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Part One



  

Array-Based Allocation

● Our current implementation of Stack uses 
dynamically-allocated arrays.

● To append an element:
● If there is free space, put the element into that 

space.
● Otherwise, get a huge new array and move 

everything over.

1 2 3



  

Array-Based Allocation

● Our current implementation of Stack uses 
dynamically-allocated arrays.

● To append an element:
● If there is free space, put the element into that 

space.
● Otherwise, get a huge new array and move 

everything over.

1 2 3 4



  

Array-Based Allocation

● Our current implementation of Stack uses 
dynamically-allocated arrays.

● To append an element:
● If there is free space, put the element into that 

space.
● Otherwise, get a huge new array and move 

everything over.

1 2 3 4

1 2 3 4



  

Array-Based Allocation

● Our current implementation of Stack uses 
dynamically-allocated arrays.

● To append an element:
● If there is free space, put the element into that 

space.
● Otherwise, get a huge new array and move 

everything over.

1 2 3 4

1 2 3 41



  

Array-Based Allocation

● Our current implementation of Stack uses 
dynamically-allocated arrays.

● To append an element:
● If there is free space, put the element into that 

space.
● Otherwise, get a huge new array and move 

everything over.

1 2 3 4

1 2 3 41 2



  

Array-Based Allocation

● Our current implementation of Stack uses 
dynamically-allocated arrays.

● To append an element:
● If there is free space, put the element into that 

space.
● Otherwise, get a huge new array and move 

everything over.

1 2 3 4

1 2 3 41 2 3



  

Array-Based Allocation

● Our current implementation of Stack uses 
dynamically-allocated arrays.

● To append an element:
● If there is free space, put the element into that 

space.
● Otherwise, get a huge new array and move 

everything over.

1 2 3 4

1 2 3 41 2 3 4



  

Array-Based Allocation

● Our current implementation of Stack uses 
dynamically-allocated arrays.

● To append an element:
● If there is free space, put the element into that 

space.
● Otherwise, get a huge new array and move 

everything over.

1 2 3 4

1 2 3 41 2 3 4



  

Array-Based Allocation

● Our current implementation of Stack uses 
dynamically-allocated arrays.

● To append an element:
● If there is free space, put the element into that 

space.
● Otherwise, get a huge new array and move 

everything over.

1 2 3 41 2 3 4



  

Array-Based Allocation

● Our current implementation of Stack uses 
dynamically-allocated arrays.

● To append an element:
● If there is free space, put the element into that 

space.
● Otherwise, get a huge new array and move 

everything over.

1 2 3 41 2 3 4



  

Array-Based Allocation

● Our current implementation of Stack uses 
dynamically-allocated arrays.

● To append an element:
● If there is free space, put the element into that 

space.
● Otherwise, get a huge new array and move 

everything over.

1 2 3 41 2 3 4 5



  

Array-Based Allocation

● Our current implementation of Stack uses 
dynamically-allocated arrays.
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A Different Idea

● Instead of reallocating a huge array to 
get the space we need, why not just get a 
tiny amount of extra space for the next 
element?

● Think about how you take notes: when 
you run out of space on a page, you just 
get a new page. You don't copy your 
entire set of notes onto a longer sheet of 
paper!



  

Excuse Me, Coming Through...
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Shoving Things Over

● Right now, inserting an element into a 
middle of a Vector can be very costly.

● Couldn't we just do something like this?
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Linked Lists at a Glance

● A linked list is a data structure for 
storing a sequence of elements.

● Each element is stored separately from 
the rest.

● The elements are then chained together 
into a sequence.
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Linked Lists at a Glance

● Can efficiently splice new elements into 
the list or remove existing elements 
anywhere in the list.

● Never have to do a massive copy step; 
insertion is efficient in the worst-case.

● Has some tradeoffs; we'll see this later.



  

Two Technical Prerequisites



  

Dynamic Memory Allocation

● We have seen the new keyword used to 
allocate arrays, but it can also be used to 
allocate single objects.

● The syntax

new T(args)

creates a new object of type T passing 
the appropriate arguments to the 
constructor, then returns a pointer to it.



  

Dynamic Memory Allocation

struct Tribute {
    string name;
    int districtNumber;
};

Tribute* t = new Tribute;
t->name = "Katniss Everdeen";
t->districtNumber = 12;
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A note here: the type 
Tribute* can mean either “an 

array of Tributes” or “a 
single Tribute.” It’s up to you 

the programmer to make 
sure not to mix the two up!
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Because t is a pointer to a 
Tribute, not an actual 

Tribute, we have to use the 
arrow operator to access the 

fields pointed at by t.
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Cleaning Up

● As with dynamic arrays, you are responsible for 
cleaning up memory allocated with new.

● You can deallocate memory with the delete 
keyword:

delete ptr;

● This destroys the object pointed at by the given 
pointer, not the pointer itself.

ptr
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Unfortunately...

● In C++, all of the following result in 
undefined behavior:
● Deleting an object with delete[] that was 

allocated with new.
● Deleting an object with delete that was 

allocated with new[].
● Although it is not always an error, it is 

usually a Very Bad Idea to treat an array 
like a single object or vice-versa.



  

A Pointless Exercise

● When working with pointers, we sometimes wish to 
indicate that a pointer is not pointing to anything.

● In C++, you can set a pointer to nullptr to indicate 
that it is not pointing to an object:

ptr = nullptr; 
● This is not the default value for pointers; by default, 

pointers default to a garbage value.
● In older C++ code (and the textbook!), you’ll see 

people use NULL instead of nullptr. We strongly 
advise against using NULL and recommend you use 
nullptr instead.



  

And now... linked lists!



  

But first, some announcements!



  

Assignment 4

● Assignment 4 was due at the start of 
class today.
● Using a late day? You can turn it in by 

Wednesday because Monday is a holiday.
● We strongly advise against this – the exam 

expects that you know how to solve all the 
problems from the assignment and you’ll 
need the time to study.

● Assignment 5 will go out on Wednesday 
of next week.



  

Midterm Logistics

● Midterm is next Tuesday from 7PM – 10PM. 
Locations are divvied up by last (family) name:
● Abb – Lam: Go to Hewlett 200.
● Lee – Nic: Go to Hewlett 201.
● Ntu – Zhu: Go to Cubberly Auditorium.

● Space is tight, so please go to your assigned 
exam room.

● You get a double-sided, 8.5” × 11” sheet of 
notes with you when you take the exam.



  

Back to CS106B!



  

Linked List Cells

● A linked list is a chain of cells.
● Each cell contains two pieces of information:

● Some piece of data that is stored in the 
sequence, and

● A link to the next cell in the list.
● We can traverse the list by starting at the 

first cell and repeatedly following its link.

1 2 3 4137



  

Representing a Cell

● For simplicity, let's assume we're building a 
linked list of strings.

● We can represent a cell in the linked list as a 
structure:

        struct Cell {

            string value;

            /* ? */ next;

        };

The structure is defined recursively!
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Building Linked Lists



  

...an empty list,
represented by
nullptr, or...

a single linked list
cell that points...

... at another linked 
list.

A Linked List is Either...
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Cell* result = nullptr;
while (true) {

string line = getLine("Next entry? ");
if (line == "") break;

Cell* cell = new Cell;
cell->value = line;

cell->next = result;
result = cell;

}
return result;
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Now that we’ve got the list,
what can we do with it?



  

Traversing a Linked List

● Once we have a linked list, we can traverse 
it by following the links one at a time.
for (Cell* ptr = list; ptr != nullptr; ptr = ptr->next) {

    /* … use ptr … */

}
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...an empty list,
represented by
nullptr, or...

a single linked list
cell that points...

... at another linked 
list.

A Linked List is Either...



  

Next Time

● Pointers by Reference
● Fun for the whole linked list family!

● Reimplementing Stacks and Queues
● Worst-case efficiency, at a price!
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