by following the links one at a time.
for (Cell* ptr = list; ptr != nullptr; ptr = ptr->next) {

 /* … use ptr … */

}

1 2 4list 3

Traversing a Linked List

1 2 4list 3

ptr

● Once we have a linked list, we can traverse
it by following the links one at a time.
for (Cell* ptr = list; ptr != nullptr; ptr = ptr->next) {

 /* … use ptr … */

}

Traversing a Linked List

1 2 4list 3

ptr

● Once we have a linked list, we can traverse
it by following the links one at a time.
for (Cell* ptr = list; ptr != nullptr; ptr = ptr->next) {

 /* … use ptr … */

}

Traversing a Linked List

1 2 4list 3

ptr

● Once we have a linked list, we can traverse
it by following the links one at a time.
for (Cell* ptr = list; ptr != nullptr; ptr = ptr->next) {

 /* … use ptr … */

}

Traversing a Linked List

1 2 4list 3

ptr

● Once we have a linked list, we can traverse
it by following the links one at a time.
for (Cell* ptr = list; ptr != nullptr; ptr = ptr->next) {

 /* … use ptr … */

}

Traversing a Linked List

1 2 4list 3

ptr

● Once we have a linked list, we can traverse
it by following the links one at a time.
for (Cell* ptr = list; ptr != nullptr; ptr = ptr->next) {

 /* … use ptr … */

}

Traversing a Linked List

1 2 4list 3

ptr

● Once we have a linked list, we can traverse
it by following the links one at a time.
for (Cell* ptr = list; ptr != nullptr; ptr = ptr->next) {

 /* … use ptr … */

}

Traversing a Linked List

1 2 4list 3

ptr

● Once we have a linked list, we can traverse
it by following the links one at a time.
for (Cell* ptr = list; ptr != nullptr; ptr = ptr->next) {

 /* … use ptr … */

}

Traversing a Linked List

1 2 4list 3

ptr

● Once we have a linked list, we can traverse
it by following the links one at a time.
for (Cell* ptr = list; ptr != nullptr; ptr = ptr->next) {

 /* … use ptr … */

}

...an empty list,
represented by
nullptr, or...

a single linked list
cell that points...

... at another linked
list.

A Linked List is Either...

Next Time

● Pointers by Reference
● Fun for the whole linked list family!

● Reimplementing Stacks and Queues
● Worst-case efficiency, at a price!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130

